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Multiplex-free physical reservoir computing with an adaptive oscillator
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Nonlinear oscillators can often be used as physical reservoir computers, in which the oscillator’s dynamics
simultaneously performs computation and stores information. Typically, the dynamic states are multiplexed
in time, and then machine learning is used to unlock this stored information into a usable form. This time
multiplexing is used to create virtual nodes, which are often necessary to capture enough information to perform
different tasks, but this multiplexing procedure requires a relatively high sampling rate. Adaptive oscillators,
which are a subset of nonlinear oscillators, have plastic states that learn and store information through their
dynamics in a human readable form, without the need for machine learning. Highlighting this ability, adaptive
oscillators have been used as analog frequency analyzers, robotic controllers, and energy harvesters. Here,
adaptive oscillators are considered as a physical reservoir computer without the cumbersome time multiplexing
procedure. With this multiplex-free physical reservoir computer architecture, the fundamental logic gates can be
simultaneously calculated through dynamics without modifying the base oscillator.

DOI: 10.1103/PhysRevE.109.024203

I. INTRODUCTION

Nonphysical reservoir computers are constructed from re-
current neural networks with some hidden layers (i.e., the
reservoir) that have random, untrained weights. The output
of the reservoir is trained with a simple method, such as a
ridge regression. A physical reservoir computer (PRC) effec-
tively replaces the software recurrent neural network with a
physical system. Said another way, input information is sent
to a physical system as external force(s), the physical reservoir
transforms and stores this information as a dynamic response,
and the dynamic response is trained (e.g., with ridge regres-
sion) to produce a desired output. A schematic of this process
for the adaptive oscillator is shown in Fig. 1.

In physical reservoir computing, the dynamic response of
a nonlinear system is used as a computational resource by
applying machine learning techniques [1–6]. Reservoir com-
puting came from liquid state machines [7] and echo state
networks [8]. Since PRCs do not have static information stor-
age, they are different from Turing machines. Many different
time-dependent systems have been explored as physical reser-
voir computers. These include the Hopf oscillator [9–11], van
der Pol oscillator [12], memristors [13], a Duffing array [14],
quantum reservoir networks [15], superparamagnetic tunnel
junctions [16], an array of linear oscillators [17], spintronics
[18], lasers in special mediums [19], microelectromechanical
systems [20], a shape memory alloy actuator [21], and the
nonlinear response of materials [22].

On the other hand, adaptive oscillators are a subset of
nonlinear oscillators that can learn and store information
in dynamic plastic states. For instance, the Hopf adaptive
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frequency oscillator has two states that correspond to the
nonadaptive Hopf oscillator, while the remaining state can
learn and store an external forcing frequency [23,24]. This
can be extended to include states for amplitude [25–27] or
more complex waveforms [28]. Since linear vibratory energy
harvesters employ resonance to boost performance [29] and
nonlinear harvesters use nonlinearity to increase bandwidth
[30,31], adaptive oscillators may be ideal vibratory energy
harvesters since they can track resonance (e.g., the pendulum
adaptive frequency oscillator [32]). Interestingly, adaptive os-
cillators can also exhibit chaotic motion for certain parameter
combinations [33].

Oscillator-based physical reservoir computers typically
employ time multiplexing to create virtual nodes [34]. For
vibrating systems, this is a seemingly necessary step to cap-
ture the necessary information from the system, as computing
and memory storage are both provided by the oscillator it-
self. This is cumbersome from a practical perspective, as it
requires a faster sampling rate than the clock frequency. For
time multiplexing, a piece of information (e.g., a logic bit,
a single sample from an audio recording, or a pixel, etc.) is
sent to the oscillator, and the oscillator’s response is sampled
n times. These n samples of the oscillator are considered to
be virtual nodes, as they are sampled in time from a single
state of the oscillator. Conversely, a sensor array might instead
be sampled when the array is subjected to a force; thus, for
spatial multiplexing, the nodes are physical. Effectively, both
time and spatial multiplexing are employed to project a single
piece of data to a vector in a larger space. For a physical
reservoir computer composed of an adaptive oscillator, time
multiplexing can be completely avoided. As only a single
node is collected for each pseudoperiod, the nodes considered
in this paper are physical nodes, even though it is an oscillator.
The adaptive oscillator’s response at a single instance per
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clock cycle directly provides the calculation of different logic
gates. Interestingly, this approach creates a reprogrammable
logic gate, without the necessity of modifying the adaptive
oscillator itself.

As a relevant comparison to the present paper, nonlinear
oscillators have also been used for reprogrammable logic
gates, in which the dynamics of the oscillator are modified
to correspond as different gates. For instance, a bistable
oscillator’s asymmetry can be tuned to produce different logic
gates [35], lattices of coupled chaotic maps set a critical value
to function as different gates [36], and a Duffing oscillator
can be used as a reprogrammable logic gate by incorporating
a feedback controller [37,38]. The present adaptive oscillator
PRC utilizes the complex dynamic response of the oscillator
to avoid modifying the oscillator itself (i.e., no feedback or
parameter tuning is necessary). At the same time, machine
learning is used to reprogram the nonmultiplexed response to
correspond to different logic gates using a single sample per
clock cycle. Since this is done without modifying the base
oscillator’s parameters, all of the logic gates can be simultane-
ously calculated in parallel by the physical reservoir computer.

II. ADAPTIVE OSCILLATOR PHYSICAL
RESERVOIR COMPUTER

The adaptive oscillator considered in this paper is based
on the Hopf oscillator, whose equations of motion are given
below:

ẋ = [μ − (x2 + y2)]x − ω0y,

ẏ = [μ − (x2 + y2)]y + ω0x. (1)

Here, μ is a parameter that affects the limit cycle ra-
dius, and ω0 is the static resonance frequency of the Hopf
oscillator. It should be noted that other adaptive oscillators
can be constructed with different base oscillators, and these
other adaptive oscillators should exhibit a similar performance
as physical reservoir computers. By concatenating an addi-
tional state onto Eq. (1), the Hopf-based adaptive oscillator
is constructed that can learn and store frequency information
[25–27]:

ẋ = [μ − (x2 + y2)]x − ωy + kx f (t ),

ẏ = [μ − (x2 + y2)]y + ωx, (2)

ω̇ = −kω f (t )y.

When this adaptive oscillator is forced with a single sinu-
soid, such as a sin (�t ), the ω state will converge to �. kx and
kω are constants that affect the learning rate of the adaptive os-
cillator. In Eq. (2), f (t ) is a time-varying external force, which
encodes information that is sent to the adaptive oscillator. For
the logic tasks considered here, “True” is encoded as �TRUE

and “False” is encoded as �FALSE, and the external forcing
function is defined simply as

f (t ) = sin (�it ). (3)

The “True” or “False” values are chosen at random with
equal probability, which are then encoded as �i. This fre-
quency value is held constant for a pseudoperiod Tp that is
significantly longer than the period of �TRUE and �FALSE. The
pseudoperiod can be considered as the clock frequency, such

FIG. 1. Schematic of the adaptive oscillator physical reservoir
computer considered here. A logic bit stream is sent to the adaptive
oscillator, and only a single node is collected from the ω state for
each clock cycle. Thus, the oscillator must “remember” the previous
bit to perform the logic gate correctly. The � denotes the readout
layer, which takes a dot product of the weights from the ridge regres-
sion with the node and bias. The value of the dot product produces a
morphable logic gate bit stream.

that a logic gate is calculated once for each pseudoperiod.
As no time multiplexing is used, the nodes for each clock
are simply a bias value (e.g., 1) and the ω state value. The
ω values are taken just after each clock cycle to capture the
adaptive oscillator in a transient state. Thus, the nodes are
[1, ω(nTp + δ)], where n ∈ Z+ and δ is a small constant. An
example of the time history of the adaptive oscillator PRC is
shown in Fig. 2.

Bits, which are encoded as sinusoids, are sent to the adap-
tive oscillator sequentially. It should be noted that the adaptive
oscillator effectively “remembers” a previous value to operate
on the current value for binary operations, such as the AND

and OR tasks.

III. MODIFIED INFORMATION RATE

A modified version of Shannon’s information rate is a
relevant metric for logic gates, as the root-mean-square error
is poorly defined for these logical tasks. The modified version
is defined in terms of the original information rate [39], where
the “sent” and “received” signals are replaced with the correct
and predicted output of the gate, respectively.

The Shannon entropy H (x) is the amount of information in
the output. It should be noted that bits being sent to the logic
gates are randomly chosen as “True” or “False” values with
equal probability, but some of the gates do not have an equal
probability of being “True” or “False.” For instance, the NOT

gate preserves the equal probability distribution, but the AND

gate is “True” only 25% of the time (e.g., when both inputs
are “True”). This unequal probability affects the upper limit
on the information rate for different gates. For a bit i from the
target of the gate and a bit j from the prediction of the gate,
the Shannon entropy is defined as

H (x) = −
∑

i

pi log2(pi ), (4)

where pi( j) = p( j | i) = p(i, j)∑
j p(i, j) is the conditional

probability.
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FIG. 2. The phase portrait of the x and y states are shown on
the top. A portion of the response of the ω state (bottom) is plotted
for reference. The green dashed lines correspond to the start of a
clock cycle (e.g., these vertical lines delineate the pseudoperiods),
and the orange ×’s are the nodal value components. Here, �FALSE =
100 Hz, �TRUE = 200 Hz, Tp = 1, μ = 1, kx = 1000, kω = 10 000,
δ = 0.02 s.

The conditional entropy Hy(x) is the probability of an
incorrect calculation of the gate. The conditional entropy is
defined in terms of a joint probability p(i, j) as

Hy(x) = −
∑

i, j

p(i, j) log2[pi( j)]. (5)

Thus, the modified Shannon’s information rate is calculated
as

IR = H (x) − Hy(x). (6)

If the adaptive oscillator PRC functions correctly as a logic
gate, the IR value of the target will be equal to the H (x) value
of the prediction.

IV. LOGIC GATES

To highlight the efficacy of this physical reservoir com-
puter, the NOT, AND, and OR gates are demonstrated, without
modifying the adaptive oscillator itself. Thus, the repro-
grammability of this system is solely based on the machine
learning that is applied to the nodal outputs.

The AND, OR, and NOT gates are shown Fig. 3. Since the
bits are sent to the adaptive oscillator sequentially, the system
must effectively “remember” one bit to calculate the OR and
AND tasks. The transient behavior of the adaptive oscillator’s

FIG. 3. Examples of the adaptive oscillator acting as an AND

(∧), OR (∨), and NOT (¬) gate. For each task, the H (x) and IR
values were equal, which demonstrates that they work correctly
[OR: H (x) = 0.81, IR = 0.81; AND: H (x) = 0.74, IR = 0.74; NOT:
H (x) = 1.0, IR = 1.0]. Here, �FALSE = 100 Hz, �TRUE = 200 Hz,
Tp = 1, μ = 1, kx = 1000, kω = 10 000, δ = 0.02 s.

ω state provides a simple and effective method for collecting
nodes from the system, without relying on time multiplexing.

In Figs. 4 and 5, the relationship between the computa-
tional ability of the adaptive oscillator (AO) PRC and the AO’s
system parameters are explored. As the Hopf oscillator is a
nonlinear system, the computational ability is highly reliant
on the oscillator’s parameters, as can be seen in the bifurcated
response in these figures. The normalized information rate

IR
H (x) is used to quantify the computational ability for the AND

(∧) and OR (∨), which both require the oscillator to remember
the previous bit.

In Fig. 4, there is a rather quantized relationship between
kx and the computational ability, whereas the μ term has little
effect on the computational ability. For the OR gate, there are
only two quantized levels, whereas there are approximately
three quantized levels of computational ability for the AND

gate. A relatively large value of kx (above approximately 560)
results in both gates working correctly. In Fig. 5, both the
kx and kω terms affect the computational ability of the AO
PRC. For the OR gate, there are still only two quantized levels.
The AND gate has a more graded response before having a
quantized jump to perfect computing. A combination of pa-
rameters, such as (kx = 1000, kω = 10 000), results in perfect
computation for both gates.

V. FIELD-PROGRAMMABLE ANALOG ARRAY CIRCUIT

A field-programmable analog array (FPAA) experiment
is used to validate the performance of the adaptive
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FIG. 4. The relationship between the μ term and the kx term is
explored for the AND (∧) and OR (∨) gates. The normalized informa-
tion rate [ IR

H (x) ] is shown as the color axis. Here, �FALSE = 100 Hz,
�TRUE = 200 Hz, Tp = 1, kω = 10 000, δ = 0.02 s.

FIG. 5. The relationship between the kx term and the kω term is
explored for the AND (∧) and OR (∨) gates. The normalized informa-
tion rate [ IR

H (x) ] is shown as the color axis. Here, �FALSE = 100 Hz,
�TRUE = 200 Hz, Tp = 1, μ = 1, δ = 0.02 s.

FIG. 6. The field-programmable analog array schematic is shown
here. Three FPAA AN231E04 chips on an Anadigm QuadApex
board (Anadigm, Paso Robles, CA) were used. The external forcing
function f (t ) is sent to the FPAA from MATLAB via a National
Instruments 9263 module.

oscillator PRC. FPAAs, which use switched-capacitor tech-
nology [40], are highly reconfigurable analog circuits. Many
different nonlinear oscillators have been constructed with
FPAAs, such as the van der Pol oscillator [12], Lorenz sys-
tem [41], four-state adaptive oscillator [27], and a chaotic
adaptive pendulum [33]. The adaptive oscillator PRC’s circuit
schematic is shown in Fig. 6.

The external signal f (t ) was generated in MATLAB. Next, it
was sent to FPAA2 using a National Instruments 9263 mod-
ule. A National Instruments 9201 module was used to collect
the x, y, and ω states. Several configurable analog modules
(CAMs) were used, including summation, multiplication, in-
tegration, dc voltage, and sample and hold. The r term denotes
the limit cycle’s radius, which is r =

√
x2 + y2.

In Fig. 7, the voltage from the ω state of the FPAA
circuit is shown. The orange ×’s denote the nodes, which are
sampled during the transient portion of the dynamics after
each clock cycle (represented by vertical green dashed lines).
As with the experiment, the adaptive oscillator PRC functions
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FIG. 7. A portion of the ω state from the FPAA experiment.
The green dashed lines correspond to the clock, and the orange ×’s
correspond to the nodes that are sampled during the transient portion
of the response. Here, �FALSE = 250 Hz, �TRUE = 500 Hz, Tp = 0.8,
μ = 2, kx = 0.375, kω = 0.125, δ = 0.004 s.

perform the OR, AND, and NOT tasks correctly, with the same
calculated results as shown in Fig. 3. As with the simulation
results, the nodes are [1, ω(nTp + δ)]. The same regression
procedure was used to train the PRC to reproduce the three
considered logic gates.

VI. CONCLUDING REMARKS

In this paper, the adaptive oscillator is proposed as an
analog reprogrammable logic gate. The adaptive oscillator
has particularly interesting dynamics, as it has plastically
deformable states that can calculate and store information.
The reprogrammability of this logic gate is due only to the
machine learning method used to train the nodal response
to a target, and the adaptive oscillator itself is unmodified.
This methodology highlights that time multiplexing can be
completely avoided for oscillator-based physical reservoir
computers by utilizing the adaptive states’ dynamic response
as nodes.

An adaptive oscillator has been used as a physical reservoir
computer without multiplexing. Further, the adaptive oscil-
lator’s unique learning ability is repurposed for generalized
tasks, such as logic gates. Previously, only frequency-related
tasks, such as analog frequency analysis or tracking a time-
varying signal’s principal frequency component, have been
shown.

From a practical perspective, this oscillator-based PRC
without multiplexing can provide a faster method of computa-
tion, as the number of virtual nodes (usually tens or hundreds
of virtual nodes) can be reduced to a single node. This reduces
the sampling requirements of the hardware. Since the transient
response can be used to calculate the logic gates, the clock
frequency can be considerably reduced as well, but a rela-
tively long clock frequency was chosen here for visualization
purposes. The adaptive oscillator physical reservoir computer
is capable of complex artificial intelligence (AI) inference
tasks, such as wake word detection, image classification, and
chaotic time series prediction. By repurposing the adaptive
oscillator’s learning ability for logic tasks, the adaptive os-
cillator can provide a robust method for calculating logic
gates without additional hardware considerations. Moreover,

as gates can be calculated in parallel, more complex outputs
can be achieved synergistically with only the hardware needed
for the AI inference tasks. However, this method could also
be highly consolidated as a high-performance, morphable,
parallelizable logic gate architecture.

ACKNOWLEDGMENTS

M.R.E.U.S. and X.L. contributed technical expertise on
machine learning and adaptive oscillators. E.P. invented and
reduced to practice the adaptive oscillator PRC, ran simula-
tions, and conducted experiments.

APPENDIX A: ECHO STATE PROPERTY

The echo state property (ESP) is often considered to be a
necessary condition for a system to work properly as a PRC.
Here, the ESP index is calculated to determine if the AO
PRC has the echo state property, which is shown in Fig. 8.
A PRC possesses the echo state property if the response of the
reservoir is independent of the initial conditions. Thus, a PRC
has the echo state property if the effect of the initial conditions
on the reservoir quickly fades. An ESP index of zero implies
that the PRC possesses the echo state property [42].

APPENDIX B: MEMORY CAPACITY

The memory capacity of the AO PRC should also be
mentioned. Usually, longer memory is desirable for PRCs,
which is accomplished through time multiplexing. For exam-
ple, in Ref. [10], a nonadaptive Hopf oscillator was used as
the reservoir, and the memory capacity was evaluated for a
fourth-order parity task. For the nonadaptive Hopf oscillator,

FIG. 8. The echo state property (ESP) index [42] is calculated
for the AO PRC. Top left: The set of random initial conditions for
the ESP index calculations. Top right: ESP index for the AO PRC for
kx = 1000 and kω = 10 000. Bottom left: ESP index for the AO PRC
for μ = 0.5 and kω = 10 000. Bottom right: ESP index for the AO
PRC for μ = 1 and kω = 10 000.
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tens or hundreds of virtual nodes were collected using time
multiplexing of the oscillator itself.

The desired goal is a parallelizable, morphable logic
gate that can be implemented with the minimum number
of sampled (virtual or physical) nodes, which can be
reconfigured for AI inference tasks that use time multiplexing.
The ω state is thus chosen as the only physical node. As can
be visually observed in Fig. 2, the memory capacity of the
AO is such that it can remember the single most recent input.
It is noted that the AO PRC is structured to perform logic gate

calculations, which necessitates one bit of memory stored in
its dynamic states.

Here, only a single physical node, without time multiplex-
ing, is sampled from the adaptive state. The AO PRC has less
memory than the nonadaptive Hopf reservoir when used in
this way. But, the trade-off is an approximately two orders of
magnitude reduction in the number of required nodes. Thus,
the described AO can be implemented at frequencies near
the upper limit of the sampling rate for a dual AI inference
processor that doubles as a general purpose processor.

[1] Reservoir Computing, edited by K. Nakajima and I. Fischer
(Springer Nature, Singapore, 2021).

[2] H. Jaeger and H. Haas, Science 304, 78 (2004).
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