
PHYSICAL REVIEW E 109, 024140 (2024)

Critical dynamics of cluster algorithms in the random-bond Ising model
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In the present work, we present an extensive Monte Carlo simulation study on the dynamical properties of
the two-dimensional random-bond Ising model. The correlation time τ of the Swendsen-Wang and Wolff cluster
algorithms is calculated at the critical point. The dynamic critical exponent z of both algorithms is also measured
by using the numerical data for several lattice sizes up to L = 512. It is found for both algorithms that the
autocorrelation time decreases considerably and the critical slowing-down effect reduces upon the introduction of
bond disorder. Additionally, simulations with the Metropolis algorithm are performed, and the critical slowing-
down effect is observed to be more pronounced in the presence of disorder, confirming the previous findings
in the literature. Moreover, the existence of the non-self-averaging property of the model is demonstrated by
calculating the scaled form of the standard deviation of autocorrelation times. Finally, the critical exponent ratio
of the magnetic susceptibility is estimated by using the average cluster size of the Wolff algorithm.
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I. INTRODUCTION

In statistical physics, Monte Carlo (MC) simulations are
the main tools to study the phase transitions and critical phe-
nomena [1–3]. The achievement of the maximum possible
system size is of vital importance to reduce finite-size ef-
fects and obtain high-quality statistics. However, the critical
slowing-down effect (the increase of the correlation time τ

with system size near the critical point) limits the largest
system size studied. As the critical point is approached, the
correlation time of a finite system is expected to behave as
τ ∼ Lz, where z is the dynamic exponent and L is the linear
size of the system. Single-spin-flip dynamics, such as the
Metropolis algorithm [4], considerably suffer from the critical
slowing-down effect. For the two-dimensional Ising model,
the local algorithms have a dynamic exponent around 2 [5]
which requires long simulation times. Such drawbacks of
local algorithms have led to the development of the cluster-flip
dynamics as Swendsen-Wang (SW) [6] and Wolff [7] algo-
rithms, which can produce small values of dynamic exponents
and reduce the correlation times. The cluster algorithms are
more efficient near the critical point than the local dynamics
in the case of the pure Ising model (zlocal > zcluster) [2,8].

Magnetic systems in the presence of disorder, which is
inevitable in realistic materials, have been explored inten-
sively both theoretically and experimentally [9]. It has been
revealed that quenched disorder can have significant effects
on the critical and universal aspects of the systems. Quenched
randomness is shown to soften the first-order phase transi-
tions considerably [10]. On the other hand, the presence of
random fields [11] and site dilution [12] may lead to distinct
critical exponents than the pure models. The Harris criterion
[13] states that if the specific heat exponent αp of the pure
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system is positive (αp > 0), then the disorder is relevant and
the system will have a new critical character, whereas if αp is
negative (αp < 0), the disorder will not affect the universality
class of the system. Systems with zero specific heat exponent
(αp = 0), such as the two-dimensional (2D) Ising model, are
the marginal cases of the criterion and therefore the effects
of site dilution [12,14–18], bond dilution [19–22], and bond
randomness [23–27] on the statistical critical exponents of
the Ising model have been of particular interest. The common
view in recent studies is the strong universality hypothesis,
which states that the disorder leads to a marginal irrelevance
of randomness and the Ising universality class is preserved
with additional logarithmic corrections. A significant number
of works have been devoted to the 2D random-bond Ising
model due to the exactly known critical temperature of the
model as a function of disorder strength. For instance, criti-
cal properties of the Ising model [28–32] and Blume-Capel
model [33–36] in the presence of bond randomness have been
studied intensively. The general finding is the fact that the
random-bond Ising model falls into the universality class of
the ordinary Ising model through the logarithmic corrections
in the specific heat.

An essential step toward understanding the critical phe-
nomena in more sophisticated problems, for instance, in
quantum spin models [37–39] and nonequilibrium phase tran-
sitions [40–43], is to study the disordered Ising model and
its variants. The most widely used method for studying the
critical properties of the Ising model is MC simulations. Since
high-quality data is required for extracting the critical expo-
nents, using the most suitable algorithm is necessary. Previous
works indicate that the performance of an MC algorithm may
change upon the inclusion of disorder effects. Accordingly, it
becomes important to know the dynamic properties, such as
autocorrelation times and the dynamic exponent of the algo-
rithms near the critical point in the disordered spin models.
On the other hand, despite the progress in the investigation
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of statistical critical exponents, the dynamic properties of
the disordered Ising model and the effectiveness of the lo-
cal and cluster algorithms are still under investigation. In an
earlier study of the site-diluted simple cubic Ising model,
the autocorrelation time and dynamic critical exponent of
Swendsen-Wang and Wolff algorithms are shown to decrease
when decreasing the concentration of magnetic sites [44].
Similarly, the cluster algorithms are found with lower val-
ues of dynamical critical exponents than the single-spin-flip
Metropolis algorithm for the three-dimensional (3D) site-
diluted Ising model with a dilution concentration p = 0.85
[45]. Moreover, the dynamics of cluster algorithms in a two-
dimensional bond-diluted Ising model have been studied in
a very recent study [22]. It has been reported that the Wolff
algorithm suffers from longer correlation times in comparison
with the pure Ising model and it has a dynamic exponent of
zw ≈ 1.75, whereas the SW algorithm has shorter correlation
times with a dynamic exponent of zsw = 0.09(4) [22].

To obtain a complete picture of the dynamic character-
istics of MC cluster algorithms in disordered Ising models,
in the present work we study the critical dynamics of the
2D random-bond Ising model by using Wolff and Swendsen-
Wang cluster algorithms. By generating the disorder in the
bonds from a bimodal distribution, we obtain the autocorre-
lation times and dynamic exponents at the critical point. Our
detailed numerical analysis reveals that correlation times and
critical exponents decrease with increasing the bond random-
ness in the system. Finally, we confirm that the introduction
of the disorder increases the critical slowing-down effect
in single-spin dynamics based on our simulation results on
Metropolis algorithm.

The rest of the paper is organized as follows: In Sec. II
we define the model and the observables we are interested in.
We also describe the cluster algorithms applied in the present
study. We present our numerical results in Sec. III. Our brief
conclusions are given in Sec. IV.

II. MODEL AND SIMULATION DETAILS

In this work we study the bond-disordered square lattice
Ising model with quenched, uncorrelated random exchange
couplings. The model can be defined by the following Hamil-
tonian:

H = −
∑

〈i j〉
Ji jSiS j . (1)

Here, the spin variables take the values of Si = ±1 and sum-
mation runs over all nearest-neighbor pairs of spins. The
ferromagnetic exchange interactions (Ji j > 0) are selected
from a bimodal distribution of the type

P (Ji j ) = 1
2 [δ(Ji j − J1) + δ(Ji j − J2)]. (2)

We fix the Boltzmann constant as kB = 1 and the exchange in-
teraction parameters as J1 + J2 = 2, with J1 > J2, and define
the disorder strength as r = J2/J1 [27,39,41]. Throughout the
work the disorder parameter is considered as the following:
r = 1 (pure case), r = 0.25/1.75, and r = 0.5/1.5.

To examine the dynamics of the random-bond Ising model,
we have used SW and Wolff cluster algorithms. The main idea
underlying the Wolff algorithm is to build a cluster of spins

and flip the spins in the cluster simultaneously. We apply the
following procedure to complete one Wolff step:

(1) A seed spin from the lattice is chosen randomly.
(2) The neighboring spins of the seed spin, which are

aligned in the same direction as the seed spin, are added to
the cluster with a probability of Padd = 1 − e−2Ji j/T .

(3) Each of the neighboring spins of the included spins in
step 2 are examined and added with a probability Padd if they
are aligned in the same direction. This step is repeated until
there are no more spins taken into account to be included in
the cluster.

In the case of the random-bond Ising model, the probability
of inclusion of a neighboring spin in the cluster depends on
the strength of the exchange interaction Ji j as different from
the pure Ising model. The method for the construction of
the clusters is equivalent to the above procedure in the SW
algorithm. Conversely, instead of one cluster, the lattice is
divided into Nc clusters and each of the clusters is flipped with
a probability of 1/2. [1,2,6–8].

Our large-scale simulations include linear system sizes of
L = 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512 in the
presence of periodic boundary conditions. For each disorder
parameter mentioned above, we have performed simulations
by using over 100 000 disorder realizations for sizes L � 32
and 10 000 disorder realizations for sizes L � 48. To mea-
sure the interested observables, the first 50 000 Monte Carlo
sweeps (MCSs) are used after discarding 10 000 MCSs for
thermal equilibration. Spin configurations are initialized in an
ordered state in each random realization to obtain an efficient
equilibration.

During the simulations we have measured the time-
displaced autocorrelation function which is defined for an
observable X at time t as

CX (t ) = 〈(Xi − 〈X 〉)(Xi+t − 〈X 〉)〉. (3)

Here, 〈· · · 〉 denotes the thermal average. By using the au-
tocorrelation function of the observable X , it is possible to
determine the integrated autocorrelation time:

τX ,int = 1

2
+

∞∑

t=1

CX (t )

CX (0)
. (4)

For large t the normalized autocorrelation function behaves
exponentially [46]:

CX (t )

CX (0)
∝ e−t/τX,exp , (5)

from which one can extract the exponential autocorrelation
time τX,exp for the quantity X . The numerical calculation of
the integrated autocorrelation time suffers from systematic
errors for large t values. We use the following approach for the
estimation of the integrated autocorrelation time [46]. Firstly,
the series in the Eq. (4) is terminated at a time tmax once the
condition tmax � 6 τX ,int is met. Next, the trailing part of the
series is completed by using the exponential autocorrelation
time as in the following [47]:

τX ,int (tmax) = τX ,int − a
e−tmax/τX,exp

e1/τX,exp − 1
, (6)

024140-2



CRITICAL DYNAMICS OF CLUSTER ALGORITHMS IN … PHYSICAL REVIEW E 109, 024140 (2024)

where a is the constant of the proportionality of Eq. (5). The
main observable is the internal energy per site, E = 〈H〉/N ,
where N is the number of sites. The exponential and integrated
correlation times are associated with the dynamical critical
exponents zexp and zint, respectively, which govern the critical
slowing down. We extract the dynamic critical exponents of
the interested observable for both algorithms at each disorder
parameter by using finite-size scaling of autocorrelation time.

In the SW algorithm, every spin gets a chance to be
flipped in a single MCS, but in the Wolff case, only a por-
tion (cluster) of spins have this possibility in a single MCS.
The time between two algorithms is standardized by a factor
f = 〈C〉/N , where 〈C〉 is the average cluster size in the Wolff
algorithm. We calculate the quenched disordered average of
the integrated autocorrelation time of the Wolff algorithm for
the finite-size scaling analysis with the alternative procedure
given in [48]. By using the convention τX,T (T = int, exp),
we define the final averages of the autocorrelation times as
τX,T = [ f ][τX,T] for the Wolff algorithm. For every τX,T there
is a corresponding dynamical critical exponent zX,T via the
power law relation τX,T ∼ LzX,T at the criticality.

To estimate the errors of the exponential and integrated
autocorrelation times, we use the jackknife procedure after
rebinning the data into 100 groups. Then the dynamical ex-
ponents are determined by a weighted least-squares data fit
obtained from different system sizes.

III. RESULTS AND DISCUSSION

The 2D random-bond Ising model has the advantage that
its exact phase diagram is available and exact critical temper-
ature can be obtained from the relation [23]

sinh(2J1/TC ) sinh(2rJ1/TC ) = 1. (7)

According to this relation, the critical temperatures of
the interested disorder strengths in the present work
are TC (r = 0.5/1.5) = 2.0781... and TC (r = 0.25/1.75) =
1.7781.... Temperature dependence of specific heat curves is
demonstrated in Fig. 1 for SW and Wolff algorithms at r =
0.25/1.75. The peak positions of the curves shift toward the
exact critical temperature, shown by the vertical line, as the
system size increases. Our pseudo-critical temperature values
obtained from the peak position of the specific heat curves
are compatible with the exact critical temperatures obtained
via MC simulations results based on the Wang-Landau (WL)
algorithm [27,30].

Next, we performed simulations at the critical temperature
of the system to measure the autocorrelation times of SW and
Wolff algorithms which are given in Table I. The common
findings observed for both algorithms are as follows. Our re-
sults regarding the integrated and exponential autocorrelation
times for the pure 2D Ising model (r = 1) are in excellent
agreement with the previous findings in the literature for both
algorithms [8,49]. Due to the introduction of a maximum
cutoff in the sum of Eq. (4), one can see that τE ,Exp > τE ,int.
Additionally, both integrated and exponential autocorrelation
times take smaller values as the disorder strength is enhanced.
Moreover, the autocorrelation times are substantially reduced
in the robust disorder regime (r = 0.25). The effect of dis-
order on the dynamic properties of several disordered Ising

FIG. 1. Specific heat as a function of temperature at a disor-
der ratio of r = 0.25/1.75 obtained using (a) SW algorithm and
(b) Wolff algorithm for several lattice sizes. The vertical dashed line
indicates the exact critical temperature of the system. The system
size increases from bottom to top in both figures.

systems has been explored in earlier studies [44,45,50]. The
general finding is a reduction in autocorrelation times of clus-
ter algorithms when introducing disorder in the model. Our
numerical data are in agreement with these results.

Having obtained the correlation times, dynamic critical
exponents of SW and Wolff algorithms are estimated. Figure 2
shows the integrated and exponential autocorrelation times
as a function of lattice size with straight lines obtained by
applying fits of the form τ ∼ Lz for each disorder parameter
considered. Calculated dynamic critical exponents are also
given in Table II. The pure system (r = 1) has critical expo-
nents at around z ≈ 0.25 for both algorithms, in agreement
with the literature [2]. Our numerical data also indicates that
the disorder causes a decrement in the dynamic exponent
of both algorithms. According to previous studies, cluster
algorithms have lower critical exponents in comparison with
the pure case for a 3D site-diluted Ising model [44,45]. Kole
et al. have indicated that the Wolff algorithm suffers from the
critical slowing-down effect when applied to the 2D bond-

024140-3



ULVI KANBUR AND ZEYNEP DEMIR VATANSEVER PHYSICAL REVIEW E 109, 024140 (2024)

TABLE I. Exponential and integrated correlation times obtained by SW and Wolff algorithm for different lattice sizes and disorder strengths.

τE ,exp τE ,int τE ,exp τE ,int

L r SW Wolff

16 1 3.2917(1) 3.245(1) 1.6829(1) 1.4304(5)
0.5 2.8542(2) 2.766(2) 1.4349(1) 1.2145(6)
0.25 2.3465(4) 2.209(1) 1.2681(2) 0.9998(9)

24 1 3.7673(2) 3.686(1) 1.9589(2) 1.6456(6)
0.5 3.1917(2) 3.063(1) 1.6288(1) 1.3661(6)
0.25 2.5655(1) 2.378(1) 1.4099(3) 1.103(1)

32 1 4.1162(4) 4.018(1) 2.1408(1) 1.8029(7)
0.5 3.4312(1) 3.284(1) 1.7674(1) 1.4785(7)
0.25 2.7322(1) 2.498(1) 1.5148(3) 1.180(1)

48 1 4.6781(6) 4.515(2) 2.4326(2) 2.0369(9)
0.5 3.8098(1) 3.611(1) 1.9736(2) 1.6389(8)
0.25 2.6826(2) 2.683(1) 1.6653(5) 1.288(1)

64 1 5.0017(2) 4.882(2) 2.6389(3) 2.209(1)
0.5 4.1245(2) 3.853(1) 1.7644(4) 1.756(1)
0.25 2.9929(2) 2.812(1) 2.1123(2) 1.366(1)

96 1 5.6780(3) 5.438(2) 2.9328(3) 2.463(1)
0.5 4.5189(1) 4.202(2) 2.3311(2) 1.925(2)
0.25 3.1838(6) 3.013(1) 1.9233(6) 1.477(1)

128 1 6.1354(7) 5.858(4) 3.1558(3) 2.651(2)
0.5 4.8618(3) 4.458(2) 2.4846(3) 2.048(1)
0.25 3.70197(4) 3.150(1) 2.0363(7) 1.558(1)

192 1 6.7529(1) 6.462(3) 3.4726(3) 2.926(2)
0.5 5.3078(1) 4.838(2) 2.7043(3) 2.225(2)
0.25 4.0235(5) 3.357(1) 2.1814(8) 1.672(2)

256 1 7.3389(1) 6.926(3) 3.7284(4) 3.130(2)
0.5 5.6335(1) 5.110(2) 2.8664(5) 2.350(2)
0.25 4.2559(5) 3.560(1) 2.2906(8) 1.752(2)

384 1 8.0734(1) 7.599(4) 4.080(4) 3.429(2)
0.5 6.1617(3) 5.508(2) 3.0667(4) 2.531(2)
0.25 4.6112(8) 3.724(1) 2.461(1) 1.870(2)

512 1 8.5760(2) 8.095(4) 4.310(4) 3.638(3)
0.5 6.5031(1) 5.794(3) 3.2169(3) 2.666(2)
0.25 4.8764(1) 3.886(1) 2.572(2) 1.952(2)

diluted Ising model because of the presence of isolated spins
which are rarely visited during the simulations [22]. The same
situation is not the case in our study, showing that using the
Wolff algorithm weakens the critical slowing-down effect.
This may be due to the absence of isolated spins and the
presence of strengthened bonds in addition to weakened bonds
in the random-bond model.

Our numerical data on the dynamic behavior of the
random-bond Ising model also shows that the dynamic
exponents of the SW and Wolff algorithms are very close to

TABLE II. Dynamic critical exponents of SW and Wolff al-
gorithms obtained from integrated and exponential autocorrelation
times for energy for several disorder strengths.

SW Wolff

r zint zexp zint zexp

1 0.254(4) 0.259(2) 0.250(5) 0.257(6)
0.5/1.5 0.200(3) 0.214(2) 0.207(4) 0.207(6)
0.25/1.75 0.156(1) 0.182(2) 0.175(4) 0.187(4)

each other [49,51]. However, the autocorrelation times of the
algorithms differ considerably, as shown in Table I. The Wolff
algorithm has smaller autocorrelation times than the SW
algorithm. This is related to the flip of every cluster generated
in the Wolff algorithm as distinct from the SW algorithm,
where half of the clusters generated are flipped at every
MC step.

At this point let us briefly summarize our findings. The crit-
ical slowing effect is substantially reduced when randomness
in the exchange interactions is included in the Ising model for
cluster dynamics. Nonlocal algorithms yield smaller autocor-
relation times in comparison with the local algorithms due to
the flip of the cluster of spins in one MCS. The presence of
bond disorder results in much smaller autocorrelation times,
which means that randomness facilitates obtaining different
states that are statistically independent of each other through
a small number of MCSs. Remarkably, the increase in au-
tocorrelation time with lattice size is reduced with disorder
strength, resulting in smaller values of the dynamic exponent.

Studies to date have shown that the addition of disorder in
the Ising model leads to longer correlation times and larger
critical exponent in comparison with the pure case when the
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FIG. 2. Integrated and exponential autocorrelation times of energy plotted on logarithmic scales as a function of system size L for (a),
(c) Swendsen-Wang and (b), (d) Wolff algorithms. The solid lines are fits of the form τ ∼ Lz with the exponents given in the figure. The error
bars are smaller than the symbol sizes. The smallest system size used in the fitting procedure is L = 48. The numerical data are obtained for
three different values of the disorder parameter: r = 1 (upper curve), r = 0.5/1.5 (middle curve), and r = 0.25/1.75 (lower curve).

system evolves with local dynamics [21,45,52]. To observe
the validity of this finding in the bond-disorder Ising model,
we have performed simulations with the Metropolis algorithm
for several disorder strengths at the critical temperature to
determine the dynamic critical properties of the model. In the
measurement of autocorrelation times, we have performed
1000 independent realizations over 1 × 106 MCSs after
discarding 1 × 105 MCSs for several lattice sizes. The
exponential autocorrelation times as a function of lattice
size are displayed in Fig. 3. For a fixed lattice size, the
autocorrelation time increases considerably when the bond
disorder is included in the system. Also, if one compares the
autocorrelation times of the cluster algorithms (Fig. 2) and
Metropolis algorithm, it is clear that the autocorrelation times
are much longer in local dynamics. For the disorder-free case,
the dynamic exponent is found as z ≈ 2.15, in agreement
with the previously reported precise result [5]. Besides, the

extracted critical exponents are z ≈ 2.35 and z ≈ 2.63 for
r = 0.5/1.5 and r = 0.25/1.75, respectively. The dramatic
increment in the dynamic exponents and autocorrelation
times with disorder strength imply that single-spin-flip
dynamics suffer from the critical slowing-down effect in the
bond-disordered Ising model.

If the quenched disorder is present in a system, the mea-
surement of an extensive thermodynamic quantity would
change from sample to sample because every sample corre-
sponds to a different disorder realization. This property of
the system is called non-self-averaging. The self-averaging
property of the system for any thermodynamic quantity
of interest X can be tested by probing the normalized
variance [53]:

RX = [X 2] − [X ]2

[X ]2
, (8)
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FIG. 3. Exponential autocorrelation times of energy plotted on
logarithmic scales as a function of system size L for Metropolis algo-
rithm. The solid lines are fits of the form τ ∼ Lz with the exponents
given in the figure. The simulations are performed for lattice sizes of
L = 12, 16, 24, 32, 48, 64, 96. The numerical data are obtained for
three different values of the disorder parameter: r = 1 (lower curve),
r = 0.5/1.5 (middle curve), and r = 0.25/1.75 (upper curve).

where [· · · ] denotes the average over different realizations.
X is a self-averaging quantity if RX → 0 as N → ∞.
Alternatively, X is non-self-averaging if RX goes to a con-
stant different than zero as N → ∞. This behavior of the
normalized variance of a thermodynamic quantity indicates
that extensive disorder averaging is required when studying
disordered systems to obtain the best estimates of the ob-
servables. Self-averaging properties of disordered spin models
have been previously studied by analyzing the static quantities
such as energy, magnetization, specific heat, and susceptibil-
ity. In the case of the bond-disordered Ashkin-Teller model
and bond-disordered four-state Potts model, the magnetization
and susceptibility are found as non-self-averaging, whereas
energy and specific heat are weakly self-averaging [54]. The
two-dimensional site-diluted Ising model is determined to
be weakly self-averaging based on the relative variance of
the magnetization [55]. Non-self-averaging properties of the
random-bond triangular lattice Ising model have been also
demonstrated previously by observing disorder distribution of
the susceptibility maxima [35].

In addition to using static quantities, non-self-averaging
properties of disordered spin models can be examined by
using dynamic properties such as autocorrelation times. The
constant values of the square root of RτEint

(the relative
width of the probability density) for increasing system sizes
suggest a broad distribution and thus demonstrate a lack
of self-averaging [48]. Accordingly, we have calculated the
normalized variance of autocorrelation time of energy RτEint

from Eq. (8) by using cluster algorithms to analyze the self-
averaging properties of the present model. The square root
of RτEint

as a function of the number of lattice sites N is
demonstrated for the pure case (r = 1) and disorder strengths
of r = 0.5/1.5 and r = 0.25/1.75 in Fig. 4. As one can ob-
serve, the square root of RτEint

tends to be a constant with

FIG. 4. Square root of RτEint
as a function of the number of lattice

sites N for the pure case (r = 1) and for disorder strengths of r =
0.5/1.5 and r = 0.25/1.75 obtained by using the (a) SW algorithm
and (b) Wolff algorithm.

increasing system size, demonstrating the absence of self-
averaging in the random-bond Ising model. Similarly, Janke
and Johnston have demonstrated the lack of self-averaging
in the q = 4 Potts model on quenched random gravity
graphs by benefiting from scaled variance of autocorrelation
times [48].

As a final investigation, we obtained the critical exponent
ratio of magnetic susceptibility γ /ν by calculating the average
cluster size 〈C〉 of the Wolff algorithm. At temperatures T �
TC , the mean size of the clusters flipped in the Wolff algorithm
is related to the magnetic susceptibility as

χ = β〈C〉, (9)

with β = kBT . According to the finite-size scaling theory, the
magnetic susceptibility scales with the system size as χ ∼
Lγ /ν near the critical temperature. Then it becomes possible
to extract the exponent ratio γ /ν by plotting the magnetic
susceptibility as defined in Eq. (9) as a function of system
size at the critical temperature which is displayed in Fig. 5.
The magnetic susceptibility exponent ratios are calculated as
γ /ν ≈ 1.75 within the errors for the pure and disordered cases
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FIG. 5. Log-log plot of the magnetic susceptibility at the critical
temperature as defined in Eq. (9) vs the system size for different
disorder strengths. The solid lines are fits of the form χ ∼ Lγ /ν . The
smallest system size used in the fitting procedure is L = 48. The error
bars are smaller than the symbol sizes.

with an excellent agreement with 2D Ising universality class.
The value of the exponent ratio also supports the previous
results for the 2D bond-disorder Ising model obtained using
MC simulations [25,30].

IV. CONCLUSIONS

We studied the critical dynamic properties of the two-
dimensional random-bond Ising model with SW and Wolff
cluster algorithms. The autocorrelation times were calculated
for lattice sizes up to L = 512 at the critical temperature.
The dynamic critical exponents were estimated for sev-
eral disorder strengths. Both correlation times and critical
exponents were found to decrease with increasing bond ran-
domness in the system. Based on additional simulations with
the Metropolis algorithm, it was shown that the introduc-
tion of bond disorder leads to larger autocorrelation times
and dynamic critical exponents. Moreover, the existence of

the non-self-averaging property of the model was shown
by calculating the scaled form of the standard deviation of
autocorrelation times. By benefiting from the average cluster
size of the Wolff algorithm, the critical exponent ratio of the
magnetic susceptibility was estimated as γ /ν ≈ 1.75 within
the errors, in agreement with the 2D Ising model.

The dynamic exponent of the cluster dynamics has shown
a dependence on the disorder strength and therefore it can be
possible to predict a functional form as z(r). Our data sug-
gested an exponential growth of the dynamic exponent with
disorder parameter as z(r) − z(1) ≈ e−αr , where z(1) is the
dynamic exponent of the disorder-free case and α is a positive
constant. In other words, as r increases (the disorder strength
weakens), the dynamic exponent of the cluster algorithms
increases exponentially according to our numerical data. We
would also like to point out that a bimodal type of distribution
(p = 0.5) has been considered since the critical temperature
of the Ising model in the presence of the bimodal type of bond
disorder is known exactly and the bimodal distribution cor-
responds to the strongest disorder regime. If the probabilities
of the exchange-interaction strengths [Eq. (1)] were unequal,
a lower disorder regime would be present and the z values
would be larger than that of bimodal distribution for a fixed
value of r. We should note that our test simulations performed
for probabilities of p = 0.25 and p = 0.75 at r = 0.5/1.5 are
in agreement with this expectation.

Although it is expected that the single-spin-flip algorithms
suffer from the critical slowing-down effect, there are still
open questions about the performance of the cluster algo-
rithms in the disordered Ising model, q-states Potts model, and
their variants. We believe that a similar situation may also be
valid for disordered continuous spin models, which could be
interesting to explore in the future.
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