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Brownian motion of droplets induced by thermal noise
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Brownian motion (BM) is pivotal in natural science for the stochastic motion of microscopic droplets. In this
study, we investigate BM driven by thermal composition noise at submicro scales, where intermolecular diffusion
and surface tension both are significant. To address BM of microscopic droplets, we develop two stochastic
multiphase-field models coupled with the full Navier-Stokes equation, namely, Allen-Cahn-Navier-Stokes and
Cahn-Hilliard-Navier-Stokes. Both models are validated against capillary-wave theory; the Einstein’s relation for
the Brownian coefficient D∗ ∼ kBT/r at thermodynamic equilibrium is recovered. Moreover, by adjusting the co-
action of the diffusion, Marangoni effect, and viscous friction, two nonequilibrium phenomena are observed. (I)
The droplet motion transits from the Brownian to Ballistic with increasing Marangoni effect which is emanated
from the energy dissipation mechanism distinct from the conventional fluctuation-dissipation theorem. (II) The
deterministic droplet motion is triggered by the noise induced nonuniform velocity field which leads to a novel
droplet coalescence mechanism associated with the thermal noise.
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I. INTRODUCTION

Brownian motion (BM) owes its original observation and
nomenclature to Robert Brown [1]. Within the purview of
natural sciences, BM characterizes the persistent stochastic
motion of droplets suspended within a fluid medium [2,3].
Given its interdisciplinary significance and broad accessibil-
ity, BM has not only elicited considerable scientific interest
but also found widespread utility in numerous practical ap-
plications [4,5]. A salient feature of the droplet BM is the
relationship of the Brownian coefficient D∗ ∼ kBT/(η r0)
with the viscosity η and droplet radius r0. Resulting from this
relationship, the droplet mean squared displacement (MSD)
increases linearly with time as

〈�X 2〉 ∼ 2 D∗t . (1)

It is important to note that this relation is based on certain
fundamental assumptions. First, it presupposes a rigid droplet
without fluid flow inside the droplet. Second, it does not
account for the hydrodynamic effects arising from the surface
tension, which are particularly pertinent when changes in
droplet curvature due to deformation and coalescence are pro-
nounced. Lastly, the mutual interactions between droplets are
neglected and only the viscous friction with the surrounding
matrix is considered. However, for lots of materials, including
but not limited to polymer solutions, aerogels, and hydrogels
[6,7], the droplets do not exhibit rigid, solid-body behavior;
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instead, they manifest as liquid-state entities, often taking the
form of droplets via phase separation or nucleation. These
droplets assume a paramount role in shaping the microstruc-
tural composition of materials, for which the mass diffusion,
surface tension effect [8], and hydrodynamics [9] are pivotal.
Furthermore, the dispersed droplets engage in interactions and
coagulation with one another, rendering the complex process
inherently contextualized within a many-body physical frame-
work, which is beyond the scope of the single droplet BM
discussed by Einstein [10].

A well-established model for characterizing BM is the
Langevin equation [11]. Within this framework, BM is de-
picted as the motion of a droplet represented as a mass point,
propelled by the stochastic force resulting from collisions be-
tween the matrix fluid molecules and the Brownian droplets.
Meanwhile, this motion is counteracted by the viscous fric-
tion force, as described by Stokes’ formula. Incorporating
specific force terms into the Langevin equation allows for
the investigation of diverse and complex BM scenarios across
various domains. Examples include BM coupled with a mag-
netic field [12], BM influenced by laser-induced temperature
field [13], and BM subjected to electric fields [14]. Fur-
thermore, the discourse on Brownian motion extends to the
realm of anisotropic droplets, where researchers often employ
an orientation-dependent Langevin model [15,16]. Expanding
the scope, the inclusion of hydrodynamic memory effects
[17], which account for the inertial influence of the surround-
ing matrix on Brownian droplets, has led to the study of
non-Markovian BM. This is accomplished by introducing a
history-dependent Basset-Boussinesq-Oseen force term into
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the Langevin model [18]. Each of these instances adds distinc-
tive features to the conventional Brownian motion model. The
intricate interplay between complex fields and thermal fluctu-
ations leads to an apparent transition in droplet dynamics. At
short time intervals, these transitions manifest as a shift from
Brownian behavior, with 〈�X 2〉 ∼ t , to ballistic behavior,
with 〈�X 2〉 ∼ t2, yet retaining Brownian behavior at longer
timescales. Notably, the resultant motion closely resembles
the self-propulsion observed in biological entities, such as
E. coli bacteria and spermatozoa [19]. This is of paramount
importance in comprehending the dynamics of active mat-
ter, a phenomenon often referred as active Brownian motion
(ABM). Consequently, corresponding fluctuation-dissipation
theorem (FDT) is also tailored to ABM, grounded in the
principles of Langevin mechanics [20].

Confucius once espoused the wisdom of revisiting estab-
lished theories to uncover new knowledge. In this research
endeavor, we revisit the passive BM of submicrometer
droplets and focus on the thermal composition noises. These
noises emerge from the fluctuations in chemical free energy,
a factor not typically considered in traditional Langevin me-
chanics. A notable scenario is reported in Ref. [21], cellular
protein droplets exhibit pronounced composition noise [22],
while demonstrating weak to moderate hydrodynamic effects
due to the dynamic arrest of proteins [22,23]. Given the sig-
nificance of protein molecule stability under thermal noise as
well as the importance of Brownian motion-induced protein
droplet coalescence [24] for live organisms, we have devel-
oped two distinct phase-field models. These models aim to
explore the Brownian motion of tiny droplets in the presence
of intense composition noise coupled with varying degrees of
hydrodynamics.

In our model, we establish an equivalence between
Langevin mechanics and the Navier-Stokes equation to con-
sider the fluid dynamics, as outlined in Ref. [25]. To account
for the crucial role of composition noise in tiny droplets,
we introduce the stochastic phase-field equation, which im-
parts substantial significance to random behaviors. While
the composition fluctuations is predominantly dissipated by
diffusion, it remains intricately linked to the strong surface
tension effect which converts perturbations in chemical free
energy into fluctuations in kinetic energy and results in the
so-called Marangoni flow. This transformative mechanism
falls beyond the purview of the conventional fluctuation-
dissipation theorem and Langevin mechanics. Furthermore,
employing a multicomponent multiphase model, we explore
the interactions of multiple droplets, incorporating the inter-
play of diffusion, surface tension-induced Marangoni effects,
and viscous friction. The inclusion of composition noise not
only introduces a new degree of freedom to equilibrium
Brownian motion but also precipitates various nonequilibrium
behaviors.

This paper is structured as follows: in Sec. II, two
mathematical models are presented. The numerical stability
of the model discretization is validated with the capillary-
wave theory in Sec. III. In Sec. IV A, we study the equilibrium
of the droplet motion with both models, where the Einstein’s
theory D∗ ∼ kBT/r0 is recovered. In Sec. IV B, we show two
nonequilibrium behaviors stemming from the thermal noise.
First, the single droplet motion transforms from Brownian to

Ballistic which indicates a distinct energy dissipation mech-
anism from FDT. Second, the multidroplet simulation shows
an underlying coalescence mechanism that is generated by the
noise-induced nonuniform velocity field. A comparison with
previous Golovin-Tanaka coalescence mechanism is made;
differences from previous work are discussed.

II. NUMERICAL MODEL

A. Stochastic Allen-Cahn-Navier-Stokes model

We consider a system consisting of N Brownian droplets
(N ∈ Z) in a domain �. The Brownian droplets are character-
ized by a vector of phase order parameters φ(x, t ) in the Gibbs
simplex G = {φ ∈ RN+1 :

∑N

α=0 φα = 1, φα � 0}. The index
0 is especially assigned for the matrix with φ0 := φM . The
chemical free-energy functional F of the system is written as
a function of the order parameter as

F =
∫

�

[
g(φ) + ε a(φ,∇φ) + ω(φ)

ε

]
d�. (2)

Here, ε is a parameter related to the interface width. The
bulk chemical free-energy density is defined by g(φ), which
is used to ensure volume conservation acting as the role of a
Lagrangian multiplier. Similar to the work of Landau [26], the
gradient energy density a(φ,∇φ) is formulated by a general-
ized asymmetric expression as [27]

a(φ,∇φ) =
N,N∑
α<β

γαβ (φα∇φβ − ∇φαφβ )2, (3)

where γαβ denotes the interfacial tension between α and
β phases. The last chemical free-energy contribution ω(φ)
is formulated as a nonconvex function with N + 1 global
minima, which characterize the equilibrium states of the N
droplets and the matrix. To save computational effort, we
adopt a multi-obstacle potential [28–30] as

ω(φ) =
{

16
π2

∑N,N

α<β
γαβφαφβ + ∑N,N,N

α<β<γ
χ ∗φαφβφγ , if φ in G

+∞, else.
(4)

Here, the penalty parameter χ ∗ models the triple interactions
in the system and avoids the occurrence of the third com-
ponent contribution at two droplet interfaces. Physically, the
choice of χ ∗ affects the evolution of the energy landscape from
the bulk of one droplet to another bulk following the gradient
descent trajectory; the value of χ ∗ reflects the triple molecular
interaction in a lattice model and should be determined by the
phase diagram. More details about the obstacle potential is
documented in the Supplemental Material, Sec. I.1 [31].

Under the assumption of incompressibility, the evolution of
the phase-field variable φ and the fluid velocity u in the sys-
tem is controlled by the Allen-Cahn-Navier-Stokes (ACNS)
equations [32] as

∇ · u = 0, (5)

(∂tφ + u · ∇φ) = − 1

Pé
(τμφ + √

τ ξ
φ
+ λ), (6)

ρ (∂t u + u · ∇u) = −∇P − φ∇μφ

We
+ η∇2u

Re
+

√
η F

Re
. (7)
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The kinetic parameter τ controls the evolution rate of φ

towards equilibrium. The chemical potential μφ is defined
as δF/δφ. The Lagrange multiplier λ ensures the constraint∑N

α=0
φα = 1 by taking the following formulation:

λ = 1

N + 1

N+1∑
α=1

(
τ μφα

+ √
τ ξφα

)
. (8)

The pressure is labeled P. The density ρ and the dynamic vis-
cosity η are linearly interpolated over the individual densities
and viscosities of each droplet and matrix as ρ = ∑N

α=0
ραφα

and η = ∑N

α=0
ηαφα, respectively. In the discussion section on

the ACNS model, the subscripts P and M stand for the pro-
prieties of the droplet and the matrix, respectively. Without
losing generality, the density and the viscosity of the matrix
are set as the reference value to vary the corresponding val-
ues of the droplets in the current work. The dimensionless
quantities Pe, Re, and We are calculated by the characteristic
velocity u∗, diffusivity D∗, length x∗, density ρ∗, viscosity η∗,
and surface tension σ ∗ as

Pe = u∗x∗

D∗ , Re = ρ∗u∗x∗

η∗ , We = ρ∗u∗2x∗

σ ∗ .

In this work, we set Re = 1.0, Pe = 1.0, and We = 100, if not
specified differently.

Noteworthily, two types of stochastic processes are cou-
pled in the ACNS model, namely, (a) the composition
fluctuation ξ

φ
= (ξφ0

, ξφ2
, . . . , ξφN

) = (ξφ, ξφ, . . . , ξφ ), and (b)
the random body force term F. Both noises are Gaussian and
spatially and temporally relevant as

〈ξφ, ξ
′
φ
〉 = 2 kBT

vl �t
δ(x − x′)δ(t − t ′), (9)

〈F, F ′〉 = 2 kBT

vl �t
∇2δ(x − x′)δ(t − t ′). (10)

According to the fluctuation-dissipation theorem (FDT), the
noise amplitudes are decided by the Boltzmann constant kB,
the temperature T , the lattice volume vl , and the simulation
time step �t .

B. Stochastic Cahn-Hilliard-Navier-Stokes model

We postulate another conserved Cahn-Hilliard-Navier-
Stokes model to characterize Brownian droplets in a domain
� by its composition c(x, t ), while the matrix composition
is 1 − c(x, t ). The chemical free-energy functional F of the
system is then written as

F =
∫

�

[ f (c) + σε(∇c)2]d�. (11)

Here, the liquid-matrix interfacial tension γ is determined
by the surface tension parameter σ [33]. The parameter ε is
related to the interface width. The bulk chemical free-energy
density f (c) takes the regular solution formulation as [34]

f = RgT

vm

[c ln c + (1 − c) ln (1 − c)] + χ c (1 − c), (12)

where Rg denotes the universal gas constant, and vm represents
the molar volume. The molecular interaction between droplet
and matrix is scaled by the Flory parameter χ which takes
3.78 for the system with an upper critical-point phase diagram

in this work. More details about the free-energy formulation
Eq. (12) and a comparison with the obstacle potential adopted
in Allen-Cahn model is documented in supplementary Sec. I.2
[31]. Under the assumption of incompressibility, the evolution
of the Brownian droplet composition c and the fluid velocity
u in the system is governed by the stochastic Cahn-Hilliard-
Navier-Stokes (CHNS) equations [32] as

∇ · u = 0,

∂t c + u · ∇c = ∇
Pe

· (M∇μ +
√
M ξc ), (13)

ρ (∂t u + u · ∇u) = −∇P − c∇μ

We
+ η∇2u

Re
+

√
η F

Re
. (14)

Here, the chemical potential μ = δF/δc = ∂ f /∂c − 2σε∇2c
is magnified by the mobility M, which propels the diffusion.
The mobility takes Onsager’s relation as M = M0c(1 − c)
with M0 = (ε/σ )[DP(1 − c) + DMc]. DP and DM stand for the
self-diffusivity of the droplet and matrix, respectively [35].
The surface tension force −c ∇μ induces the convection and
the pressure term P is solved by the Poisson equation resulting
from the incompressible flow. The density ρ and the dynamic
viscosity η are linearly interpolated as ρ(c) = (ρ1 − ρ2)c +
ρ2, η = (η1 − η2)c + η2. At the droplet (matrix) equilibrium
composition c0 (c1), we have ρ(c0 ) = ρP, η(c0 ) = ηP [ρ(c1 ) =
ρM , η(c1 ) = ηM]. Like the previous ACNS model, two types of
stochastic processes are coupled in the CHNS model, namely,
(i) the composition fluctuation flux term ξc as

ξc =
⎧⎨⎩(ξx ) = (ξc ), for one dimension

(ξx, ξy ) = (ξc, ξc ), for two dimensions
(ξx, ξy, ξz ) = (ξc, ξc, ξc ), for three dimensions,

whose component is Gaussian and spatially and temporally
relevant as

〈ξc, ξ
′
c〉 = 2 kBT

vl �t
∇2δ(x − x′)δ(t − t ′). (15)

For example, the composition noise amplitude of pure water
at 298.15 K takes 0.203 after nondimensionalization (see the
Supplemental Material [31]). (ii) F is identical to Eq. (10) of
the ACNS model.

C. Simulation setup and boundary conditions

The finite difference method is implemented on a staggered
mesh with a size of Nx × Ny × Nz and equidistant Carte-
sian spacing �x = �y = �z to solve the evolution equations,
namely, the Allen-Cahn equation (6) and the Cahn-Hilliard
equation (13). The Navier-Stokes equations (7) and (14) are
updated with the explicit Euler scheme, the phase-field vari-
ables φ, the concentration c, and the fluid velocity u are
subjected to the periodic boundary conditions. The discretized
space and time steps are shown in Table SI in the Supplemen-
tal Material [31]. Parallelization of the numerical algorithm
is achieved with message passing interface (MPI) techniques.
The numerical convergence of the model is demonstrated in
the next section. The simulations are performed on the paral-
lel computer bwUniCluster of Baden-Württemberg equipped
with Intel Xeon Gold CPUs in the environment of Red Hat
Enterprise.
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FIG. 1. Validation of the two stochastic phase-field models with the capillary-wave theory. Open colored symbols: with hydrodynam-
ics; dashed color lines: without hydrodynamics. (I) Allen-Cahn-Navier-Stokes model: (a) The initial unperturbed flat interface. (b) The
capillary-wave amplitudes 〈�h̃2(q)〉 according to Eq. (17) in the reciprocal space for the perturbed interface with different composition noise
amplitudes ξφ . (c) 〈�h̃2(q)〉 with distinct viscosities η, for a fixed value of noise amplitude, ξφ = 0.1. (II) Cahn-Hilliard-Navier-Stokes model:
(a) The capillary-wave amplitudes increasing with ξc. (b) 〈�h̃2(q)〉 versus q for different interfacial tensions, γ at noise amplitude ξc = 0.05.
(c) 〈�h̃2(q)〉 versus q for different viscosities η with noise amplitude ξc = 0.1. The black solid lines guide the capillary-wave theory relationship
of 〈�h̃2(q)〉 ∼ q−2. The dotted, solid, and dot-dashed lines show different scaling laws, 〈�h̃2(q)〉 ∼ q−1, ∼q−2, and ∼q−4, respectively.

III. VALIDATION

A. Capillary-wave theory

For liquid surfaces with small thermal noise, the capillary-
wave theory (CWT) is regarded as a decent way to describe
its behavior which has been proven by several experiments
[36,37] and simulations [38]. Perturbed by the noise, the
surface energy increase �E of a planar fluid interface is
proportional to the surface area change as

�E ≈ γ

2

∫
(∇h)2 dxdy, (16)

where the interface position h is defined by the location with
composition φP = 0.5 for ACNS, and c = 0.5 for the CHNS
model. The liquid-matrix interfacial tension is represented by
γ . After Fourier transformation, Eq. (16) is expressed in the
reciprocal space as

�E (q) = γ

2

∫
q2|�h̃(q)|2dq,

where q symbolizes the wave number, and h̃(q) represents
the capillary-wave amplitude in the wave number domain. In
statistical mechanics, each wave mode of the fluctuation has
the identical energy kBT , so that

〈�h̃2(q)〉 = kBT

4π 2q2 γ
, with γ ∼ χ, (17)

where 〈�h̃2(q)〉 is named as the structure factor of the fluid
interface. According to the noise formulations stated by

Eqs. (9) and (15), we have 〈�h̃2(q)〉 ∝ ξ 2
φ

and 〈�h̃2(q)〉 ∝ ξ 2
c

for ACNS and CHNS, respectively.
To validate the energy dissipation behaviors of the ACNS

and CHNS models with the capillary-wave theory (CWT), an
initial setup with a flat liquid-matrix interface is demonstrated
in Fig. 1(I)(a). The density ρ = 0.01 and the interfacial ten-
sion γ = 1.0 are adopted for both models. First, for the ACNS
model, two scenarios, namely, (i) the Allen-Cahn model with
hydrodynamics (open dots) and (ii) without hydrodynamics
(dashed lines) are considered and shown in Fig. 1. The phase-
field kinetic parameter τ in the ACNS model is set to be
0.01 and the viscosity is η = 0.001. Figure 1(I)(b) shows
the squared capillary-wave amplitude 〈�h̃2(q)〉 with the wave
number q for different composition noise amplitudes ξφ. The
scaling law with q−1 < 〈�h̃2(q)〉 < q−2 appears in both sce-
narios irrespective of hydrodynamics, as guided by the black
lines. With the growth of the noise amplitude ξφ by 10 times,
〈�h̃2(q)〉 increases accordingly by 102 times, showing good
consistence with Eq. (17). Figure 1(I)(c) illustrates the impact
of the viscosity η = ηP = ηM on 〈�h̃2(q)〉 at a fixed noise
amplitude ξφ = 0.1. Not only the capillary-wave amplitude
decreases with larger viscosity, but the scaling factor reduces
to −1 at large viscosity. This scaling law does not obey CWT,
implying that the stochastic ACNS model embodies a distinct
energy dissipation mechanism for the perturbed interface from
the binary fluid systems.

Next, the CHNS model is validated and the results are
shown in Fig. 1(II). Here, the structure factor 〈�h̃2(q)〉 is also
measured for two scenarios: (i) with hydrodynamics (open
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dots) and (ii) without hydrodynamics (dashed lines). The mo-
bility M0 set to be 1.0 and the viscosity is η = 0.001. In
good consistency with previous researches [37], at large wave
number q, 〈�h̃2(q)〉 shows the q−2 tendency with the wave
number q for both scenarios, as guided by the black solid
line in Fig. 1(II)(a). For the short wavelength perturbations
with q < 0.1, the Cahn-Hilliard model without hydrodynam-
ics (dashed colored lines) shows an apparent deviation from
the CWT scaling law. It indicates that hydrodynamics is a
crucial mechanism for the surface energy dissipation of the
fluid interface, especially for the noise with short wavelengths.
Then, in Fig. 1(II)(b), we fix the constant noise amplitude ξc =
0.05 and observe the reduction in capillary-wave amplitudes
with the increase in the surface tension γ which is in good ac-
cordance with the CWT. In Fig. 1(II)(c), the viscosity effect on
the scaling law of 〈�h̃2(q)〉 versus q is illustrated. By setting a
larger η, the viscous stress η∇2u in the Navier-Stokes equation
is magnified, giving rise to a stronger energy dissipation via
frictional forces between fluids. But the deduction of Eq. (17)
only considers the surface energy dissipation and does not
take the viscosity effect on the kinetic energy into account.
This observation in turn indicates that for the composition
noise dominated Brownian motion of submicro droplets, the
viscous effect is of subtle importance. In this way, we set low
viscosity η = 0.001 in the following parts to eliminate the
viscous dissipation mechanism, which is in line with the CWT
and experiments.

B. Dispersion relation

To have a better understanding of the capillary-wave the-
ory for two types of phase-field models, we scrutinize the
energy dissipation by the dispersion relation which explains
the distinct scaling laws between the capillary-wave amplitude
〈�2h〉 with the wave number q. Here, we suggest two regimes
with distinct dispersion relations, namely, composition noise
dominated regime and convection dominated regime.

1. Composition noise dominated regime

(I) For the ACNS model, the thermal fluctuation energy-
gaining rate of the system reads

∂F+

∂t
=

∫
�

f ∗τ ξ 2
φ

d� = f ∗τ0 ξ 2
φ

S,

where S is the interface area and the characteristic energy
density f ∗ = γ /ε. The energy dissipation rate by the diffusion
process obeys the following energy law as

∂F−

∂t
=

∫
�

δF

δφ

dφ

dt
d� = −

∫
�

τ μ2d�

= −
∫

�

τ [γ (1 − 2φ) − γ∇2φ]2d�

= S
∫ ∞

−∞
ᾱ τ f ∗2 (1 + 2π 2ε2 q2 + π 4ε4q4 )φ̄ 2dx

= ᾱ τ0 f ∗2 S (1 + 2π 2ε2 q2 + π 4ε4q4 )�2h.

Here, we expand the composition at the interface location φ =
0.5 to the first order of infinitesimal length ε̄ and integrate by
substituting φ = 0.5 + ε̄ φ̄. With tiny thermal noises, the com-

position perturbation φ̄ is described by a wave function eζ t−iqy.
Therefore, the terms ∇φ̄ and ∇2φ̄ are linearized as −i q φ̄ and
q2 φ̄, respectively. In addition, we rewrite φ̄ = �φ = ∇φ · �h
and let ᾱ = 16 ε̄ 2/π 4. Moreover, the first-order approximation
simplifies

∫ ∞
−∞(∇φ)2dx by the Dirac δ function. In this way, at

equilibrium, we have ∂t F + = ∂t F − which denotes the balance
between energy gaining and consumption, so that

�2h ∝ ξ 2
φ

γ (1 + 2π 2ε2 q2 + π 4ε4q4 )
. (18)

With this dispersion relation, we address the scaling law of
the capillary-wave amplitudes observed in Fig. 1(I). Distinct
from the Fick’s second law and the Cahn-Hilliard equation,
the Allen-Cahn equation is a diffusion-reaction equation and
can be expressed with the composition perturbation φ̄ as

dφ̄

dt
= τ

(
16γ

π 2ε
φ̄ − γ ε ∇2φ̄

)
.

For small-wavelength noises, the linear term of φ̄ controls the
energy dissipation over the curvature-related ∇2φ̄ term. While
for the long-wavelength perturbations, the second-order term
comes into play, resulting the scaling factor of 〈�2h〉 ap-
proaching −2.

(II) For the CHNS model, the fluctuation energy-gaining
rate reads

∂F+

∂t
=

∫
�

f ∗M ξ 2
c d� = f ∗M0 ξ 2

c S.

Meanwhile, the energy dissipates as

∂F−

∂t
=

∫
�

δF

δc

dc

dt
d�

= −
∫

�

M(∇μ)2d�

= S
∫ ∞

−∞
M f ∗2 ε̄ 2 (q2χ 2 + 2ε2q4χ + ε4q6 ) c̄ 2 dx

= M0 f ∗2 ε̄ 2 S (q2χ 2 + 2ε2q4χ + ε4q6 )�2h,

in which the integrated term is expanded at the interface
position with c = 0.5 + ε̄ c̄. Similar to the mathematical treat-
ments in the ACNS model, the composition perturbation c̄ is
analogized with the wave function eζ t−iqy. At equilibrium, we
obtain

�2h ∝ ξ 2
c

γ (χ 2q2 + 2χ ε2q4 + ε4q6 )
. (19)

Both q−2 and q−4 scaling laws are captured in the simulated
CWT of the Cahn-Hilliard model without hydrodynamics;
see dashed lines in Fig. 1(II)(a). It reflects the prominent
difference between the Cahn-Hilliard equation and the diffu-
sion equation (Fick’s second law), since CH is a fourth-order
partial differential equation expressed with composition per-
turbation c̄ as

dc̄

dt
= ∇ ·

(
Mσχ

ε
∇c̄

)
− ∇ · (Mσε ∇3c̄).

Hence, the energy dissipation for small-wavelength noises
(large q) behaves similarly to the standard diffusion process.
While for the large wavelength (small q), its dissipation is
dominated by the fourth-order term σ∇4c̄.
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2. Convection dominated regime

The energy law behaves entirely differently when convec-
tion overwhelms diffusion, and we have another energy law
for the ACNS model:

∂F−

∂t
=

∫
�

u · ρ
du
dt

d� =
∫

�

u · (μ∇c) d�

= S
∫ ∞

−∞
∇� · 16 f ∗

π 2
(−ε̄ φ̄ − π 2ε2 ε̄ ∇2φ̄)(ε̄ ∇φ̄)dx

= 16 f ∗ S

π 2
ε̄ 2q′� (χ q + π 2ε2q3 )�2h.

Here, we assume the velocity u as the gradient of the tiny
perturbed stream function � = eζ ′t−iq′x with the different phase
parameter q′ from the composition noise. Under this circum-
stance, the capillary-wave amplitude is derived as follows:

�2h ∝ τ0 ξ 2
φ

q + π 2 ε2 q3
. (20)

Comparing with Eq. (18), 〈�2h〉 has a scaling factor be-
tween −1 and −2 with respect to the wave number q in the
ACNS model. Similarly, the energy law for the convection-
dominated CHNS model is deduced as

�2h ∝ M0 ξ 2
c

χ q + ε2 q3
, (21)

which is also in line with the CWT simulation results shown in
Fig. 1(II). These dispersion relations are dealing with the com-
position noise dissipated via convection, and has never been
considered in previous FDT and CWT theories. We stress that
this energy dissipation mechanism is entirely different from
the one in the Langevin mechanics, where the random body
force gets smoothed by the viscous stress. Testified in pre-
vious simulations [39,40], the random body force perturbed
interface still follows the CWT scaling law with 〈�2h〉 ∼ q−2.

IV. RESULT AND DISCUSSION

In this section, we present the Brownian motion simula-
tions with both models of CHNS and ACNS. Different noise
amplitudes, droplet radius, and droplet-matrix interfacial ten-
sion are considered, and their impacts on Brownian behaviors
are discussed.

A. Equilibrium behaviors

1. The Einstein’s relation

We present a simple proof of the Einstein relation repli-
cated with the phase-field model. The total fluctuation energy
normalized by the characteristic chemical free-energy density
f ∗ on the two-dimensional (2D) droplet with radius r0 reads

〈E〉/ f ∗ =
∫

�

〈√τ ξφ,
√

τ ξ ′
φ
〉 d�

= τ0 ξ 2
φ

∫ ∞

0

φ (1 − φ) 2πr dr

= τ0 ξ 2
φ

S,

where S = ∫ ∞
0

φ (1 − φ) 2π rdr = 2πr0 represents the sur-
face area of the perfect spherical droplet with the interface

width approaching the sharp interface limit [41]. The char-
acteristic chemical free energy f ∗ equates to 1.0 after
nondimensionalization. Consequently, with the property of
the Rayleigh distribution, the root mean square droplet veloc-
ity in 2D reads

vrms =
√

〈v2〉 =
√

2〈E〉
m

=
√

4 τ0 ξ 2
φ

r0

= √
2D∗

AC,

from which the Brownian coefficient D∗ of the ACNS model
follows

D∗
AC = 2 τ0 ξ 2

φ

r0

. (22)

With the same method, the Brownian coefficient with the
CHNS model reads

D∗
CH = 2M0 ξ 2

c

r0

. (23)

To testify the Einstein’s relation, we perform 2D Brownian
motion simulations with the ACNS model first. A droplet with
an initial radius of r0 = 20 is placed amid the domain with
a size of 12r0 × 12r0 which can eliminate the influence of
boundary on the droplet motion [42] (see the Supplemental
Material [31]). With an increase in the noise amplitude ξφ, the
Brownian coefficient D∗ shows a parabolic relation with ξφ,
as guided by the red dashed line in Fig. 2(I)(a). According
to Eq. (9), the linear dependency of D∗ on kBT is confirmed.
Here, D∗ is fitted with the Rayleigh distribution based on the
droplet velocity distributions for 106 time steps, as sketched in
Fig. 2(II)(a). For stronger noise (or higher temperatures), the
probability distribution function (PDF) of velocity becomes
broad and shifts to the high-velocity side, indicating enhanced
droplet motion by the composition noise.

Next, we alter the droplet radius r0 for a constant noise
amplitude ξφ = 0.001. The inverse relationship of D∗ ∼ 1/r0

is clearly demonstrated in the middle row of Fig. 2(I)(b),
as guided by the red dashed line. By increasing the droplet
radius, we observe that the peak of the velocity PDF moves
to the low velocity in Fig. 2(II)(b). It implies that the Brow-
nian droplet approaching its equilibrium is influenced by
the size effect. Moreover, we observe another linear rela-
tionship between D∗ and the kinetic parameter τ which is
shown in the lower row of Fig. 2(I)(c). Compared with the
2D droplet trajectories in Fig. 2(III), the larger molecular
mobility not only enhances the macroscopic diffusion of the
whole Brownian droplet but also modifies the motion be-
havior, which is discussed later in Sec. IV B 1. In addition,
Einstein’s relation is replicated with the CHNS model. The
initial droplet radius is 20 and the surface tension parameter
is set to be γ = 1.0. The remaining hydrodynamic parameters
in the Navier-Stokes equation are identical to the setup in the
validation section Sec. III. The Brownian coefficient D∗ is
obtained by fitting the droplet velocity with the Rayleigh dis-
tribution. Figures 3(I)(a)–3(I)(c) present three relations with
D∗ ∝ ξ 2

c , D∗ ∝ 1/r0, and D∗ ∝ M0, respectively, for various
noise amplitudes ξφ, radii r0, and mobility parameter M0.
Minor differences between ACNS and CHNS are attributed
to the different fluctuation-dissipation scaling laws of CWT
in Sec. III. The equilibrium composition distribution at the
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FIG. 2. 2D Brownian motion of droplets via ACNS model. (I) The Brownian motion coefficient D∗ (a) with noise amplitude ξφ , (b) with
initial radius r0, (c) with kinetic parameter τ . The dashed red lines guide the D∗ ∝ ξ 2

φ
, 1/r0, and 1/τ relations. (II) Probability density function

(PDF) of droplet velocity follows the Rayleigh distribution (a) with ξφ , (b) with r0. (III) The droplet trajectory. The color bar scales the time
sequence.

interface for both models can also play a role, as sinus and
hyper-tangent functions describe the ACNS and CHNS mod-
els, respectively. Therefore, the kinetic parameters τ and M
are correspondingly assigned with different values, which re-
sults in the distinct spatial composition noises (scaled by

√
τ

or
√
M) at the interface region.

2. Fluctuation-dissipation theorem

Taking the CHNS model as an example, to trigger the
Brownian motion, two thermal fluctuations are considered,
namely, the composition noise

√
M ξc and the random

body force
√

η F. Accordingly, each noise has its individual

FIG. 3. 2D Brownian motion of droplets with CHNS model. (I) The Brownian motion coefficient D∗ (a) with noise amplitude ξc, (b) with
initial radius r0, (c) with mobility parameter M0. The dashed red lines guide the D∗ ∝ ξ 2

φ
, 1/r0, and M0 relations. (II) Probability density

function (PDF) of droplet velocity follows the Rayleigh distribution (a) with ξc, (b) with r0. (III) The droplet trajectory. The color bar scales
the time sequence.
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FIG. 4. 2D Brownian motion of a droplet for increasing hydrodynamics (Weber number We) with an initial radius r0 = 20. (I) ACNS
model with the composition noise amplitude ξφ = 0.001: (a) Mean squared displacement with time. (b) Probability density function (PDF)
of the velocity. (c) Brownian coefficient D∗ with We. (d) Velocity field at t = 200. The black circles mark the droplet-matrix interface with
φ = 0.5. The color bar (log) scales the velocity magnitude. (e) Power spectral density (PSD) of the droplet displacement with the wave number
q shows Brownian relationship PSD ∝ q−2. (II) CHNS model with the composition noise amplitude ξc = 0.001.

dissipation mechanism, as
√
M ξc smoothed by diffusion and√

η F by viscous friction. Hence, we categorize the BM into
two subgroups, (I) the composition noise dominated BM
which appears at higher temperatures and large intermolecular
diffusivity, and (II) the random body force dominated BM
for the rigid body. Each type has its individual Brownian
coefficient as

D∗ =
{

kBT ζ ∝ η−1 for rigid body
kBT M ∝ M0 for soft droplet. (24)

For the rigid body BM, the Brownian coefficient [43,44]
follows the Stokes-Einstein-Sutherland relation where the hy-
drodynamic mobility ζ = (aπη r0 )−1 and the constant a is
decided by the geometry of the motion. For the droplet BM in
our simulation, the microscopic molecular mobility M scales
the macroscopic droplet motion.

B. Nonequilibrium behaviors

The previous section addresses the equilibrium characteris-
tics of the CHNS and ACNS models with which the Einstein’s
relation is reinstated, serving as a validation of our phase-field
models and as an illustration of their ability to replicate ther-
modynamic equilibrium behavior. In the following section, we

direct our focus to the nonequilibrium droplet behaviors that
lie beyond the scope of thermodynamic equilibrium.

1. Marangoni effect and ballistic motion

In Einstein’s derivation of the Brownian coefficient, the
droplet is idealized as a rigid body, and the energy dissi-
pation occurs primarily through the viscous stresses exerted
by the surrounding matrix. In our model, we consider the
surface tension effect of the submicro droplet, as its character-
istic timescale is comparable with that of Brownian motion.
Here, the composition-induced noise not only leads to inho-
mogeneous composition distributions at the interface region
but also results in the interfacial tension gradients, invoking
the surface tension force and the Marangoni flow [45] that
drives the Brownian motion of the droplet. In our simula-
tions, we manipulate the Weber number (We) to modulate
the noise-induced surface tension force in the Navier-Stokes
equations (7) and (14) for both ACNS and CHNS models. As
demonstrated by the velocity field snapshots in Figs. 4(I)(c)
and 4(II)(c), a reduction in We amplifies the surface tension
force, enhancing the Marangoni flow around the droplets.
Most importantly, the increasing Marangoni flow triggers a
transition for the droplet motion from Brownian motion (as-
sociated with large We) to ballistic motion (associated with
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small We). This transition is evident in the mean squared
displacement (MSD) depicted in Figs. 4(I)(a) and 4(II)(a),
where the ballistic behavior of 〈�X 2〉 ∼ t 2 is illustrated by the
dashed lines.

Notably, we propose that the ballistic behavior in droplet
dynamics arises not from the fluctuation mechanism, but is
rather related to the dissipation mechanism. One piece of
evidence supporting this notion can be found by the droplet
velocity distribution f (v) in Figs. 4(I)(b) and 4(II)(b). We
observe that an increase in Weber number exerts only min-
imal influence on f (v). The reduction of We from 100 to
0.01 only leads to an increase of D∗ by 5%. However,
the droplet MSD follows a fundamentally different scaling
law with time. Another piece of evidence is supported by
the power spectral density (PSD) of the droplet displace-
ment [46], which exhibits a −2 scaling law with wave
number q in Figs. 4(I)(d) and 4(II)(d). Both observations
signify that the ballistic droplet motion stems from the same
origin with the Brownian motion—composition Gaussian
noise.

In this way, we suggest that the ballistic dynamic is orig-
inated from the dissipation mechanism of the noise-induced
surface tension force (which is also a kind of noise), that is not
compatible with the conventional FDT stated in Sec. IV A 2.
For standard FDT description, the composition perturbation√
M ξc emanated from the chemical free-energy fluctuation is

dissipated by the diffusion term M∇2μ, and the random body
force

√
η F arising from the kinetic energy gets smoothed out

by the viscous term η∇2u. In this context, both noises are as-
sumed to be independent with no covariance. However, in fact,
not all of the chemical free-energy fluctuation is smoothed
by diffusion. Parts of it are transformed into kinetic-energy
perturbation by the Kortweg-stress associated surface tension
force −c∇μ and induces the random Marangoni flow. This
fluid flow can either be dissipated by the viscous stress, or
in return transforms into the composition gradient. Hence,
a more complex dynamics comes into play where the dissi-
pation of the random Marangoni flow has the characteristic
timescale determined by three aspects: (i) Péclet number Pe
decides the amount of the chemical free-energy fluctuation
transforming into the kinetic-energy perturbations; (ii) We-
ber number We scales the strength of Marangoni effect; (iii)
Reynolds number, Re determines the viscous dissipation mag-
nitude.

Consequently, for large composition noise dominated sce-
narios with low viscous fluids, the viscous dissipation is
incapable of smoothing the random surface tension force in
its characteristic timescale, resulting in the ballistic droplet
motion. This scenario is reminiscent of the underdamped
Langevin mechanics, especially in the genre of active Brow-
nian motion, where the self-propelling active droplet also
performs the ballistic motion with 〈�X 2〉 ∼ t 2 [47]. But the
differences between our observation and ABM are apparent.
(i) The Marangoni flow only stems from the composition
fluctuation, rather than from the inhomogeneous surfac-
tant distributed around droplet [48]; (ii) the droplet motion
is dissipated not only by the viscous friction, but also
by the diffusion, because of the interconversion of chemi-
cal free energy and kinetic energy by the surface tension
force.

2. Phase diagram of droplet motion

Upon thorough examination of droplet motion behaviors
across various Pe and We values, we categorize droplet motion
into three distinct scenarios characterized by trajectory and
MSD.

(I) Brownian motion with subdiffusive drift: the mean
squared displacement 〈�X 2〉 < 2D∗t . In this scenario, weak
composition fluctuations are dissipated via intermolecular
diffusion, while convection effects can be neglected. This sce-
nario corresponds to the dark-blue region in the motion phase
diagram of Figs. 5(I)(a) and 5(II)(a) and is prominent in cases
with a large Peclet number and a high Weber number. The
MSD shown by the blue pentagons in Figs. 5(I)(b) and 5(II)(b)
from our simulations indicates a subdiffusive tendency in
the MSD, deviating from the 〈�X 2〉 ∼ t behavior indicated
by the solid line. Concurrently, the fourth cumulant 〈�X 4〉
remains approximately at 10−32 without exhibiting any time
dependence, implying that the droplet displacement adheres
to a standard Gaussian distribution.

(II) Brownian motion with diffusive drift: convection be-
comes a significant factor. This scenario, characterized by a
small Pe number and a large Weber number, is depicted by
the light-blue regions in the motion phase diagram illustrated
in Fig. 5. The composition noise, only partially dissipated
through intermolecular diffusion, amplifies as Pe decreases,
inducing the Marangoni flow that propels the droplet’s drift
motion. Over time, this motion gradually diminishes due to
the damping effect exerted by viscous stress. The trajectory of
the droplet, observed in both models, displays a self-similar
fractal structure and eventually reaches equilibrium, where the
mean squared displacement (MSD) satisfies 〈�X 2〉 ∼ 2D∗t ;
see green lines in Figs. 5(I)(c) and 5(II)(c). Concurrently, the
fourth cumulant 〈�X 4〉 gradually increases with time t . Over
a prolonged time span, it is observed that 〈�X 4〉 ∼ t 2, akin to
the findings reported in Ref. [49]:

〈�X 4〉 ≈ 12 Var(D∗) t 2,

where Var(D∗) is the variance of D∗. The displacement
distribution observed in the simulations adheres to a Gaus-
sian distribution, as depicted in Fig. 5(b). This observation
suggests that the time-varying nonconstant Brownian coef-
ficient D∗ is influenced by a mechanism distinct from the
diffusing-diffusivity models [50]. Further comprehension of
this phenomenon unveils that the deformable droplet deviates
from its originally perfect spherical shape, which introduces
a nonzero variance in the Brownian coefficient. Furthermore,
since each molecule within the droplet experiences random
perturbations at each time step, the Brownian coefficient of
the entire droplet becomes a time series that conforms to a
Gaussian distribution with Var(D∗) > 0, as per the central
limit theorem. Conversely for a rigid body, every molecule
experiences the same noise at each time point, resulting in a
zero variance for D∗.

(III) Underdamped ballistic motion: with a further reduc-
tion in We, the composition fluctuation induced Marangoni
flow dominates. Once accelerated, the droplet can be slowed
down neither by the diffusion nor by the viscous stress, re-
sulting in the ballistic motion. For both CHNS and ACNS
models, we observe that the short-time MSD (t < 0.1) shows
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FIG. 5. The phase diagram of BM with various Weber number We and Péclet number Pe. The initial radius is r0 = 20. (I) ACNS model
with the noise amplitude is ξφ = 0.01. (a) The motion phase diagram. The dot-dashed line and the dashed line separate the ballistic motion
region (orange) from the no-drift Brownian region (blue) and the Brownian motion with drift region (light blue). The light gray region in
between the dashed and dot-dashed lines show the transition area. Some exemplary motion trajectories are shown around pentagon-no-drift
BM, square-BM with drift, triangle-ballistic motion, and circle-transition region. (b) The probability density function (PDF) of the droplet
displacement. (c) MSD 〈�X 2〉 of the example simulations with time. (II) CHNS model with the noise amplitude is ξc = 0.01.

the diffusion or subdiffusion relation with time. The droplet
motion range reduces with the increase in Pe, as illustrated
by the y intercept of MSD in Figs. 5(I)(c) and 5(II)(c). The
later long-time behavior is vastly influenced by the composi-
tion noise induced Marangoni flow which is noticed by the
steepening slope of MSD with a decrease in We.

3. Fluctuation-induced droplet coalescence

In this part, we report another nonequilibrium behavior
stemming from the thermal composition noises which give
rise to a special noise-induced droplet coalescence mecha-
nism. Then, a multidroplet simulation proceeds and diverse
morphologies are observed due to the droplet coalescence
mechanism. First, we briefly introduce the droplet coales-
cence mechanism which has been extensively studied by
Golovin and Tanaka [51,52]. Notably, Golovin [52] intro-
duced a scenario with dual-droplets amid the surrounding
matrix. An accumulation of solute material in the gap region
between the droplets leads to the nonuniform solute distribu-
tion around the droplet, generating a surface tension gradient
and inducing Marangoni flow, which propels the motion of
the droplets [53]. Golovin’s diffusion-induced motion has
been further investigated by Tanaka and other researchers,
employing the Cahn-Hilliard-Navier-Stokes equation [54]. In
the work of Tanaka [55] and also within our CHNS model,
the utilization of a double-well potential-energy function

naturally results in a droplet-matrix interface with an infinitely
wide interface region represented by hyperbolic tangent func-
tions. Hence, the concentration profiles of distinct droplets
consistently overlap with one another. In the case of two
coalescing droplets, this overlapping leads to an asymmetric
diffusion pattern around each droplet, subsequently caus-
ing a nonuniform pressure distribution in the Navier-Stokes
equation, giving rise to center-to-center droplet motion, and
facilitating their coalescence.

Here, we report a coalescence mechanism distinct from the
Golovin-Tanaka theory by applying the ACNS model. Since
the obstacle potential is adopted to the system as Eq. (4),
the composition profiles are depicted by sinusoidal functions
with finite interfacial width. Therefore, in contrast with the
hyperbolic tangent interface profile in the CHNS model, the
ACNS model enables us to eliminate the composition over-
lapping in the Golovin-Tanaka mechanism and deletes the
nonuniform composition-induced Marangoni effect. For the
simulation setup, we position two droplets of equal radius r0 =
20 symmetrically within a Nx × Ny = 18r × 12r domain. The
compositional noise with an amplitude ξφ = 0.01 is adopted.
All other parameters are identical to that in Sec. II A. The
initial separation between the droplets is represented by the
parameter d .

As shown in the double droplet simulations of Fig. 6(I),
the phase-field variable inside the gap is uniformly distributed
as φM = 0. It implies that the surface tension force −φ∇μ
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FIG. 6. 2D Brownian motion of double droplets with the same radius r0 = 20 propelled by the composition noise ξφ = 0.01. (I) The double
droplet simulation with spacing at t = 200. (a) φP droplet order-parameter distribution. The white scale bar denotes 50. (b) The velocity field.
Only the left half of the streamlines are shown and the color bar (log) scales the velocity magnitude. (c) The pressure distribution in log scale
along the line of two-droplet centers. (II) The velocity and (III) displacement distributions of the left droplet changing with d . (IV) Three
trajectories of the left droplet. The right shift manifests the deterministic motion. The color bar scales the time sequence.

is strictly 0 inside the gap region. In other words, the com-
position noise induced Marangoni effect only appears at the
interface region. But the fluid flows from each interface prop-
agate into the matrix and overlap at the droplet gap region.
Clearly demonstrated in Fig. 6(II), the resulting flow velocity
inside the gap region becomes larger than the outside part.
Consequently, the nonuniform pressure distribution around
droplets is established due to the composition noises [see
Fig. 6(III)] and produces the resulting force −∇p which pro-
pels the droplet motion.

Most importantly, the composition noise induced droplet
motion in dual-droplet setup shows three significant contrasts
to the single droplet simulations. (I) The droplet motion is
intensified with the narrowing gap distance d . By reducing d ,
the probability density function (PDF) of the droplet velocity
shifts towards higher velocities in Fig. 6(IV). (II) The droplet
motion is anisotropic. Fitting the displacements of the left
droplet in the x and y directions independently to normal dis-
tributions, the x displacement presents the apparent right shift
with the reduction in d; see the middle panel of Fig. 6(IV).
Contrarily, no discernible change related to droplet spacing
is observed in the y direction. (III) The droplet motion is
deterministic, which can be proven by two aspects. (a) The
x displacement distribution shows an increase in the mean

average value with reducing d in Fig. 6(IV), indicating the
deterministic drift. (b) The trajectories of the left droplet in
Fig. 6(V) apparently present the right-shifting motion.

Particularly, as the asymmetric velocity field results in
the pressure gradient −∇p which points inwards the gap,
the deterministic droplet motions always lead to the droplet
coalescence. Hence, the composition noise induced coales-
cence force is pure attractive and independent of the surface
tension gradient. It manifests the distinction between our ob-
servation and the Golovin-Tanaka theory which indicates that
the droplet coalescence always evolves to reduce the sys-
tem’s total surface energy. In other words, the coalescence of
hydrophobic droplets cannot be explained with the Golovin-
Tanaka mechanism but is indeed captured in our simulations;
see the Supplemental Material, Sec. III [31] as well as the
latest experiment [56]. Moreover, the coalescence force has
a long-range feature, differing from the mechanism due to the
short-range bridging effect at the droplet reported in Ref. [57].
An obvious proof is evident in Fig. 6(V), when the droplet
spacing d = 60 is three times their radii, the deterministic
merging can be apparently seen in the droplet trajectory.

Furthermore, we proceed with the multidroplet simulation
as demonstrated in Fig. 7. The initial 50 droplets with radii
r0 = 20 are randomly distributed in a two-dimensional do-
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FIG. 7. The Brownian motion of multiple droplets propelled by the random composition noise fluctuation ξφ = 0.5 for all components in
the ACNS model. Upper row: 50 droplets coalescence with time. Two typical morphology transformations: (i) rod formed by Janus droplets,
and (ii) big cluster via droplet collisions are highlighted with the white and red dashed curves, respectively. The underlying color bar indicates
the φ index of the system, with the first phase field variable φ = 0 for the matrix and the rest numerating the 50 droplets. Lower row: velocity
field around droplets scaled by the color bar beneath. The scale bar denotes the spatial length of 50.

main (Nx = Ny = 30 r0). Propelled by the composition noise
with the amplitude ξφ = 0.5 for all components, the droplet
motion results in a manifest coalescence behavior, as depicted
in the first row of Fig. 7. As a result of the asymmetric velocity
field around the droplets, distinct multidroplet microstructures
are observed, including Janus, rod, and cluster, as highlighted
by the colored dashed curves in Fig. 7.

V. CONCLUSION

In conclusion, we have postulated and validated two
types of stochastic phase-field models coupling with hydro-
dynamics to simulate the Brownian motion of droplets and
droplets. Propelled by the composition fluctuations with weak
Marangoni effect, the droplet-droplet proceeds the Brownian
motion, depending on the amplitude of the random noise
and the droplet size, and the microscopic kinetic parameter.
Moreover, by altering the parameters in the Navier-Stokes
equations, the stochastic phase-field models go beyond the
limitation of the Langevin equation only for the rigid body
and can also be utilized for soft deformable droplets. After
testifying our results with the Einstein relationship within the
equilibrium condition, we extend our model further into two
off-equilibrium scenarios. (i) When the composition noise-
induced fluid flow becomes pronounced, the transition from
Brownian motion to ballistic motion is observed which in-
dicates the noise-induced fluid flow underdamped by the

viscous stress. (ii) The double droplet simulation shows a
stochastic-induced deterministic droplet motion, which plays
a vital role in the coalescence of the multidroplet system and is
hardly considered in the Langevin dynamics. Nevertheless, in
the previous Cahn-Hilliard type phase-field models [51,52],
the stochastic noise terms are totally overwhelmed by the
pronounced diffusion and Ostwald ripening and simply ap-
plied as a trigger for the phase separation. Here, we reevaluate
the importance of the noise term and focus on the stochastic
droplet motions during the coalescence process, while the
subordinate Ostwald ripening effect can be neglected. Thus,
the missing linkage between the coarsening droplet and the
randomly drifting rigid droplet is connected. Our model is also
fully implemented in three dimensions (3D). We anticipate
performing large-scale three-dimensional multidroplet simu-
lations in forthcoming research to understand the underlying
mechanisms of the micro droplet motions, especially for the
gelation process of soft matter materials.
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