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Neutral delay differential equation model of an optically injected Kerr cavity
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A neutral delay differential equation (NDDE) model of a Kerr cavity with external coherent injection is
developed that can be considered as a generalization of the Ikeda map with second- and higher-order dispersion
being taken into account. It is shown that this model has solutions in the form of dissipative solitons both in the
low dissipation limit, where the model can be reduced to the Lugiato-Lefever equation (LLE), and beyond this
limit, where the soliton is eventually destroyed by the Cherenkov radiation. Unlike the standard LLE, the NDDE
model is able to describe the overlap of multiple resonances associated with different cavity modes.
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I. INTRODUCTION

Over the past few decades, optical frequency combs have
found numerous applications in different fields of science and
industry, including spectroscopy, optical ranging, metrology,
searching for exoplanets, microwave photonics, and opti-
cal communications [1–6]. Standard methods of frequency
comb generation are based on the use of mode-locked lasers
[7], optical microcavities subject to an external coherent
injection [8], and electro-optical modulators [9]. A simple
map to describe an injected Kerr cavity was proposed by
Ikeda [10]. However, his model neglects the chromatic dis-
persion of the intracavity media, and therefore it is not
applicable to describe such phenomena as dissipative soliton
formation.

One of the most commonly used methods to model dis-
persive Kerr optical cavities is based on the application
of the paradigmatic Lugiato-Lefever equation (LLE) [11],
which is known to exhibit S-shaped branches of continuous
wave (CW) solutions as well as temporal cavity solitons
(TCSs) preserving their shape in the course of propagation
along the cavity axis and sitting on a constant intensity
background. Temporal dissipative solitons were observed ex-
perimentally in optical fiber cavities [12], mode-locked lasers
[13], and optical microresonator frequency comb generators
[14]. The LLE based on the mean-field approximation is,
however, not free from certain shortcomings. In particular,
it describes bistable behavior and TCS formation only in
the vicinity of a single cavity resonance [14–16]. To over-
come this limitation, the modeling approaches based on the
infinitely dimensional Ikeda map [17,18] and a generalized
LLE model with localized injection and losses [19,20] were
developed to describe the appearance of the overlap of mul-
tiple nonlinear resonances, multistability of CW solutions,
and supersolitons [18,21]. Here we propose an alternative
approach to model nonlinear dynamics of an injected Kerr
cavity based on a second-order neutral-type delay differen-
tial equation (NDDE), which also can be considered as a
generalization of the Ikeda map [10]. We show that in a
certain limit, the NDDE model can be reduced to the LLE.

We perform a linear stability analysis of the NDDE model in
the practically important large delay limit, and we present nu-
merical evidence of the existence of stationary and oscillating
dissipative optical solitons in it. Beyond the LLE limit, the
TCSs of the NDDE model are strongly affected by Cherenkov
radiation induced by high-order dispersion [22]. The mod-
eling approach proposed here can be adopted to study the
dynamics of solid state and fiber lasers, where the chromatic
dispersion of the intracavity media plays an important role in
the mechanism of the short pulse generation, as well as to
investigate the effect of second- and higher-order dispersion
on the characteristics of mode-locking regimes in semicon-
ductor lasers. Furthermore, the NDDE model might be useful
to model the coupled-cavity systems such as a microcavity
optical frequency comb generator pumped by a semiconduc-
tor mode-locked light source, which is already successfully
modeled by DDE models [23–26].

II. MODEL EQUATION

Time-delay equations have proven to be an efficient tool
for modeling nonlinear dynamics of lasers with feedback [27],
coupled laser systems [28], mode-locked lasers [23,29,30], as
well as long cavity laser devices [31,32]. However, unlike the
mean-field models such as LLE and Haus master equation,
where chromatic dispersion is modeled by time derivatives,
the inclusion of intracavity dispersion in DDE laser models
is not as straightforward. Several methods to account for dis-
persion in DDE models were proposed in Refs. [33–39]. In
particular, in Ref. [39] the first-order neutral delay differential
equation (NDDE) was developed to describe Gires-Tournois
interferometer in the conservative limit. A NDDE is a dif-
ferential equation with the highest order derivative of the
unknown function appearing with both nondelayed argument
t and delayed argument t − τ . The advantage of the model
of Ref. [39] is that similarly to mean-field models, the time
derivative terms in it describe the chromatic dispersion only
and do not introduce additional dissipation. Here we propose
a second-order NDDE model of a ring Kerr cavity subject to
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a coherent optical injection:(
A + a∂t A + a2 − ib

2
∂tt A

)
e−iα|A|2/2−iθ/2

= √
κ

(
Aτ − a∂t Aτ + a2 + ib

2
∂tt Aτ

)
eiα|Aτ |2/2+iθ/2 + η.

(1)

Here t is the time, A(t ) is the normalized complex electric field
envelope, and Aτ = A(t − τ ) is the retarded field amplitude
with the delay parameter τ = nL/c equal to the linear round-
trip time of the cavity, where L is the cavity length, n is the
averaged intracavity refractive index, and c is the velocity of
light. α is the Kerr coefficient, η is the injection parameter,
η = √

T Ei, where Ei is the input field envelope and T is the
intensity coupling coefficient [40], θ describes the detuning
between the injection frequency and the frequency of a cavity
mode, and κ < 1 is the linear intensity attenuation factor per
cavity round-trip due to internal and coupling losses. The
coefficients a > 0 and b are responsible for the intracavity
dispersion. Here b > 0 corresponds to the regime of anoma-
lous dispersion. Note that, as will be shown below, in the LLE
limit only the coefficient b contributes to the second-order
dispersion, while the parameter a describes the group delay
due to the first-order dispersion. The derivation of the model
(1) is given in the next section.

In the absence of injection and losses, η = 0 and κ = 1, the
linear part of Eq. (1) is similar to that of the conservative ver-
sion of the Gires-Tournois interferometer model introduced in
[39]. Similarly to this model, Eq. (1) with η = 0 and κ = 1
is symmetric under the transformation t → −t and A → A∗
combined with the time shift, hence it is reversible in the
nondissipative limit. Note, however, that unlike the first-order
NDDE Gires-Tournois interferometer model studied in [39],
the second-order derivative terms responsible for the second-
order dispersion in the LLE limit are present in Eq. (1);
see also Ref. [38]. This is an important difference between
Eq. (1) and the model of Ref. [39]. Note that for a = b = 0,
Eq. (1) becomes similar to the well-known Ikeda map [10].
The derivation of Eq. (1) is given in the next section together
with the derivation of two other versions of the NDDE model
including the mean-field one. An advantage of the model
equation (1) is that in the nondissipative limit, η = 0 and
κ = 1, similarly to the first-order NDDE discussed in [39],
it admits a relatively simple conserved quantity ∂tW (t ) = 0
with

W (t ) = a3|∂t A|2 + ib(A∂t A
∗ − A∗∂t A) + 2a|A|2

+
∫ t+τ

t

∣∣∣∣A(x) + a∂xA(x) + a2 − ib

2
∂xxA(x)

∣∣∣∣
2

dx.

(2)

III. MODEL DERIVATION

To derive the NDDE model, let us consider the schematic
representation of a ring Kerr cavity with a pair of thin disper-
sive elements and two identical Kerr media shown in Fig. 1.
The field envelope on the output of the left Kerr medium is
given by A2(t + τ1) = A1(t )eiα|A1(t )|2/2+iφ1 , where α is the Kerr

FIG. 1. Ring cavity with two Kerr media (green) and a pair of
identical thin dispersive elements (orange). Cavity schemes in (a) and
(b) are used to derive Eqs. (7) and (1), respectively.

coefficient, and φ1 and τ1 are the phase shift and the delay time
due to the propagation in the cavity; see Fig. 1(a).

The Fourier transform of the field envelope at the out-
put from a thin dispersive element (phase filter) is given by
Â3(ω) = f̂ (ω)Â2(ω), where Â2(ω) is the Fourier transform of
the input field A2(t ) and f̂ (ω) = ei
(ω) with real 
(ω); see,
e.g., Ref. [33]. Close to ω = 0 we can use the expansion

f̂ (ω) = ei
(0){1 + iω
′(0)

− [
′(0)2 − i
′′(0)]ω2/2 + O(ω3)}. (3)

Taking this relation into account, the electric field envelope A3

can be expressed as

A3(t ) = F−1[ f̂ (ω)Â2(ω)]

= F−1

{
eiφ/2

[
1+iωa − a2 + ib

2
ω2 + O

(
ω3

)]
Â2(ω)

}

=
[

1 − a∂t + a2 + ib

2
∂tt + O(∂ttt )

]
A2(t )eiφ/2, (4)

where F−1 is the inverse Fourier transform, 
(0) ≡ φ/2 is
the phase shift, 
′(0) ≡ a is the group delay parameter, and

′′(0) ≡ −b is the second-order dispersion coefficient. The
field amplitude A4 is obtained from A3 by taking into account
time delay τ2, phase shift φ2, and introducing the injection η

and the intensity attenuation factor κ due to the cavity losses.
Thus we get

A4

(
t + τ

2

)
= √

κ

[
1 − a∂t + a2 + ib

2
∂tt + O(∂ttt )

]

× A1eiα|A1|2/2+iθ/2 + η, (5)

with one-half of the cavity round trip time τ/2 = τ1 + τ2 and
the phase shift θ/2 = (φ1 + φ/2 + φ2).

The field envelope on the input of the left Kerr medium
is given by A6(t − τ1) = A1(t )e−iα|A1(t )|2/2−iφ1 with |A1(t )|2 =
|A6(t − τ1)|2. The Fourier transform of the field envelope A6

is given by Â6(t ) = f̂ (ω)Â5(ω), which can be rewritten as
Â5(t ) = f̂ −1(ω)Â6(ω) = f̂ ∗(ω)Â6(ω). Hence we get

A5(t ) = F−1[ f̂ ∗(ω)Â6(ω)]

=
[

1 + a∂t + a2 − ib

2
∂tt + O(∂ttt )

]
A6(t )e−iφ/2.
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Therefore, similarly to (5), we obtain

A4

(
t − τ

2

)
=

[
1 + a∂t + a2 − ib

2
∂tt + O(∂ttt )

]

× A1e−iα|A1|2/2−iθ/2. (6)

Finally, shifting the time in Eq. (5) by −τ , equating the
resulting equation to Eq. (6), and neglecting high-order terms
O(∂ttt ), we get(

1 + a∂t + a2 − ib

2
∂tt

)
Ae−iα|A|2/2−iθ/2

= √
κ

(
1 − a∂t + a2 + ib

2
∂tt

)
Aτ eiα|Aτ |2/2+iθ/2 + η, (7)

where A ≡ A1 and Aτ = A(t − τ ).
The model (1) can be derived in a similar way to Eq. (7).

For the scheme shown in Fig. 1(b), we get

A2 ≈ A1 − a∂t A1 + a2 + ib

2
∂tt A1 (8)

and

A4

(
t + τ

2

)
≈ √

κA2eiα|A2|2/2+iθ/2 + η. (9)

Here, the approximate equality sign means that we have ne-
glected the high-order terms O(∂ttt ). Substituting Eq. (8) into
Eq. (9), assuming that a, b, and α are sufficiently small, and
neglecting the O(αa) and O(αb) terms in the exponential, we
obtain

A4

(
t + τ

2

)
≈ √

κ

(
A1 − a∂t A1 + a2 + ib

2
∂tt A1

)

× eiα|A1|2/2+iθ/2 + η. (10)

Similarly, for another half of the cavity, we get

A4

(
t − τ

2

)
≈

(
A1 + a∂t A1 + a2 − ib

2
∂tt A1

)

× e−iα|A1|2/2−iθ/2. (11)

Finally, combining Eqs. (10) and (11), we arrive at the NDDE
model (1).

In the mean-field approximation, where the field amplitude
is small, expanding the exponential functions in Eq. (1) we get
the following equation:(

A + a∂t A + a2 − ib

2
∂tt A − i

α

2
A|A|2

)
e−iθ/2

= √
κ

(
Aτ − a∂t Aτ + a2 + ib

2
∂tt Aτ + i

α

2
Aτ |Aτ |2

)

× eiθ/2 + η. (12)

Neutral DDEs (1), (7), and (12) are reversible in the
nondissipative limit η = 0 and κ = 1. This property is similar
to that of the LLE, which will be derived from these equa-
tions in the next section. As will be shown in the next section,
the parameter b corresponds to the second-order dispersion
coefficient in the LLE limit. In the absence of second-order

dispersion, b = 0, according to Eq. (8) the field amplitude on
the output of the dispersive element is defined by

A2 ≈ A1 − a∂t A1 + a2

2
∂tt A1 = A1(t − a) + O(a3).

Therefore, the parameter a has the meaning of the group delay
introduced by the dispersive element. The inequality a > 0
follows from the causality principle. As will be shown below,
this inequality is the necessary but not sufficient condition of
the absence of a spurious instability in the NDDE models.

Note that a straightforward derivation of the model equa-
tion without splitting Kerr and dispersive media into two
symmetric parts would result in a “regular” DDE model in-
stead of NDDE:

A + 2a∂t A + (2a2 − ib)∂tt A

= √
κA(t − τ )eiα|A(t−τ )|2+iθ + η, (13)

which is similar to the generalization of the Ikeda map derived
in [38] to describe a Kerr cavity with two spectral filters.
After rescaling the time variable t → √

2at , the DDE model
(13) becomes a particular case of Eq. (12) from Ref. [38]
with the coefficient

√
2 in front of the first derivative instead

of the coefficient σ in Eq. (12) of Ref. [38]. However, it
was shown in Ref. [38] that the relation σ = √

2 contradicts
the applicability condition of the DDE model derived in this
paper. Below, in Sec. V we show that Eq. (13) with b �= 0
demonstrates a spurious instability in the nondissipative limit,
κ = 1 and η = 0. This instability is related to a spurious
dissipation (spectral filtering) introduced by the truncation of
the series expansion in Eq. (3). On the other hand, in the
derivation of the NDDE model (1) we have used two sym-
metric truncations of the two identical transfer functions, and
in this case the corresponding dissipative contributions cancel
each other. Therefore, only symmetric schemes such as those
shown in Fig. 1 allow us to eliminate unphysical dissipation
and spurious instability from the model equations.

To conclude this section, we note that the derivation
presented here can be trivially generalized by including
higher-order derivative terms in the model equation.

IV. REDUCTION TO THE LLE

Using the multiscale method described in [41], we can de-
rive the same LLE from any one of the three model equations
(1), (7), and (12). To be more specific, we choose Eq. (1), and
in the large delay limit τ = τ0ε

−1 with ε 	 1 and τ0 = O(1)
we rescale the time as x = εt to get(

A′ + εa∂xA′ + ε2 a2 − ib

2
∂xxA′

)
e−iα|A′ |2/2−iθ/2

= √
κ

(
A′

τ0
− εa∂xA′

τ0
+ ε2 a2 + ib

2
∂xxA′

τ0

)

× eiα|A′
τ0
|2

/2+iθ/2 + η, (14)

where A′
τ0

= A′(x − τ0) = A(t − τ ). Next, we introduce two
timescales A′(x) = u(t0, t2), where t0 = (1 − εc1 + ε2c2 +
· · · )x, t2 = ε2x/τ0, and we rescale the parameters as

α = ε2χ, κ = e−2ε2
, η = ε2r. (15)
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Substituting these expressions into Eq. (14), collecting the
first-order terms in ε, and using the Fredholm alternative, we
obtain the following boundary condition:

u(t0, t2) = u(t0 − τ0, t2)eiθ , (16)

together with the relation c1 = 2a/τ0 for the group delay
parameter. Finally, collecting the second-order terms in ε, we
get c2 = 4a2/τ 2

0 and an equation similar to LLE, but with the
detuning parameter entering boundary condition (16) rather
than the equation itself:

∂t2 u = −u + iχu|u|2 + ib∂t0t0 u + r. (17)

Note that Eq. (17) with the boundary condition (16), where the
parameter θ plays the role of the detuning, is able to describe
multiple resonances corresponding to different cavity modes.
However, it cannot describe the overlap of these resonances.
To get overlapping resonances and coexisting different soli-
tons, one needs to replace distributed injection and losses with
the localized ones, as was proposed in [19]. It is seen from
Eq. (17) that the coefficient b in front of the second derivative
terms is responsible for the second-order dispersion in the
LLE limit; see also [38]. Therefore, these derivatives cannot
be neglected in the model equation.

Using the additional assumption that the detuning is small,

θ = −ε2�, (18)

instead of (17) we get standard LLE describing a vicinity of a
single cavity resonance,

∂t2 u = −u − i�u + iχu|u|2 + ib∂t0t0 u + r, (19)

with the periodic boundary condition u(t0, t2) = u(t0 − τ0, t2).
Note that, unlike Eqs. (17) and (19) obtained by collect-

ing ε2-terms, in Ref. [39], where the nonlinear Schrödinger
equation (NLSE) was derived from a NDDE without second-
order derivatives and the external injection, the second- and
third-order dispersion terms appear simultaneously in the or-
der ε3. The NLSE is then obtained by choosing the detuning
in such a way that the third-order dispersion vanishes. In
the conservative limit, the LLE (19) also transforms into the
NLSE. However, the existence of stable soliton solutions is
hardly possible in the original NDDE model near this limit.
Unlike the standard NLSE, the NDDE contains the dispersion
of all the orders. This can be easily understood by taking
into account that in Eq. (3) we expand in power series the
exponential ei
(ω), not just 
(ω). For example, in the case
in which only first- and second-order dispersion terms aω

and bω2/2 are present in 
(ω), all orders of ω appear in
the expansion of ei
(ω). Therefore, the truncation of such
high-order terms made in the course of the derivation of the
NDDE model introduces high-order dispersion into it; see also
Ref. [39], where the first-order derivatives are responsible for
the appearance of third-order dispersion in the model equa-
tion. On the other hand, it is well known that the solitons
of the NLSE are destroyed by the Cherenkov radiation [42,43]
in the presence of an arbitrary small third-order dispersion
term [44–46].

As was already mentioned above, the parameter ε describes
the distance from the LLE (mean-field) limit, and it can be
expressed in terms of the attenuation factor κ using Eq. (15),
ε = √− ln κ/2. In particular, in the case of high-finesse cavity

and weak coupling, 1 − κ 	 1, we get ε ≈ √
(1 − κ )/2 	 1,

which means that at moderate injections the dynamics of
such cavities can be described by the LLE, and all three
NDDE models, (1), (7), and (12), are roughly equivalent.
Nevertheless, even in this case, the NDDE models may be
more convenient than the LLE when considering the coupling
between microcavities and laser light sources. Assuming that
the coupling losses dominate over the internal ones and the
coupling is symmetric, the finesse can be estimated as F ≈
π/(1 − κ ) [47]. Using this relation together with Eq. (15), we
get ε ≈ 0.0125 for F ≈ 104. On the other hand, in Ref. [21]
experimental observation of super solitons was reported in a
100-m-long fiber cavity with much smaller finesse, F ≈ 20.
The LLE and the cubic NDDE (12) having not more than
three CW solutions are not suitable for the description of these
solitons. The remaining two NDDE models, (1) and (7), differ
only by the relative position of the dispersive elements and
dissipation (cavity losses and injection). This difference might
be meaningful only when considering the effect of localized
dispersion on the dynamics of the optical cavity; see, e.g.,
Ref. [33], where a photonic crystal mode-locked laser was
discussed. Below we mainly concentrate on the analysis of
the simpler Eq. (1) of the two models, (1) and (7), capable of
describing the overlap of the cavity resonances.

V. STABILITY ANALYSIS IN THE LINEAR
CONSERVATIVE LIMIT

Let us consider the equation

A + a∂t A + a2 − ib

2
∂tt A

=
(

Aτ − a∂t Aτ + a2 + ib

2
∂tt Aτ

)
eiθ , (20)

obtained by the linearization of the NDDE models with κ = 1
and η = 0 at the trivial solution A = 0. Substituting A(t ) =
A0eλt into (20), we get the characteristic equation

1 + aλ + a2 − ib

2
λ2 =

(
1 − aλ + a + ib

2
λ2

)
e−λτ+iθ . (21)

In the large delay limit using the approach of Ref. [48], we
substitute e−λτ ≡ Y (λ) into Eq. (21), solve the resulting equa-
tion with respect to Y (λ), and set λ = iν. Thus, we get the
following expression for the pseudocontinuous spectrum in
the limit τ → ∞,

λτ = − ln

[
1 + iaν − (a2 − ib)ν2/2

1 − iaν − (a2 + ib)ν2/2
e−iθ

]

= − ln ei�(ν)−iθ = −i�(ν) + iθ (22)

with real �(ν). The fact that the pseudocontinuous spectrum
of Eq. (20) is purely imaginary is obviously a consequence of
the reversibility of this equation; see also Ref. [39]. However,
whether this equation exhibits spurious instability depends on
the discrete spectrum of the characteristic equation (21). In the
large delay limit, discrete eigenvalues with positive (negative)
real parts correspond to small |Y (λ)| 	 1 [large |Y (λ)| � 1]
in the limit τ → ∞. Therefore, they can be obtained by
equating to zero the left (the expression in the brackets in
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FIG. 2. Real parts of discrete eigenvalues for a = 1 (blue line)
and a = −1 (red dotted line).

the right) -hand side of Eq. (21), 1 + aλ + (a2 − ib)λ2/2 = 0
[1 − aλ + (a2 + ib)λ2/2 = 0], which gives

λ± = −a ± √−a2 + 2ib

a2 − ib
(23)

for the discrete eigenvalues with positive real parts. The dis-
crete eigenvalues with negative real parts are obtained from
(23) by changing the signs of a and b. The real parts of
the discrete eigenvalues are shown in Fig. 2 as functions of
the “second-order dispersion coefficient” b. It is seen that
for a < 0 one of the two discrete eigenvalues always has a
positive real part. This means that Eq. (20) with a < 0 should
demonstrate a spurious instability. For a > 0 there are no
discrete eigenvalues if

|b| <
√

2a2. (24)

Hence, in order to avoid spurious instabilities below we
choose a > 0 in the NDDE models and assume that the in-
equality (24) is satisfied. Note that positive coefficient a can
be rescaled to unity by rescaling the time variable in the model
equations.

Some results of numerical simulations of the linear con-
servative system (20) are shown in Fig. 3. Two left panels in
this figure correspond to the parameter values satisfying the
condition (24). Here the initial Gaussian pulse is gradually

FIG. 3. Dynamics of the linear conservative system (20) with
a = ε, θ = −3.5ε2, ε = 0.02, τ = 50. Panels (a) and (b) correspond
to b = ε2 when the inequality (24) is satisfied and spurious instability
is absent. Panel (c) illustrates in logarithmic scale spurious instabil-
ity obtained for b = 1.4143ε2 >

√
2a2. Horizontal dashed lines in

panels (b) and (c) show that the integral W (t ) remains constant.

destroyed by the dispersion. The right panel illustrating the
spurious instability is obtained for b >

√
2a2. It is also seen

from this panel that the integral defined by Eq. (2) remains
constant when the instability develops.

Substituting κ = 1 and η = 0 into Eq. (13) and linearizing
this equation at A = 0 instead of (22) we get λτ = − ln[1 +
2iaν − (2a2 − ib)ν2] + iθ . In particular, at ν = 0 one obtains

Reλ = Re
dλ

dν
= Re

d2λ

dν2
= 0, Re

d3λ

dν3
= −3b

τ
.

It follows from these relations that for any nonzero b and suf-
ficiently small ν the curve of the pseudocontinuous spectrum
visits the right half-plane of the complex plane. Therefore,
in this case one can expect an instability associated with the
pseudocontinuous spectrum in the large delay limit.

In the analysis below, we consider only the case of anoma-
lous dispersion, b > 0, where typical solutions of the LLE
are bright dissipative solitons. A detailed bifurcation analysis
of the NDDE model in normal and anomalous dispersion
regimes will be addressed in our future work.

VI. CW SOLUTIONS

In this section, we study the linear stability of the CW
solutions of Eq. (1). The amplitude A of the CW solutions
satisfies the equation

Ae−iα|A|2/2−iθ/2 = √
κAeiα|A|2/2+iθ/2 + η. (25)

Substituting into Eq. (25) A = √
Ieiϕ , where I and ϕ are the

intensity and the phase of the CW solution, and separating
real and imaginary parts of the resulting equation, we get the
following equation for the CW intensity:

[1 + κ − 2
√

κ cos(θ + αI )]I = η2, (26)

which is transformed into the corresponding relation of the
LLE in the limit (15) and (18). The phase of the CW solution
is given by

tan ϕ = sin
(

αI
2

) + √
κ sin

(
θ + αI

2

)
cos

(
αI
2

) − √
κ cos

(
θ + αI

2

) .

Nonlinear resonances of CW solutions of Eq. (1) near cusp bi-
furcations corresponding to different cavity modes are shown
in Fig. 4(a).

The saddle-node bifurcations of the CW solutions are de-
fined by the conditions

4α2κI4 − α2I2[η2 − (κ + 1)I]2 = η4,

θ± = arctan

[
−(1 + κ )αI ±

√
κ (4α2I2 + 2 − κ ) − 1

1 + κ ± αI
√

κ (4α2I2 + 2 − κ ) − 1

]

− αI + 2πn,

where θ± with n = 0,±1,±2 . . . define pairs of saddle-node
bifurcation curves originating from the cusp bifurcation points
corresponding to different cavity resonances. Figure 4(b) il-
lustrates the coexistence of multiple CW solutions of Eq. (1).
It is seen that at sufficiently high injections, the CW res-
onances start overlapping. Unlike the resonances shown in
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FIG. 4. Intensity of CW solutions of Eq. (1) as a function of
the detuning parameter θ for η = 0.5 (a). Saddle-node bifurcations
of CW solutions on the (η2, θ )-plane (b). White, light gray, and
dark gray areas limited by the saddle-node bifurcations indicate the
existence of one, three, and five CW solutions, respectively. The
parameter values, κ = 0.923 and α = 0.04, correspond to ε = 0.2
in Eq. (15).

Fig. 4(b), the resonances of Eq. (12) with cubic nonlinearity
are much more narrow and never overlap. This can be easily
understood by noticing that for cubic nonlinearity Eq. (26)
transforms into a cubic equation in I having not more than
three solutions. Hence, the mean-field model (12) does not
describe well the dynamics of Eq. (1) beyond the LLE limit.
Therefore, below we focus mainly on the model (1), which
does not assume the mean-field approximation.

To study the linear stability of the CW solution, we lin-
earize Eq. (1) around this solution, A(t ) = (

√
I + δAeλt )eiϕ .

This leads to the following characteristic equation:

c2Y
2 + c1Y + c0 = 0, (27)

where Y (λ) = exp(−λτ ) and the coefficients c0,1,2 are poly-
nomials in λ:

c2 = κ + κλ

4
[(a4 + b2)λ3 − 4a3λ2 + 2(4a2 − bαI )λ − 8a],

c1 =
√

κ

2
{[(b2 − a4)λ4 − 2bαIλ2 − 4] cos(αI + θ )

+ 2(2 + a2λ2)(αI − bλ2) sin(αI + θ )},

c0 = 1

4
[(a4 + b2)λ4 + 4a3λ3 + 2(4a2 − bαI )λ2 + 8aλ + 4].

(28)

In the limit of large delay time τ → ∞, the eigenvalues of
the pseudocontinuous spectrum can be represented as λ ≈
iν + γ /τ with real ν and γ [48]. The pseudocontinuous spec-
trum is given by the two solution branches of the quadratic
equation (27):

γ (ν) = −Re[ln |Y (iν)|]. (29)

Stable CW solutions are characterized by γ (ν) < 0 and, in
particular, γ (0) < 0. At the saddle-node (flip) bifurcation
point, we have γ (0) = 0 and Y (0) = 1 [γ (0) = 0 and Y (0) =
−1], while modulational instability takes place when one or
both branches of the pseudocontinuous spectrum are tangent
to the imaginary axis at ν = ±νm with |νm| > 0.

Some results of linear stability analysis of CW solutions
Eq. (1) obtained for the parameter values far away from the

FIG. 5. S-shaped dependence of the intensity I of CW solutions
on the injection rate η (a). Curves of pseudocontinuous spectrum for
different values of I; I ≈ 1.7032 (b), I ≈ 2.4643 (c), I ≈ 4.0221 (d).
Saddle-node bifurcations (black curves) and modulational instability
(red curve) around a single cavity resonance on the (θ , η2)-plane
(e). CW solutions from panel (a) in the region of larger η and I (f).
Parameters are ε = 0.5, κ = e−2ε2

, α = ε2, θ = −3.5ε2, a = ε, and
b = ε2. In panels (a) and (f), unstable solutions are shown by dashed
lines. MI (FB) indicates the modulational (flip) bifurcation points.

LLE limit, ε = 0.5, are shown in Fig. 5. The S-shaped CW
curve of Eq. (1) is shown in Fig. 5(a). It is seen that modula-
tional instability takes place on the unstable middle part of the
CW curve and destabilizes its upper part. Figures 5(b)–5(d)
present the real parts of the pseudocontinuous eigenvalues
γ (ν) calculated at the points indicated in Fig. 5(a). Figure 5(e)
illustrates the location of the modulational instability curve
between two saddle-node bifurcations around a single cavity
resonance in the (η2, θ )-plane. Finally, Fig. 5(f) illustrates a
growing multiplicity of the solutions of Eq. (26) due to the
overlap of resonances with increasing the injection.

It is important also to check the discrete spectrum of
nonlinear CW solutions. The discrete spectrum is defined by
the instantaneous part of the model equation, and it can be
obtained by solving the equation c0 = 0 with respect to λ,
where c0 is defined by Eqs. (27) and (28). It is seen from Fig. 6
corresponding to b = (

√
2 + 0.01)a2 that when b exceeds

slightly the critical value defined by (24), the lower part of the
CW branch can become unstable with respect to the discrete
spectrum; see Fig. 6(a). The increase of the CW intensity I
has a stabilizing effect on the discrete spectrum. However, as
is seen from Fig. 6(b), the solution of Eq. (1) starting from the
upper CW state becomes unbounded in the limit t → ∞. This
behavior might be attributed to a spurious instability.

Note that, as was shown in Sec. IV, when ε is small enough
the NDDE model is equivalent to the LLE. Therefore, in
this case it demonstrates the same bifurcation phenomena as
described, e.g., in Ref. [49]. However, for sufficiently large
ε and η the equivalence does not hold anymore. This is,
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FIG. 6. Largest real part of the discrete eigenvalues of the CW
solution with b = (

√
2 + 0.01)a2 as a function of the CW intensity

I (a). a = 0.1. Evolution of the (modulationary unstable) state from
the upper bifurcation branch with η = 0.02 (b). The solution diverges
with time. Other parameters are the same as in Fig. 5 except ε = 0.1.

in particular, manifested in the growth of a multiplicity of
stationary solutions, as shown in Fig. 5(f).

VII. TEMPORAL CAVITY SOLITONS

In this section, we investigate numerically TCS solutions of
the NDDE models using the RADAR5 code written in FORTRAN

[50]. We start with the delay time τ = 25 and the parameter
values close to the LLE limit defined by Eqs. (15) and (18),
κ = e−2ε2

, α = ε2, a = ε, b = ε2, θ = −3.5ε2, η = 1.855ε2

with ε = 0.02. The calculated TCS solution of Eq. (1) is
shown in Fig. 7(a) by a black line. This soliton is very close
to the TCS of the model (7) shown by a green line. The
dissipative soliton of the LLE (19) is indicated by a red
dashed line in the same figure for the LLE parameter values
obtained using the relations (15) and (18), � = 3.5, χ = 1,

FIG. 7. TCS profiles calculated using the model equations (1)
(black line) with ε = 0.02 (a), ε = 0.34 (b), ε = 0.1 (c) and (d).
Other parameters are given in the text. One can see from panel
(d) that already for ε = 0.1 the TCS tails exhibit a Cherenkov ra-
diation, which is more pronounced at the trailing tail. In panel (a) the
TCS of Eq. (7) is shown by a green line, and the soliton of the LLE
(19) is shown by a red dashed line. Parameters are κ = e−2ε2

, α = ε2,
a = ε, b = ε2, θ = −3.5ε2, and η = 1.855ε2.

FIG. 8. Soliton propagation in Eq. (1) with a = ε, b = ε2, θ =
−3.5ε2, ε = 0.02, α = ε2, κ = e−2ε2

, η = 1.855ε2, τ = 25 (a). Cor-
responding to (a) quantity W (t ) (b). TCS profile of Eq. (1) calculated
with ε = 0.2 (c). Dynamics of a corresponding quantity W (t ) (d).

b = 1, r = 1.855 in Eq. (19). With increasing ε, the soliton
profile gets more asymmetric; see Figs. 7(c) and 7(d) obtained
with ε = 0.1. As is seen in Fig. 7(d), the soliton tails exhibit
slowly decaying oscillations, which can be attributed to the so-
called Cherenkov radiation induced by high-order dispersion
[42,43]. The Cherenkov radiation amplitude increases with ε,
see Fig. 7(b) obtained with ε = 0.34 and eventually destroys
the TCS.

The time dependence of the quantity W (t ) from Eq. (2)
calculated on the TCSs solutions of nonconservative Eq. (1)
with κ �= 1 and η �= 0 is shown in Fig. 8. It is seen that for
small ε = 0.02 similarly to the conservative case, this quantity
remains almost constant, while for larger ε = 0.2 the time
trace of W (t ) demonstrates short peaks similar to those in the
intensity time trace.

The dependence of the TCS peak power on the parameter
ε calculated using the models (1) (black line) and (7) (blue
line) with exponential nonlinearity, and the model (12) (red
line) with cubic nonlinearity, is shown in Fig. 9(a). It is seen
that while sufficiently close to the LLE limit, ε → 0, this de-
pendence looks rather smooth, it becomes fast oscillating with
the increase of ε. Such oscillatory behavior can be explained
by the interaction of a TCS with its own tails leading either to
constructive or destructive interference due to the presence of

FIG. 9. TCS peak power as a function of the parameter ε calcu-
lated using Eq. (1) (black), Eq. (7) (blue), and Eq. (12) (red) with
η = 1.855ε2 and τ = 25 (a). Other parameters are the same as in
Fig. 7. Continuation of the black curve from (a) in ε-U plane, where
U = ∫ t+τ

t |A|2dx (b). Points 10a, 10b, and 10c correspond to the
solutions shown in Fig. 10. The branches with negative slope are
dynamically unstable.
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FIG. 10. Different types of stable localized solutions of the
NDDE model (1) calculated for ε = 0.722. The TCS shown in panel
(a) corresponds to the black curve shown in Fig. 9. Other parameters
are the same as in Fig. 7.

the Cherenkov radiation. Furthermore, it is seen that the oscil-
lation frequency increases with the decrease of ε, which is in
agreement with the fact that the frequency of the Cherenkov
radiation tends to infinity when the third and/or fourth-order
dispersion coefficients tend to zero; see, e.g., [51,52]. Note,
that the model (7) demonstrates smaller oscillations of the
TCS peak power with the increase of the parameter ε than
Eq. (1). Since this model was obtained without neglecting
O(αa) and O(αb) terms, it might be more suitable for the
description of the Kerr cavity dynamics far away from the
LLE and large delay limits.

At relatively high values of ε different types of localized
solutions can appear, as is shown in Fig. 10, where the so-
lutions shown in panels (a), (b), and (c) correspond to points
10a, 10b, and 10c in Fig. 9(b). It is seen from this figure that at
large ε the evolution of the soliton solution branch has some
similarity to the snaking behavior.

It is known that the soliton of the LLE can undergo an
oscillatory instability with the increase of the injection. The
NDDE model (1) also shows a similar behavior. Figure 11
illustrates the appearance of undamped oscillations of the soli-
ton peak power for fixed relatively small ε = 0.05. At higher
values of ε there are different types of oscillating TCSs.

Similarly to LLE, the NDDE model does not contain any
spectral filtering. To introduce it into the model let us assume
that a Lorentzian spectral filter is placed between the two
dispersive elements in Fig. 1(b). This filter is described by the
relation

d∂t A(t ) + A(t ) = B(t ), (30)

FIG. 11. TCS peak power (red curve) and intensity of CW so-
lution (black curve) as functions of the injection η (a). The TCS
starts to oscillate above the Andronov-Hopf bifurcation threshold at
η ≈ 6.25 × 10−3. Red lines show maximal and minimal peak power
within the oscillation period. Time-trace of the TCS peak power
calculated for η = 6.7 × 10−3 (b). ε = 0.05. Other parameters are
the same as in Fig. 7.

FIG. 12. Soliton solutions of Eq. (32) with different values of
the inverse spectral filter width d . (a), (b), (c), (d), (e), (f), and (g)
correspond to d = 0.0, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5, respectively.
ε = 0.05 and τ = 50; other parameters are the same as in Fig. 7.

where A is the output field envelope, B is the input field enve-
lope, and d is the inverse width of the filter. Here for simplicity
it is assumed that the central frequency of the filter coincides
with the injection frequency. Next, repeating the derivation of
Eq. (1) given in Sec. III we obtain Eq. (10) with A1 replaced
by A and Eq. (11) with A1 replaced by B. Combining these
two equations, we get(

B + a∂t B + a2 − ib

2
∂tt B

)
e−iα|A|2/2−iθ/2

= √
κ

(
Aτ − a∂t Aτ + a2 + ib

2
∂tt Aτ

)
eiα|Aτ |2/2+iθ/2 + η.

(31)

Using the multiscale method described in Sec. IV in the large
delay and small dissipation limit, Eqs. (30) and (31) can be
reduced to the LLE (19) with the additional diffusion term
(d2/2)∂t0t0 u responsible for the spectral filtering. Substituting
B from Eq. (30) into Eq. (31), we get an equation with nonde-
layed first, second, and third derivatives, ∂t A ≡ Y , ∂tt A ≡ Z ,
and ∂ttt A(t ) ≡ ∂t Z , on the left-hand side, and first and second
delayed derivatives ∂t Aτ ≡ Yτ and ∂tt Aτ ≡ Zτ on the right-
hand side. Solving this equation with respect to nondelayed
third derivative, ∂ttt A(t ) ≡ ∂t Z , we get a system of three stan-
dard (non-neutral) DDEs:

∂t A =Y, ∂tY = Z, d∂t Z = 2

a2 − ib

{[√
κ (Aτ − aYτ

+a2 + ib

2
Zτ

)
eiα|Aτ |2/2+iθ + ηeiθ/2

]
eiα|A+dY |2/2

−
[

A + (a + d )Y + a2 + 2ad − ib

2
Z

]}
. (32)

In the absence of spectral filtering, d = 0, the last equation in
Eq. (32) is transformed into a delay algebraic equation. Thus,
Eq. (32) becomes a system of delay differential-algebraic
equations, which is equivalent to the NDDE model (1). The
effect of the spectral filtering on the TCS solution of Eq. (32)
is illustrated by Fig. 12. It is seen from this figure that for
moderate values of d � 0.5 the spectral filtering suppresses
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Cherenkov radiation without changing considerably the shape
of the soliton itself. When the parameter d is further increased,
the soliton width (peak power) starts to increase (decrease).

VIII. CONCLUSION

To conclude, we have developed a second-order NDDE
model of a ring dispersive Kerr cavity subject to a coherent
optical injection. Similarly to the first-order NDDE model
discussed in [39] in the nondissipative limit, this model is
reversible and has a conserved quantity. In a certain parameter
range and under the mean-field and large delay approxima-
tions, the NDDE model can be reduced to the famous LLE
model. However, unlike the LLE and similarly to the infinitely
dimensional Ikeda map [40] and generalized LLE [19] Kerr
cavity models, the NDDE model is able to describe the overlap
of the resonances associated with different cavity modes. We
have shown that TCSs can exist in the NDDE model not
only close to the LLE limit, but also beyond this limit. In
the latter case, they are strongly affected by the Cherenkov
radiation, which is induced by high-order dispersion and
eventually destroys the TCS. An important advantage of the
NDDE model is that it can be analyzed numerically using
standard codes, such as RADAR5 [50] and DDE-biftool [53].
Furthermore, after appropriate modifications this model can

be applied to study the effect of chromatic dispersion on
the dynamics of mode-locked lasers and other laser systems.
The NDDE model might be also useful for the consideration
of the coupled-cavity systems, such as an optical microcav-
ity pumped by a semiconductor mode-locked laser modeled
by the DDE mode-locking model [23–25]. Furthermore, the
NDDE model can be easily extended by including higher-
order derivative terms into it. We have shown that by inserting
a Lorentzian spectral filter into the cavity, the NDDE model
can be converted into a standard DDE. Similarly, other intra-
cavity elements such as amplifying and absorbing media can
be considered when deriving the model equations. Thus, the
approach to modeling the intracavity dispersion proposed in
this paper can be applied not only to describe the dynamics of
Kerr resonators, but also to study the effect of dispersion on
the dynamics of a wide class of laser systems.
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