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Triad resonance for internal waves in a uniformly stratified fluid: Rogue waves and breathers
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Three-wave (triad) resonance in a uniformly stratified fluid is investigated as a case study of energy transfer
among oscillatory modes. The existence of a degenerate triad is demonstrated explicitly, where two components
have identical group velocity. An illuminating example is a resonance involving waves from modes 1, 3, 5
families, but many other combinations are possible. The physical applications and nonlinear dynamics of rogue
waves derived analytically in the literature are examined. Exact solutions with four free parameters (two related
to the amplitudes of the background plane waves, two related to the frequencies of slowly varying envelopes)
describe motions localized in both space and time. The differences between rogue waves of the degenerate versus
the nondegenerate cases are highlighted. The phase and profile of the degenerate case rogue waves are correlated.
The volume or energy of the rogue wave (defined as the total extent or energy contents of the fluid set in motion
for the duration of the rogue wave) may change drastically, if the wave envelope parameters vary. Pulsating
modes (breathers) have been studied previously by layered-fluid and modified Korteweg-de Vries models. Here
we extend the consideration to stratified fluids but for the simpler case of nondegenerate triads. Instabilities of
fission and fusion of breathers are confirmed computationally with Floquet analysis. This knowledge should
prove useful for energy transfer processes in the oceans.
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I. INTRODUCTION

Three-wave interactions have been studied intensively in
many fields of physical science, e.g. fluids, optics and plasma
[1–3]. Significant energy transfers among normal modes un-
der such circumstances have been elucidated theoretically and
demonstrated experimentally. Such triadic resonance instabil-
ity (TRI), also known as three-wave resonance, arises from the
strong interactions among three waves. Three-wave resonance
occurs when the angular frequency and wave number of one
wave component are equal to the sum of angular frequencies
and wave numbers of the other two components respectively
[4,5]. The governing equations for slowly varying envelopes
of three wave trains under resonance condition can be derived
by multiple-scale perturbation method. Among the many im-
portant applications, we will employ wave propagation in the
oceans as an illustrative example.

Internal waves are oscillatory motions propagating within
the interior of the oceans. These motions are typically evident
along the boundaries of distinct water masses of different
densities, or in regions where the density gradients are more
abrupt than the surrounding. The energy contained within
these waves can cascade from large to small spatial scales,
significantly contributing to the mixing and transport pro-
cesses. These interactions among nonlinear waves have been
proposed as one potential mechanism for energy dissipation.
Within the context of hydrodynamics, these triadic resonances
have also been studied for capillary-gravity water waves [6,7],
two-layer systems [8,9], and continuously stratified fluids
[10,11]. Long-short resonance constitutes a limiting case of
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three-wave resonance, where one component is significantly
longer than the other two (or alternatively, one wave number
is much smaller than the other two). For hydrodynamics, such
long wave-short wave interactions have been investigated for
a two-layer fluid [12], where two short surface waves are in
resonance with a long interfacial wave.

Parametric subharmonic instability (PSI) is a specific
case of TRI, where the two secondary waves have lower
frequencies than the primary wave. More precisely, small
disturbances imposed on the primary wave excite the TRI
process, allowing energy to transfer from the primary to the
two secondary waves through nonlinearity [3,13]. One case
receiving intensive attention occurs when the frequencies of
the secondary waves are half of that for the primary wave. PSI
mechanisms have been extensively scrutinized in physics, and
in particular for internal waves too. As example, the growth
rate of PSI for mode-1 waves moving in a uniformly stratified
fluid tank has been measured in laboratory experiments and
compared with theoretical predictions [14].

Recent investigations have extended considerations to
wave beams, examining the influence of carrier wave form
on the stability of finite-width wave beams [15,16]. Floquet-
type normal mode analysis has been conducted to study the
small-scale instability of time-periodic, finite-width internal
gravity wave beams in uniformly stratified fluids, both for
unbounded domains and channels bounded by rigid walls
[17,18]. Experimental evidence demonstrating the impact of
TRI on internal wave beams has also been presented [19].

Rogue waves are unexpectedly large displacements from
an otherwise tranquil background [20]. For surface gravity
waves, there is a sizable literature on theoretical as well as
experimental investigations [21,22]. The goal here is to con-
sider if such surprisingly large amplitude motions can occur
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in the interior of the oceans too. Laboratory demonstrations of
large displacements for stratified fluids will likely be difficult.
Field observations and data will probably be even harder to
achieve. Nevertheless, preliminary efforts utilizing analytical
models of long internal waves have started in the literature
[11,23]. Here we study three-wave resonance as a prototype
model capturing important aspects of triad dynamics of inter-
nal waves of finite wavelengths. For simplicity, we will take
a uniformly stratified fluid and make the Boussinesq assump-
tion, i.e., variations in the density of the fluids are ignored
except in the buoyancy term of the equations of motion [24].

In addition to rogue waves, breathers (periodic or pulsating
modes) in a finite region have also been studied. In particular,
breather-like modes can be observed in a layered fluid with
a sudden change in bottom topography [25]. Such breathers
can also arise in a three-layer fluid model. These pulsating
modes can be approximated by the modified Korteweg-de
Vries equation, and agree well with direct numerical simu-
lations of the Euler equations [26]. The dynamics of breathers
and localized modes can be intriguing, displaying fission and
fusion scenarios when the surrounding changes, e.g., varying
topography [27,28].

Analytic advances in the studies of rogue waves have
proceeded at a tremendous pace in the past decade. Huge
varieties of exact solutions have been derived for various
classical evolution equations, including the triad resonance
case. However, perspectives on the physical applications and
nonlinear dynamics of these solutions have not been fully
examined, including the present case of the triad resonance
system. Our objective is to look into the connection between
three-wave resonance in the context of internal waves and the
exact solutions from mathematical physics. In particular, we
examine a special case of identical group velocity for two of
the three modes. The form of the rogue modes will be different
from the case with three distinct group velocities.

The structure of the paper can now be explained. We first
present the formulation for internal waves in a uniformly
stratified fluid. The case of triad resonance with two modes
having identical group velocity is explicitly demonstrated
(Sec. II). Rogue modes of this degenerate triad resonance (two
of the three group velocities being identical) will be tabulated.
Their properties, like the displacement, phase and volume,
will be delineated (Sec. III). Understanding breathers of the
degenerate resonance case may be an elusive goal. Hence we
focus on studying breathers for the nondegenerate case first
(Sec. IV). Nonlinear dynamics of fission and fusion will be
demonstrated. Conclusions will be drawn (Sec. V).

II. FORMULATIONS

A. Existence of degenerate triad for uniform stratification

Consider the wave propagation in an inviscid, incom-
pressible, uniformly stratified fluid with constant buoyancy
frequency N0. The flow is bounded between two rigid walls.
Dimensional quantities (those with *) are made dimension-
less with reference length scale L, velocity Uref(=[gL]1/2,

g = gravity) and density ρ0: (x, z) = (x∗/L, z∗/L), (u,w) =
(u∗/Uref, w∗/Uref ), t = Ureft∗/L, p = p∗/[ρ0(Uref )2], ρ =
ρ∗/ρ0. The x∗ or z∗ axes denote the horizontal or vertical

directions, respectively. We exclude vertical propagation. The
nondimensional governing equations [2] are now

ux + wz = 0, ρt + uρx + wρz = 0,

ρ(ut + uux + wuz ) = −px,

ρ(wt + uwx + wwz ) = −pz − ρ,

(1)

and the fluid principles are continuity (mass conservation),
incompressible flows (material derivative of density being
zero), and momentum consideration (pressure gradient being
the driving agent for material derivative of momentum). The
Boussinesq assumption is made (neglecting the density varia-
tions except in the buoyancy term).

Perturbation theory is pursued, by utilizing a small param-
eter ε being the ratio of the wave amplitude to the channel
depth H. The velocity components, density and pressure are
expanded in series, with the velocity component u taken as
example here:

u = ε
∑

m

u(m)
1 exp (iθm) + ε2

∑
m

u(m)
2 exp (iθm),

θm = kmx − ωmt, m = 1, 2, 3, (2)

where m(= 1, 2, 3) represents the three components of the
triad. We formulate the dynamics as a reduction of the fun-
damental boundary value problem for internal gravity waves,
specifically for high-frequency waves of frequencies far ex-
ceeding the local Coriolis parameter [2]. The vertical velocity
w and eigenfunction �(z) are then (km, ωm = wave number,
angular frequency)

(�m)zz − k2
m�m + k2

m

ω2
m

N2
0 �m = 0. (3)

As the flow is confined between two rigid walls, the bound-
ary conditions will be �(0) = �(H) = 0. The corresponding
eigenfunction of Eq. (3) is (n = integer, mode number)

�n(z) = sin (nπz/H ), (4)

with the dispersion relation being

ω2
m = k2

mN2
0

k2
m + n2π2

H2

, (5)

where m = 1, 2, 3, being components of the triad, n = mode
number of the internal wave.

The vertical velocity structure is w
(m)
1 = Em(ξ, τ )�m(z),

where E (ξ, τ ) is the slowly varying amplitude. The slow spa-
tial or temporal variables are ξ = εx, τ = εt . The first order
O(ε) terms of the velocity components and density are

u(m)
1 = iEm

km

d�m

dz
,

ρ
(m)
1 = − i

ωm

dρ(z)

dz
Em�m, (6)

where ρ(z) without superscript or subscript stands for the
background density. A nonlinear analysis is conducted by
substituting the perturbation series [Eq. (2)] into the governing
equations [Eq. (1)]. The resonance condition k3 = k1 + k2,
ω3 = ω1 + ω2 is utilized. The inhomogeneous terms for the
higher-order perturbations must be orthogonal to the null
space of the adjoint operator of Eq. (3), as required by the
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FIG. 1. Graphical construction of a triad.

Fredholm alternative theorem. The evolution equations are
then obtained as

E1τ + V1E1ξ = r1E3E∗
2 ,

E2τ + V2E2ξ = r2E3E∗
1 ,

E3τ + V3E3ξ = r3E1E2, (7)

where Vm (m = 1, 2, 3) are the group velocity of the three
members of the triad. The rm (m = 1, 2, 3) are the correspond-
ing interaction coefficients. Such coefficients can be computed
by the standard method of multiple scales [11], but will not be
the focus of this work. Instead, we look for special regimes.
Equation (7) will be termed a degenerate case when two of
the group velocities are identical, i.e., V2 = V3 �= V1. Here we
intend to investigate degenerate triads in stratified fluids. As
the dispersion relation is given by Eq. (5), one example of triad
can be constructed graphically according to the resonance
condition in Fig. 1.

As illustrative example, we choose three components com-
ing from the mode number n = 1, 3, 5, with modes 1 and 5
being the daughter wave, and mode 3 being the parent wave
(k3 = k1 + k2, k1, k2 from mode 1 and mode 5, respectively).
The terminology of parent and daughter is not uniform in the
literature. More precisely,

ω2
1 = k2

1N2
0

k2
1 + n2

1π
2

H2

, ω2
2 = k2

2N2
0

k2
2 + n2

5π
2

H2

, ω2
3 = k2

3N2
0

k2
3 + n2

3π
2

H2

,

n1 = 1, n3 = 3, n5 = 5. Infinitely many sets of triads can be
identified among the combinations of the three modes. The

FIG. 2. Existence of triad involving modes 1, 3, and 5 [Eq. (8a)],
with N0 = 1, H = 1. (Left) Planar plot of allowed values of k1 and
k2; (Right) Zoom in view for the existence of point of equal group
velocity.

FIG. 3. (a). The variation of the wave number for three com-
ponents in the first triad set (k3 = k1 + k2), with k1 varying in the
interval [0.1, 0.733]; (b). The variation of corresponding group ve-
locity for three components. The parameters chosen are N0 = H = 1;
(c), (d) Corresponding properties for the second triad set.

resonance triad can be analytically defined by solving the
equation

k1/
[
k2

1 + π2
/

H2
]1/2 + k2/

[
k2

2 + 25π2
/

H2
]1/2

− (k1 + k2)
/[

(k1 + k2)2 + 9π2
/

H2
]1/2 = 0. (8a)

For a given water depth H, the solutions for k1 and k2 are
illustrated (left panel, Fig. 2). For simplicity, the three waves
are assumed to propagate in the positive x direction, with k1,
k2 and k3 all being positive. For N0 = H = 1, to ensure the
existence of a triad, the value of k1 must be confined within
the interval (0, 0.733] (right panel, Fig. 2). For each value of
k1 within this interval, two sets of corresponding values for
k2 and k3 are permissible. If we vary the water depth H, the
trends are qualitatively similar.

To search for the existence of degenerate triads, the vari-
ations of wave numbers and the associated group velocities,
denoted as Vm = ∂ωm

∂km
(m = 1, 2, 3) for the three components

in these two triad sets are studied (Fig. 3). There is only one
degenerate triad for the chosen values of N0 and H, namely,
k1 = 0.733, and V2 = V3 = 0.0481 [red point in Figs. 3(b) and
3(d)].

FIG. 4. (a). The full solution graph of k1 and k2 to Eq. (8a) (black
line) and Eq. (8b) (blue line); (b). The solution graph of positive
k1 and k2 to Eq. (8a) (black line) and Eq. (8b) (blue line). The
parameters chosen are N0 = 1, H = 1.
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For the existence of a degenerate triad, the group velocities
V2, V3 must be identical ( ∂ω2

∂k2
= ∂ω3

∂k3
). From the dispersion

relation [Eq. (5)], this condition for the present choice of a
resonance among modes 1, 3, 5 is

254[(k1 + k2)2 + 9π2/H2]
3 − 94[k2

2 + 25π2/H2]3 = 0.

(8b)

For a given water depth H (=1), the solutions for k1 and
k2 of Eqs. (8a), (8b) will be illustrated graphically (Fig. 4,
black or blue line denoting the solutions to Eqs. (8a) or (8b),
respectively). Only four intersection points are observed for
N0 = H = 1.

B. Scale transformation

To demonstrate that the degenerate case is theoretically
different from the case of distinct group velocities, Eq. (7) can
first be reduced to

U1,T + V ∗
1 U1,X = sgn(s1)U3U

∗
2 ,

U2,T + V ∗
2 U2,X = sgn(s2)U3U

∗
1 ,

U3,T + V ∗
3 U3,X = sgn(s3)U1U2, (9)

where the new system Eq. (9) displays numerically unity
interaction coefficients (sgn = sign of the real number). The
necessary transformation is

T = p1ξ + p2τ, X = ξ + p3τ, (10a)

E1 = U1√|s2||s3|
, E2 = U2√|s1||s3|

, E3 = U3√|s1||s2|
, (10b)

s1 = r1

p2 + V1 p1
, s2 = r2

p2 + V2 p1
, s3 = r3

p2 + V3 p1
, (10c)

p1 = (V2 − V3)V ∗
1 + (−V1 + V3)V ∗

2 + (V1 − V2)V ∗
3

(−V2 + V3)V ∗
2 V ∗

3 + V ∗
1 [(−V1 + V2)V ∗

2 + (V1 − V3)V ∗
3 ]

, (10d)

p2 = (V2 − V3)V1V ∗
1 + (−V1 + V3)V2V ∗

2 + (V1 − V2)V3V ∗
3

(V2 − V3)V ∗
2 V ∗

3 + V ∗
1 [(V1 − V2)V ∗

2 + (−V1 + V3)V ∗
3 ]

, (10e)

p3 = (−V2 + V3)V1V ∗
2 V ∗

3 + V ∗
1 [(−V1 + V3)V3V ∗

2 + (V1 − V3)V2V ∗
3 ]

(V2 − V3)V ∗
2 V ∗

3 + V ∗
1 [(V1 − V2)V ∗

2 + (−V1 + V3)V ∗
3 ]

, (10f)

where V ∗
1 ,V ∗

2 ,V ∗
3 denote arbitrary constants. This transforma-

tion requires that V1, V2, V3 are all different from each other.
Hence we can choose arbitrary values of V1, V2, V3 in Eq. (7)
as long as they satisfy the relation V1 > V2 > V3. For the
degenerate case, this inequality cannot hold as V2 = V3 = V .

III. DYNAMICS OF DEGENERATE TRIADS

A. Contrast between the degenerate and nondegenerate
rogue waves

For convenience, we adopt the normalized version of the
triad resonance equations [Eq. (7)] by scaling the amplitudes
with the interaction coefficients [11]:

φ1t + V1φ1x = φ3φ
∗
2 ,

φ2t + V2φ2x = −φ3φ
∗
1 ,

φ3t + V3φ3x = φ1φ2. (11)

We focus on rogue events or rogue waves in this paper.
Physically, displacements from a tranquil background should
be localized in both space and time. Mathematically, analyti-
cal solutions for deviations from the background should decay
in the far field [20].

The rogue wave solutions for the triad resonance model
in the nondegenerate case (V1 > V2 > V3) have been given
earlier [29–31]. Here, our focus is on triad resonance model
in the degenerate case (V1 = 0, V2 = V3 = V ), where two
of the three group velocities are identical. The rogue wave
mode of Eq. (11) for this degenerate case has been de-
rived in the literature by the Darboux transformation method
[32]. We examine the nonlinear dynamics further, and con-
firm the existence of degenerate resonance in the context
of internal waves. More precisely, the rogue waves are
given by

φ1 = ia1 exp[i(k3 − k2)x − i(ω3 − ω2)t]

{
1 − 4iδ3V (V t − x) + A2V 2/a2

1

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

)
}

, (12a)

φ2 = a2 exp[i(k2x − ω2t )]

{
1 + 2iδV [δ2V t − (δ2 − A)x] − δ2AV 2/a2

2

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

)
}

, (12b)

φ3 = a3 exp[i(k3x − ω3t )]

{
1 + −2iδV [δ2V t − (δ2 + A)x] − δ2AV 2/a2

3

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

)
}

, (12c)

a1 = a3a2

δ
, k3 = ω3

V
+ a2

2

δV
, k2 = ω2

V
+ a2

3

δV
, (12d)

A = a2
3 + a2

2, B = a2
3 − a2

2, κ = ω3 + ω2, δ = ω3 − ω2. (12e)
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FIG. 5. Rogue waves with parameters a2 = 2, a3 = 2, ω2 = 1,
ω3 = 2, V = 4.

Here the amplitudes of the plane waves for the three
components, namely a1, a2, a3, serve as benchmarks where
maximum displacements of the rogue waves can be com-
pared. Given a group velocity V, Eq. (12) represents a family
of solutions with four free parameters (a2, a3, ω2, ω3).
Before proceeding further, we must emphasize on the dif-
ference between the rogue waves of the degenerate and the
nondegenerate triad resonance. Rather than going through
lengthy comparisons and manipulations of mathematical ex-

pressions, we will just illustrate the contrast graphically.
Basically, the rogue wave profiles differ drastically with
fixed amplitudes of plane wave background (parameters
a2, a3) and angular frequencies of the carrier wave en-
velopes (parameters ω2, ω3). Details are described in the
Appendix A.

B. Displacement and phase of the rogue waves

It is instructive to inspect the location and magnitude of
the largest displacements of the rogue waves for the degener-
ate case. The φ1 component displays an eye-shaped pattern
(a peak accompanied by two valleys on the two opposite
sides), while the components φ2, φ3 exhibit a four-petal pro-
file (two peaks and two valleys with a saddle point in the
center) [33]. In terms of naming, we term the depth of the
valley as the minimum displacement (smallest distance to
the plane defined by vertical coordinate being zero). The
minimum displacements for the three components are lo-
cated at points A1, A2, B1, B2, C1, C2 as labeled in Fig. 5.
The precise spatial and temporal coordinates are tabulated
(Table I).

We now turn our attention to the phase of the rogue waves.
For convenience, the exponential factor with modulus unity is
removed to highlight the nonlinear dynamics [Eq. (12)]. The
rational portions of the rogue wave solutions are

φ̂1 = 1 − 4iδ3V (V t − x) + A2V 2/a2
1

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) ,

(13a)

φ̂2 = 1 + 2iδV [δ2V t − (δ2 − A)x] − δ2AV 2/a2
2

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) ,

(13b)

φ̂3 = 1 + −2iδV [δ2V t − (δ2 + A)x] − δ2AV 2/a2
3

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) .

(13c)

The phase factors of the three complex valued components are

ψ1 = arctan

{
−4δ3V (V t − x)

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) − A2V 2/a2
1

}
, (14a)

ψ2 = arctan

{
2δV [δ2V t − (δ2 − A)x]

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) − δ2AV 2/a2
2

}
, (14b)

ψ3 = arctan

{
−2δV [δ2V t − (δ2 + A)x]

[δ2V t − (δ2 + B)x]2 + 4δ2a2
1x2 + A2V 2/

(
4a2

1

) − δ2AV 2/a2
3

}
. (14c)

The phase of the rogue wave is shown to correlate strongly
with the nonlinear dynamics (Fig. 6). We can identify the
minimum displacements of the rogue wave profiles, along the
directions of the white dotted lines passing through points
A1, A2, B1, B2, C1, C2 as indicated in Table I. The peak of
the component φ1 is attained at the point x = t = 0. Those

white lines indeed pass through this peak. The expressions
of the white dotted lines can be determined by the relations
between x and t (black texts in Fig. 6), where the slopes are
derived from the spatial and temporal coordinates in Table I.
The precise relations will change numerically with different
input parameters such as a2, a3, ω2, ω3, and V. For the widely
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TABLE I. Spatial and temporal locations of minimum displacements of the three components.

Points of minimum displacements Spatial and temporal locations Expressions of white dotted lines
Components in Fig. 5 in Fig. 5 (Fig. 6)

φ1 A1 x = 0.87, t = 0.22 t = 0.253 x
A2 x = −0.87, t = −0.22

φ2 B1 x = −0.35, t = 0.62 t = −1.771 x
B2 x = 0.35, t = −0.62

φ3 C1 x = 0.35, t = 0.79 t = 2.257x
C2 x = −0.35, t = −0.79

studied nonlinear Schrödinger equation case, the rogue wave
profile is obtained by setting the propagation variable to be
zero [20,32]. The rogue wave profiles along the white dot-
ted lines are illustrated in the top panel of Fig. 7. Both the
amplitude and width of the rogue mode for the component
φ1 are larger than those for the φ2 and φ3 components. The
maximum amplitude of the φ1 component [Eq. (12)] occurs
at x = 0, t = 0 (Fig. 5), and is three times its mean state or
tranquil background (a1). The corresponding magnification
ratios for the φ2 and φ3 components are smaller. There is
a phase shift of π (�ψ j, j = 1, 3) between the continuous
wave background and the central part of the components for
φ1 and φ3 (the middle panel of Fig. 7). For the component
φ2, there is a −π phase shift (�ψ2) along the direction of the
white dotted line. The maximum phase shift is 2π (Fig. 6). To
find out the direction of the maximum phase shift, we define

FIG. 6. Phase of the rogue waves versus x and t : White dotted
lines denoting the minimum amplitude of the rogue wave. Parameters
chosen are a2 = 2, a3 = 2, ω2 = 1, ω3 = 2, V = 4.

the temporal evolution of phase shift �ψ j ( j = 1, 2, 3) as

�ψ j (t ) = ψ j (t, x = 0) − ψ j (t, x → ∞), j = 1, 2, 3.

(15)

The temporal evolution of �ψ j can be obtained analyti-
cally by

tan (�ψ1) = − 4δ3V 2t

δ4V 2t2 + A2V 2/
(
4a2

1

) − A2V 2/a2
1

,

tan (�ψ2) = 2δ3V 2t

δ4V 2t2 + A2V 2/
(
4a2

1

) − δ2AV 2/a2
2

,

tan (�ψ3) = − 2δ3V 2t

δ4V 2t2 + A2V 2/
(
4a2

1

) − δ2AV 2/a2
3

, (16)

FIG. 7. Top panel: Rogue wave profile in the direction denoted
by the white dotted lines; Middle panel: Phase profile along the white
dotted lines of Fig. 6; Bottom panel: Evolution of the phase shift
between the central part and the continuous background (the phase
has been unwrapped). Parameters chosen are a2 = 2, a3 = 2, ω2 = 1,
ω3 = 2, V = 4.
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FIG. 8. Volumes of the three components versus the group veloc-
ity V with parameters a2 = √

3, a3 = 1, ω2 = 1, ω3 = 0.5.

which is illustrated in the bottom panel of Fig. 7. For the three
components of the rogue waves in triad resonance, there is a
phase excursion of 2π . This feature is also observed for the
Peregrine breather and the Fermi-Pasti-Ulam-Tsingou recur-
rence in the widely studied nonlinear Schrödinger equation
[34,35].

C. Volume or energy of the rogue wave

For rogue waves of triads, it is instructive to examine the
extent of fluid displaced for the whole spatial domain over
the duration of occurrence. For such calculations, we draw
an analogy with the rogue modes of the surface wave coun-
terparts, where slowly varying packets are governed by the
nonlinear Schrödinger equation. Along this line of reasoning,
we define the volume of each component as [36]

�1 = 1

8π

∫ ∞

−∞

∫ ∞

−∞

(|φ1|2 − a2
1

)2
dxdt,

�2 = 1

8π

∫ ∞

−∞

∫ ∞

−∞

(|φ2|2 − a2
2

)2
dxdt,

�3 = 1

8π

∫ ∞

−∞

∫ ∞

−∞

(|φ3|2 − a2
3

)2
dxdt, (17)

where the integrals are evaluated with φn, n = 1, 2, 3 given by
the exact solutions [Eq. (12)]. Depending on the basic physical
principles under study, Eq. (17) may be mapped to the energy
of the system. Such definitions can in principle be correlated
with the potential damage the rogue wave can inflict on a ship,
offshore or submerged structure.

The volumes of the rogue waves are now scrutinized as the
input parameters vary. These volumes of the three components
are inversely proportional to the group velocity V. The rate of
decrease in the volume of the component φ1 as the daughter
wave is larger than those of the components φ2 and φ3 (Fig. 8).
The difference between the frequencies of the carrier envelope
of components φ2 and φ3 can significantly affect the volumes
of the three components (Fig. 9). As the frequencies of φ2

FIG. 9. Volumes of the three components versus the difference
in angular frequencies of the carrier envelopes ω3–ω2.

FIG. 10. Volumes of the three components versus the difference
in amplitudes of the carrier envelopes a3–a2.

and φ3 approach each other, the volume of φ1 can increase
dramatically. The volumes of φ2 and φ3 remain unchanged
as the difference between their frequencies varies. Figure 9
displays a divergent behavior at the point of ω3–ω2 = 0 (or
ω3 = ω2), as degenerate triad resonance cannot exist in that
case [δ → 0 will imply k2, k3 → ∞, Eqs. (12d) and (12e)].
The difference in amplitudes between φ2 and φ3 also has
a significant effect on the volumes of the three components
(Fig. 10). The volumes of all three components increase with
a larger difference in amplitudes.

IV. DYNAMICS OF NONDEGENERATE TRIADS

For the widely studied nonlinear Schrödinger equation,
rogue waves can only occur in the focusing regime, where
there is long wavelength modulation instability. Similar in-
sight on instabilities and rogue waves or breathers also holds
for coupled Schrödinger type waveguides [33]. Remarkably,
these connections between instability and the occurrence of
extreme events also remain valid for the triad resonance case.
Linear instabilities of the baseband (long wavelength) type
still serve as a critical condition for the emergence of rogue
waves [37].

Theoretically rogue waves are studied with decaying
boundary conditions in an unbounded field. For a finite do-
main with periodic boundary conditions, the analog is then
a breather. While breathers for surface waves have been in-
vestigated, the corresponding properties for internal waves
and triad resonance are only beginning to be realized. For
this purpose, pulsating modes for the nondegenerate case are
studied here first. Fission and fusion phenomena are demon-
strated. More detailed description of dynamics and properties
of breathers for the degenerate case will be deferred to a future
work.

The analytical techniques involved are the Darboux trans-
formation and the Lax pair. The Darboux transformation
defines a recursive process where more complicated solutions
can be generated from simpler ones (seed solutions). The Lax
pair introduces the time and space dependence of auxiliary
functions and eigenvalues. This mechanism started in the
1960s in the search of analytic advances of the Korteweg–de
Vries and Schrödinger equations.

In a previous work, we have initiated investigations
on the Fermi-Pasta-Ulam-Tsingou recurrence phenomena of
breathers of the triad systems [38]. Basically, small distur-
bances on a plane wave background are amplified due to
modulation instability. Higher harmonics exponentially small
initially will grow at a higher rate. Eventually all modes attain
roughly the same magnitude and a breather is formed at that

024204-7



H. M. YIN, Q. PAN, AND K. W. CHOW PHYSICAL REVIEW E 109, 024204 (2024)

instant. Here we demonstrate further intriguing properties of
breathers by showing the scenarios of fusion and fission.

A. Breather fission or fusion

The normalized resonant triad system [Eq. (11)] with V1 >

V2 > 0, V3 = 0 (without loss of generality), admits the plane

wave system as background

φ
[0]
1 = δ1 exp [i(k1x + q1t )],

φ
[0]
2 = δ2 exp [i(k2x + q2t )],

φ
[0]
3 = −iδ3 exp [i(k1 + k2)x + i(q1 + q2)t], (18)

where the parameters are given by

q1 = −k1V1δ1 + δ2δ3

δ1
,

q2 = −V3δ
2
1δ

2
3 + V2δ2

[
δ2

1δ2 + k1(V1 − V3)δ1δ3 + δ2δ
2
3

]
(V2 − V3)δ1δ2δ3

,

k2 = −δ2
1δ

2
2 + k1(−V1 + V3)δ1δ2δ3 + (δ1 − δ2)(δ1 + δ2)δ2

3

(V2 − V3)δ1δ2δ3
. (19)

The triad system Eq. (11) is integrable. It allows a Lax pair formulation [1,38,39] given as follows:

�x = U�, �t = V�, (20)

where �(x, t ) = (ψ1, ψ2, ψ3)T is a 3×1 column vector (superscript T = transpose). The matrices U(x, t ) and V(x, t ) are given
by [38]

U =

⎛
⎜⎜⎜⎝

− i
3 (−2V1 + V2 + V3)λ φ∗

3 (x,t )√
(V1−V3 )(V2−V3 )

− φ∗
2 (x,t )√

(V1−V2 )(V2−V3 )

− φ3(x,t )√
(V1−V3 )(V2−V3 )

− i
3 (V1 − 2V2 + V3)λ φ1(x,t )√

(V1−V2 )(V1−V3 )

φ2(x,t )√
(V1−V2 )(V2−V3 )

− φ∗
1 (x,t )√

(V1−V2 )(V1−V3 )
− i

3 (V1 + V2 − 2V3)λ

⎞
⎟⎟⎟⎠, (21a)

V =

⎛
⎜⎜⎜⎝

i
3 (−V1V2 − V1V3 + 2V2V3)λ − V3φ

∗
3 (x,t )√

(V1−V3 )(V2−V3 )
V2φ

∗
2 (x,t )√

(V1−V2 )(V2−V3 )

V3φ3(x,t )√
(V1−V3 )(V2−V3 )

i
3 (−V1V2 + 2V1V3 − V2V3)λ − V1φ1(x,t )√

(V1−V2 )(V1−V3 )

− V2φ2(x,t )√
(V1−V2 )(V2−V3 )

V1φ
∗
1 (x,t )√

(V1−V2 )(V1−V3 )
i
3 (2V1V2 − V1V3 − V2V3)λ

⎞
⎟⎟⎟⎠, (21b)

and λ is a complex valued spectral variable. A constraint on the group velocities, i.e., V1 > V2 > V3, should hold. The Darboux
transformation [38,39] for Eq. (11) can be written as

φ
[1]
1 = φ

[0]
1 − i(λ∗ − λ)

√
(V1 − V2)(V1 − V3)(V2 − V3)ψ2ψ

∗
3

ψ1ψ
∗
1 + ψ2ψ

∗
2 + ψ3ψ

∗
3

, (22a)

φ
[1]
2 = φ

[0]
2 − i(λ∗ − λ)

√
(V1 − V2)(V2 − V3)(V3 − V1)ψ∗

1 ψ3

ψ1ψ
∗
1 + ψ2ψ

∗
2 + ψ3ψ

∗
3

, (22b)

φ
[1]
3 = φ

[0]
3 + i(λ − λ∗)

√
(V1 − V3)(V2 − V3)(V1 − V2)ψ∗

1 ψ2

ψ1ψ
∗
1 + ψ2ψ

∗
2 + ψ3ψ

∗
3

. (22c)

To obtain the breather modes, we set the transformation

� = G �, (23)
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with the 3×3 nonsingular matrix

G =

⎛
⎜⎝

exp [i(k1x + q1t )] 0 0

0 exp [i(k2x + q2t )] 0

0 0 exp [i(k1x + q1t ) + i(k2x + q2t )]

⎞
⎟⎠. (24)

Utilizing Eqs. (20) and (23), we derive

�x = (
G−1UG + G−1

x G
)
� = U0�,

�t = (
G−1VG + G−1

t G
)
� = V0�, (25)

where

U0 =

⎛
⎜⎜⎜⎝

− i
3 (−2V1 + V2)λ i√

V1V2
− 1√

(V1−V2 )V2

i√
V1V2

i
V2

− i
3 (V1 − 2V2)λ 1√

V1(V1−V2 )

1√
(V1−V2 )V2

− 1√
V1(V1−V2 )

i
V2

− i
3 (V1 + V2)λ

⎞
⎟⎟⎟⎠, (26a)

V0 =

⎛
⎜⎜⎜⎝

− i
3 (3 + V1V2λ) 0 V2√

(V1−V2 )V2

0 − i
3 (6 + V1V2λ) − V1√

V1(V1−V2 )

− V2√
(V1−V2 )V2

V1√
V1(V1−V2 )

i
3 (−9 + 2V1V2λ)

⎞
⎟⎟⎟⎠. (26b)

Combining Eqs. (23) and (25), the solution for the Lax pair (20) can be obtained as

� = Q1 + Q2 + Q3, (27)

where Q1, Q2, Q3 are expressed in terms of the eigenvalues and eigenvectors of U0. Details on the calculations of Q1, Q2, Q3 are
given in Appendix B.

The fission and fusion processes can now be illustrated using typical input parameters. The left column of Fig. 11 displays
the breather fission phenomenon, where a breather splits into two breathers, with the typical parameters δ1 = 1, δ2 = 1, δ3 = 1,
k1 = 0, λ = −1 + i, V3 = 0, V2 = 1, V1 = 2. The period of first breather along t axis is 4. Breather fusion can be obtained by the
same parameters as above except for the opposite imaginary part of the eigenvalue, λ.

B. Floquet analysis

We examine the stabilities of breather fission and fusion by the Floquet analysis [40]. Small perturbations ξ j, j = 1, 2, 3, are
imposed on the breather solutions

φ1(x, t ) = φ1,bre(x, t ) + εξ1(x, t ), φ2(x, t ) = φ2,bre(x, t ) + εξ2(x, t ), φ3(x, t ) = φ3,bre(x, t ) + εξ3(x, t ), (28)

where ε is a small parameter. Substituting Eq. (28) into Eq. (11), we obtain the linear equation of ξ j (x, t ) (for ε � 1)

ξ1,t (x, t ) + V1ξ1,x(x, t ) − φ3,bre(x, t )ξ ∗
2 (x, t ) − φ∗

2,bre(x, t )ξ3(x, t ) = 0,

ξ2,t (x, t ) + V2ξ2,x(x, t ) + φ3,bre(x, t )ξ ∗
1 (x, t ) + φ∗

1,bre(x, t )ξ3(x, t ) = 0,

ξ3,t (x, t ) + V3ξ3,x(x, t ) − φ1,bre(x, t )ξ2(x, t ) − φ2,bre(x, t )ξ1(x, t ) = 0. (29)

With this transformation

ξ1 = ξ1R + iξ1I , ξ2 = ξ2R + iξ2I , ξ3 = ξ3R + iξ3I , (30)

Eq. (29) can be separated into the real and imaginary parts

ξ1R,t + V1ξ1R,x − φ3,breξ2R − φ∗
2,breξ3R = 0, ξ1I,t + V1ξ1I,x + φ3,breξ2I − φ∗

2,breξ3I = 0,

ξ2R,t + V2ξ2R,x + φ3,breξ1R + φ∗
1,breξ3R = 0, ξ2I,t + V2ξ2I,x − φ3,breξ1I + φ∗

1,breξ3I = 0,

ξ3R,t + V3ξ3R,x − φ2,breξ1R − φ1,breξ2R = 0, ξ3I,t + V3ξ3I,x − φ2,breξ1I − φ1,breξ2I = 0, (31)
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which can be rewritten as

Zt =

⎛
⎜⎜⎜⎜⎜⎜⎝

−V1∂x 0 φ3,bre 0 φ∗
2,bre 0

0 −V1∂x 0 −φ3,bre 0 φ∗
2,bre

−φ3,bre 0 −V2∂x 0 −φ∗
1,bre 0

0 φ3,bre 0 −V2∂x 0 −φ∗
1,bre

φ2,bre 0 φ1,bre 0 −V3∂x 0
0 φ2,bre 0 φ1,bre 0 −V3∂x

⎞
⎟⎟⎟⎟⎟⎟⎠

Z = H (x)Z, (32)

with the entries defined by

Z = (ξ1R, ξ1I , ξ2R, ξ2I , ξ3R, ξ3I )T . (33)

The monodromy matrix H(x) is periodic in the t direction.
The classical Floquet theory for differential equations with
periodic coefficients confirms that Eq. (32) can be solved by

Z (t + T ) = Z (t )Z−1(0)Z (T ). (34)

The monodromy matrix is then given by H = Z−1(0)Z (T ).
We can also derive the solution of Eq. (32) as

FIG. 11. (Top) Fission of breather; (Bottom) Eigenvectors by
Floquet analysis. Parameters values: δ1 = δ2 = δ3 = 1, k1 = 0,
λ = −1 + i, V3 = 0, V2 = 1, V1 = 2, μ = 0.01.

Z (t ) = �(t ) exp(Rt ) by the Floquet theorem, where R is
a constant matrix and �(t ) is periodic. Because of the
periodicity of �(t ), we have

Z (t + T ) = �(t + T ) exp [R(t + T )]

= �(t ) exp [R(t + T )] = Z (t ) exp (RT ). (35)

From Eqs. (34) and (35), the following formula:

H = Z−1(0)Z (T ) = exp (RT ), (36)

FIG. 12. (Top) Fission of breather; (Bottom) Eigenvectors by
Floquet analysis. Parameters values: δ1 = δ2 = δ3 = 1, k1 = 0,
λ = −1 + i, V3 = 0, V2 = 1, V1 = 3, μ = 0.01.
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FIG. 13. Robustness test of breather fission. Parameters:
δ1 = δ2 = δ3 = 1, k1 = 0, λ = −1 + i, V3 = 0, V2 = 1, V1 = 2 (left);
V1 = 3 (right), μ = 0.01.

is obtained. Equation (32) can then be rewritten as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1R(x, T )

ξ1I (x, T )

ξ2R(x, T )

ξ2I (x, T )

ξ3R(x, T )

ξ3I (x, T )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1R(x, 0)

ξ1I (x, 0)

ξ2R(x, 0)

ξ2I (x, 0)

ξ3R(x, 0)

ξ3I (x, 0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

To associate the Floquet analysis with the robustness test
of the breather fission, we implement the split-step Fourier
method [41] and select

φ1(x, t0) = φ1,bre(x, t0) + μζ1,

φ2(x, t0) = φ2,bre(x, t0) + μζ2,

φ3(x, t0) = φ3,bre(x, t0) + μζ3, (38)

As the initial condition starting from t0 = −10, where μ is
the perturbation intensity, ζ1, ζ2, ζ3 are denoted by ξ1, ξ2,
ξ3, respectively, for the Floquet analysis. For the robustness
test, they will be taken as random noise to start the numerical
integration. The numerical schemes and the parameters em-
ployed in the simulations will be described. The linear part
of the governing equation is solved in Fourier space, and the
nonlinear portion is computed by a fourth-order Runge-Kutta
method. The integration of Eq. (11) is performed within the
spatial box [−L/2, L/2], where L = 30π , using a grid con-
sisting of N = 512 nodes. This setting will imply a grid size of
�x = L/N . The evolution interval is taken as [−10, 10] with
a discretized step size of 5×10−4. The eigenvectors ξ1, ξ2,
ξ3, can be computed from Eq. (37). The eigenvectors for the
case of breather fission with V1 = 2 are shown in the bottom
panel of Fig. 11. The numerical breather fission phenomenon
is presented in the right column of Fig. 11. Figure 12 displays
the analytical and numerical breather fission for the case of
V1 = 3. Comparing with the case of V1 = 2, we can see that
the breather fission is more unstable with V1 = 3. And the am-
plitudes of the eigenvectors with V1 = 3 are larger than those
of V1 = 2. This may cause the breather fission phenomenon to
be more pronounced for the case of V1 = 3.

Next, we choose ζ1, ζ2, ζ3 as the random noise subjected
to a Gaussian distribution. The numerical breather fission
phenomena are shown in Fig. 13, where the left column
represents the numerical simulations with the case of V1 = 2,
while the right column corresponds to the case of V1 = 3.
Comparing the two cases, we observe that the breather
fission for the case of V1 = 3 is more unstable than that
of V1 = 2, which conforms with the prediction by Floquet
analysis. Floquet analysis thus proves to be a reliable indicator
for predicting the robustness test. For breather fusion, the
qualitative trend is similar.

FIG. 14. Fusion of breathers with parameters λ = −2−2i, V3 = 0, V2 = 1, V1 = 1.8.
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FIG. 15. Cessation of the fusion process under a 10% long wave disturbance (0.1 sin 0.1x).

C. Robustness test

The robustness of the breather fusion and fission processes
is examined by introducing small disturbances to the analyt-
ical breather solution at a time instant just before the actual
occurrence of these processes. Numerical simulations are per-
formed using a pseudospectral method [41] with a marching
forward in time starting at t = −10. We employ the Fourier
spectral method in the spatial domain and the fourth-order
Runge-Kutta method in the temporal domain for the compu-
tations.

For the fusion process, we first illustrate the exact solution
graphically as a benchmark (Fig. 14). Moderate amplitude
(10%) disturbances of long as well as finite wavelength are
now imposed. We also test the case of random noise as
a perturbation. For long wavelength (wave number = 0.1)
sinusoidal disturbance, the fusion process ceases (Fig. 15).
Similar conclusions apply to the case of a finite wavelength
(wave number = 0.5) case as well as random noise. The
two breathers appear to continue with their own propagation
pathways instead of undergoing a merger. There is a phase
shift after the collision.

The trend is opposite for the fission process. The exact
solution is first given as a benchmark reference (Fig. 16).
We again impose a moderate amplitude (10%) disturbance of
long wavelength (Fig. 17). The shape of the fission process
is relatively well preserved. Similar trends are observed for
the scenarios of finite wavelength perturbations and random
noise. Hence we can conclude that the fission process is ro-

bust, quite unlike fusion case. Furthermore, the fission process
may occur earlier than the time necessary for the correspond-
ing situation without noise.

V. DISCUSSIONS AND CONCLUSIONS

We investigate energy transfer mechanisms among oscil-
latory modes using fluid mechanics as a case study. Similar
mechanisms should apply to optics, plasma and other fields,
provided that the linear dispersion allows the existence of
degenerate triads. For wave propagation in hydrodynamics,
the Korteweg–de Vries or the nonlinear Schrödinger equations
have been well established as canonical governing models
for the long wave or finite wavelength regimes respectively
[2,42,43]. However, special physical configurations typically
may require previously neglected factors to be restored. For
long waves in a two-layer fluid, special combinations of depth
and density ratios will cause the quadratic nonlinearity to
vanish. Cubic nonlinearity must be restored, leading to the
modified Korteweg–de Vries equation [44]. Similarly, weakly
nonlinear, narrow-band, slowly varying packets propagating
over a sloping seafloor toward the shore will eventually pass
through the critical point of k0h0 = 1.363, where k0, h0 are the
wave number of the carrier packet and water depth, respec-
tively. Incorporating quintic nonlinearity into a higher order
Schrödinger equation will clarify the dynamics on whether
the packet can reach the shore [45]. In the present work, we
have identified another special case relevant to ocean science

FIG. 16. Fission of breather with parameters λ = −2 + 2i, V3 = 0, V2 = 1, V1 = 1.8.
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FIG. 17. Fission of breather persisting under a long wavelength perturbation (0.1 sin 0.1x).

and marine engineering, namely, triadic resonance for internal
waves in a uniformly stratified fluid.

More precisely, when two of the three group velocities in a
triad resonance are identical, the governing system cannot be
reduced mathematically to the case with three distinct group
velocities. The analytic forms of the rogue waves are also dif-
ferent. They have been derived in the literature by the Darboux
transformation. Whether other methods like the inverse scat-
tering transform or Hirota bilinear technique can be applied
are still open questions. We elucidate the connections between
the phase of the rogue waves and the points of maximum
or minimum displacements. The volume of the rogue waves,
defined as a measure of fluid displacement during the entire
motion of the rogue mode, is an instructive quantity. As one
illuminating example, this volume can increase dramatically

FIG. 18. Rogue waves for the nondegenerate triad system: All
three components (|φ1|, |φ2|, |φ3|) display eye-shape pattern (pa-
rameters of background plane waves and group velocities given by
a2 = a3 = 2, ω2 = 1, ω3 = 2, V2 = 1, V3 = 4).

when the angular frequencies of two of carrier packets are
close to each other.

Finally, we undertake a study on pulsating modes
(breathers) in the internal wave context. Such breathers can be
generated due to the decay of long tidal waves [46]. Interac-
tions of these pulsating modes can affect the extrema, spectra,
and statistical moments of the wave field, and have been
studied numerically. Similarly, interactions and collisions of
breathers can also occur for layered fluids [47]. Instead of
using the modified Korteweg–de Vries equation, we show that
employing a triad resonance model may be equally beneficial.
We use the Darboux transformation to derive analytically
breather (pulsating) modes. The Floquet theory of differential
equations with periodic coefficients is employed to investigate

FIG. 19. Rogue waves for the degenerate triad system: |φ1| as
eye-shape but |φ2|, |φ3| as four-petal profile [parameters: a2 = a3 =
2, ω2 = 1, ω3 = 2, V = 4 in Eq. (12)].
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stability issues. Here the dynamics is already exceedingly
complex. We just focus on the nondegenerate case in this pa-
per. Intriguing phenomena like fission and fusion of breathers
occur, similar to the situation of the nonlinear Schrödinger
equations [48]. Our theory elucidates the nonlinear properties
of both rogue waves and breathers, providing valuable insights
in the physics of triad systems as well as applications to
fluids and optics. As example, in statistically homogeneous,
stationary and isotropic wave fields, low-frequency waves are
mainly generated by nonlinear interactions. Triad resonance
will likely play a significant role. A nonlinear sea state can
thus be realized, in principle, in a laboratory, and results can
be compared with theoretical models [49]. Analogies between
rogue waves in the oceans and in optical fibers have been
described in a recent review article [50]. Our present results
enhance the knowledge in the special regime of degenerate
triad resonance, and thus will help in practical applications
and the interpretation of experimental results.

There are many issues requiring more investigations in
the future. Once the fundamental principles explained here
are understood, similar degenerate resonance should occur in
other situations in hydrodynamics, e.g., layered fluids. Nu-
merical simulations on the robustness of rogue waves and
breathers ought to be further examined. Breathers for the de-
generate case should be pursued too, both analytically as well
as computationally. Other than the present work on uniformly
stratified fluids, we expect that these degenerate three-wave
interactions may be relevant for other flow situations too, e.g.,
gravity-capillary waves or even hydroelastic configurations
[51,52]. Fruitful results in fluid dynamics and marine engi-
neering are likely to be found. Indeed such principles should
also be relevant for other fields of physical science too.
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APPENDIX A: COMPARISON OF ROGUE WAVE PROFILE

We consider typical values for the amplitudes of the plane
wave background [a2 = a3 = 2, Eq. (12)] and angular fre-
quencies of the slowly varying envelopes [ω2 = 1, ω3 = 2,
Eq. (12)]. For the nondegenerate triad associated with these
values, all three components are eye-shaped rogue wave (one
peak or valley, with two valleys or peaks, respectively, on
the opposite sides, Fig. 18). In contrast, for these same in-
put parameters (a2, a3, ω2, ω3), a degenerate triad will have
components displaying one in eye-shape and two in four-
petal configurations (Fig. 19, four-petal = two peaks and two
valleys surrounding a saddle point in the center). In terms
of the actual maximum displacements, the largest amplitudes
for the three components (|φ1|, |φ2|, |φ3|) are (11.95, 4.80,
2.23) for the nondegenerate case, but take on values of (12.00,
2.83, 2.83) for the degenerate case. The rogue modes of the
degenerate and nondegenerate cases are thus clearly distinct
from each other.

APPENDIX B: FORMULAS OF PARAMETERS IN EQ. (27)

We designate y1, y2, y3 as the eigenvalues of the matrix U0

[Eq. (26a)], and z1, z2, z3 as the eigenvectors corresponding to
y1, y2, y3. On obtaining the eigenvalues and the eigenvectors,
we can then use widely used software such as MATHE-
MATICA to proceed with the computations of parameters in
Eq. (27):

Qj = G−1z j exp
[
y jx + (

h1ξ j + h2ξ
2
j + h3ξ

3
j

)
t
]
, j = 1, 2, 3, (B1)

where

h1 = 4V 4
1 λ4 + V 3

1 λ3(24 − 11V2λ) + 4[9 + V2λ(3 + V2λ)]2

3λ[−54 + (V1 − 2V2)(2V1 − V2)(V1 + V2)λ3]

+ 3V 2
1 λ2[36 + V2λ(−3 + 8V2λ)] − V1λ[−216 + V2λ(108 + V2λ(9 + 11V2λ))]

3λ[−54 + (V1 − 2V2)(2V1 − V2)(V1 + V2)λ3]
, (B2)

h2 = − i

λ
, h3 = 6

[
9 + 3(V1 + V2)λ + (

V 2
1 − V1V2 + V 2

2

)
λ2

]
λ[−54 + (V1 − 2V2)(2V1 − V2)(V1 + V2)λ3]

. (B3)
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