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This paper explores the first-passage times in an asymmetric noisy voter model through analytical methods.
The noise in the model leads to bistable behavior, and the asymmetry arises from heterogeneous rates for
spontaneous switching. We obtain exact analytical expressions for the probability distribution for two different
initial conditions, first-passage times for switching transitions and first return times to a stable state for all system
sizes, offering a deeper understanding of the model’s dynamics. Additionally, we derive exact expressions
for the mean switching time, mean return time, and their mean square variants. The findings are verified
through numerical simulations. To enhance clarity regarding the model’s behavior, we also provide approximate
solutions, emphasizing the parameter dependence of first-passage times in the small switching parameter regime.
An interesting result in this regime is that while the mean switching time in the leading order is independent of
system size, the mean return time depends inversely on system size. This study not only advances our analytical
understanding of the asymmetric noisy voter model but also establishes a framework for exploring similar
phenomena in social and biological systems where the noisy voter model is applicable.
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I. INTRODUCTION

The methods of statistical physics have been applied be-
yond its primary field and span such diverse areas as biology
and societal phenomena [1]. The Voter Model (VM) [2]
provides a simple framework to understand the complex dy-
namics underlying diverse processes in society and nature
which broadly deals with the emergence of consensus [3].
Some prominent examples include the spread of ideas in a
population, the emergence of consensus in a group, political
opinion formation, genetics, language competition, and field-
theoretic phenomena in various systems, among many others
[4–9]. The agents in the VM form a complex network, and
the network structure gives rise to interesting dynamics. In
such models, the individuals are represented by nodes and
connected by edges. In simple models, each type of agent
(individual) can be in two states (+1 or −1) representing a
binary opinion space in the context of opinion dynamics or a
choice between two parties in the context of politics. At each
time step, a randomly selected agent interacts with a randomly
selected neighbor (an agent connected by an edge), and the
agent may copy the state of the other. The complex networks
or graphs underlying voter models range from regular lattices
[2] to more complex topologies such as small-world networks
[10,11], power-law degree distributions [3,12–14], multilayer
networks [15–17], graphs with community-structure [18,19],
and simplicial complexes, among others [20].

Voter models are restricted to not just binary states, but
one can generalize the model to include n different choices.
In finite VMs, consensus is the eventual fate of the sys-
tem. However, this is far from reality. Different opinions can
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coexist, or relationships or bonds may change over time. VMs
have been modified to include different versions of reality
[21]. For instance, in adaptive voter models (aVMs), pairs
of agents with contradicting opinions are selected, and either
both agents agree on the same opinion or they break their
relationship and form a new bond with some other agent. This
results in a dynamic reconfiguration of the network leading to
interesting dynamics [22,23]. In the nonlinear VMs, the rate
of copying depends nonlinearly on the number of agents of
the other type [24]. As an example, in q-voter models (qVM),
the state of an agent is flipped if the opinions of q neighboring
agents are the same, else the agent changes their opinion at
some constant rate [25]. In addition to models where every
agent has the potential to change their states, there can also
be models where a fraction of the agents called “zealots”
zealously defend and hold on to their beliefs and are immune
from the influence of their neighbors [26,27]. Similarly, one
can introduce “contrarians” who take on the opposite view
of their neighbors [28–30]. The inclusion of “zealots” and
“contrarians” disrupts the system’s symmetry and influences
the equilibrium properties of the system. These variants can
capture different phenomena, such as polarization, consensus,
fragmentation, or oscillations [29–34].

Another VM variant with more realistic dynamics is the
Noisy Voter Model. In these types of models the opinions of
individuals can be influenced not only by their neighbors but
also by external noise on individual states, leading to shifts
in their own beliefs over time irrespective of the opinions
of their neighbors [7,31,34–44]. These types of models take
into account external influences from the environment and
display finite-size phase transitions. When the noise term is
stronger than the interaction term, the distribution of opinions
is unimodal, indicating a coexisting of opinions, and when the
noise term is weaker than the interaction term, the distribution
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is bimodal, indicating consensus being the dominant behav-
ior with relatively rare switching behavior between the two
consensus states [35]. An important characteristic of noise-
induced bistability is that it does not manifest at the mean-field
(deterministic) level but is instead brought about by fluctu-
ations [45]. In these instances, a singular stable state at the
mean-field level transforms into bistability characterized by a
bimodal probability distribution due to the influence of noise
[32,37,46–49], particularly in scenarios involving small popu-
lation numbers. Instances of noise-induced bistability can also
be observed in ant foraging colonies, where they organize into
two groups corresponding to different food sources [35,48], in
the schooling behavior of fish [50], dynamics of percolation
in strongly correlated systems [51], and chemical catalytic
processes [47,52].

A variant of the noisy voter model is the asymmetric voter
model [31,32,39]. The asymmetry arises from the heteroge-
neous rates of flipping for each agent type due to external
stimuli, and we motivate this in the context of a noisy voter
model with zealots [31]. Previous works have focused on
calculating the mean switching time (MST) for the system
to flip from one consensus state to the other ([44,48,49]) or
its steady-state properties [31]. In this work, we study the
asymmetric voter model and derive the probability distribu-
tion and the first-passage time distributions analytically. The
first-passage time refers to the duration it takes for an indi-
vidual’s opinion to change or reach a particular state for the
first time. Studying the first-passage time distribution in the
Noisy Voter Model allows us to explore fundamental ques-
tions associated with the dynamics of opinion formation [53].
For instance, one can study the role of noise in shaping the
emergence of consensus, the influence of initial conditions
on the first-passage time, the mean time for consensus to
emerge, the persistence of the system to remain in the same
state, and the probability distribution of the system to re-
turn to the same state for the first time. We seek answers to
these questions to gain analytical insights into the underlying
mechanisms of opinion dynamics by explicitly deriving their
dependence on the system’s parameters. The current work em-
ploys a model similar to the one discussed in [31,32], where
the authors analyze the noisy model with zealots both ana-
lytically and numerically, specifically focusing on the steady
state (long-time limit) across various parameter values. Their
study primarily investigates the phase changes associated with
alterations in these parameters during the steady state. In
contrast, our work not only utilizes the discrete master equa-
tion [54] to derive the analytical expression of the probability
distribution for all time points but also extends the analysis to
include the first-passage probability distributions. The steady-
state properties can be easily inferred by taking the t → ∞
limit of the probability distribution. We provide analytical
derivations for the long-time and small-time limits, as well
as mean first-passage times, enriching the understanding of
the system dynamics presented in this paper. The results de-
rived illuminate the interplay of the external noise parameters
on the underlying dynamics of consensus formation and its
destruction in the whole temporal regime. This work stands
out for utilizing a precise framework, distinct from previ-
ous approaches that employed the approximate Fokker-Planck
equation (as demonstrated, for example, in [55]) to derive the

first-passage distribution. Unlike prior methods, our approach
is exact and applicable across all system sizes, as demon-
strated in this paper.

This paper is organized as follows. In Sec. II we define
the asymmetric noisy model by introducing zealots and sus-
ceptible agents in the VM and define the master equation for
the stochastic dynamics. Section III discusses the solution
of the master equation using a series expansion for two dif-
ferent initial conditions. Section IV presents the theoretical
framework and mathematical formalism used to calculate the
first-passage time distribution for the system to switch from
one consensus state to the other and derive its expression using
Laplace transforms. We also discuss the long- and small-time
limit of the first-passage switching distribution (FPSD) and
derive its mean switching time (MST) and the mean square
switching time(MSST). In Sec. V we describe the mathemati-
cal formalism for the first-passage return distribution (FPRD)
(the persistence distribution) for the system to return to the
same state. We also derive the small- and long-time limits, the
exact expression of the mean return time (MRT), and the mean
square return time (MSRT). In both sections, we validate the
results derived with numerical solutions. Section VI provides
a discussion of the key findings, and finally concluding re-
marks along with directions for future work are provided in
Sec. VII. Some of the mathematical details are covered in the
Appendixes.

II. MODEL AND THE MASTER EQUATION

The Voter Model consists of NT agents who can interact
with any other agent in the network. The agents can be in one
of two states or holding one of two opinions, A and B, leading
to two subpopulations. The agents can change their opinion
by interacting with other agents in the following manner:

A + B
r̃−→ A + A, (1)

B + A
r̃−→ B + B. (2)

Here Eq. (1) represents an agent of type A interacting with an
agent of type B and convincing them to change their opinion
at a rate r̃. Similarly Eq. (2) denotes an agent of type B
interacting with an agent of type A and convincing them to
change their opinion at the same rate r̃. The Noisy Voter
Model introduces additional stochastic dynamics where the
agents can spontaneously change their state to the other type
at rate ε as

A
ε−⇀↽−
ε

B. (3)

This corresponds to symmetric switching from A to B and
vice versa where the transition rates are equal corresponding
to spontaneous switching independent of agent type. One can
generalize this to include asymmetric switching rates where
the switching of A to B happens at the rate ε1 while the
switching rate from B to A is given by ε2. It is denoted as
a reaction in the following manner:

A
ε1−⇀↽−
ε2

B. (4)
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We will now motivate the origin of the asymmetric switch-
ing rates in the asymmetric Noisy Voter Model by introducing
“zealots” who are agents immune to changing their opinion
[30,31]. Agents of each type (A or B) can again be segre-
gated into two types: susceptible agents who can change their
opinion and zealots who do not. Let NA(B) be the number of
susceptible agents of types A(B) and zA(B) be the number of
zealots of the corresponding types. The total population is
then given by NT = NA + zA + NB + zB. An increase in the
number of agents of type A can come about by the reaction
given in Eq. (1) along with the reverse reaction of Eq. (3).
Similarly, the reactions given by Eq. (2) combined with the
forward reaction of Eq. (3) lead to an increase in the number of
agents of type B. We denote the transition rate for an increase
in agents of type A by W +(n) and the transition rate for the
decrease in agents of type A or equivalently the increase in
agents of type B by W −(n). Using the standard law of mass
action methodology [54] the transition rates are given by

W +(n) = r̃
(NA + zA) NB

NT
+ ε NB, (5)

W −(n) = r̃
NA (NB + zB)

NT
+ ε NA, (6)

where we have made use of the property that only the suscep-
tible agents can change their type, and while zealots cannot
change their type, they can influence and recruit the agents
of the other type to be like them [30]. We normalize r̃/NT to
be equal to 1 without any loss of generality. The transition
rates can now be rewritten in terms of redefined variables in a
simpler form,

W +(n) = n (N − n) + ε1 (N − n), (7)

W −(n) = n (N − n) + ε2 n, (8)

where we have defined ε1 = ε + zA, ε2 = ε + zB and for sim-
plicity we define NA + NB = N and NA = n, which implies
NB = N − n. The structural formulation of these equations re-
veals that the inclusion of zealots in the model introduces
modifications that manifest as altered system dynamics.
Specifically, the impact of zealots is captured by the exis-
tence of asymmetrical random fluctuations (ε1 �= ε2 whenever
zA �= zB), which allow agents to spontaneously change their
opinions at a rate that depends on their type.

The dynamics of the system is governed by the master
equation, which determines the probability distribution of
finding n susceptible agents holding opinion A (equivalently,
N − n susceptible agents holding opinion B) at time t and is
given by [54]

dPn(t |n0)

dt
= W +(n − 1)Pn−1(t |n0) + W −(n + 1)Pn+1(t |n0)

− [W +(n) + W −(n)]Pn(t |n0), (9)

where Pn(t |n0) ≡ P(n, t |n0, t0) is the conditional probability
for the system to be found with n agents with opinion A at
time t given that the system started with n0 agents at time t0.
We solve the master equation in the next section.

The mean number of agents 〈n〉 = ∑N
n=0 nPn(t |n0) holding

opinion A can be deduced from the master equation by multi-
plying both sides with n and summing from n = 0 to N [54].

The resulting equation is given by

d〈n〉
dt

= 〈W +(n) − W −(n)〉 = ε1N − (ε1 + ε2)〈n〉. (10)

Here the angular brackets 〈· · · 〉 denote the mean or ex-
pectation value corresponding to the probability distribution
Pn(t |n0). In the long-time limit(t → ∞), the mean number of
agents in the stationary state, 〈n〉s, is given by

〈n〉s = ε1

ε1 + ε2
N. (11)

As evident from the above equation, when ε1(2) = 0, which
occurs when ε = 0 and zA(B) = 0, the stable states of the
system are either at n = 0 or n = N and correspond to the
absorbing states of the standard Voter Model [1]. This implies
that in the long-time limit, the population exclusively com-
prises agents of type A or B indicating a consensus state. In
the limit of small switching rates (ε1(2) � 1), the n = 0 and
n = N states cease to be absorbing but become metastable.
Hence, it is reasonable to infer that the system is more likely
to be situated near the boundary (n = 0 or n = N), which are
metastable states rather than the state given by Eq. (11). This
is a critical aspect of the dynamics of the noisy voter model
where the bimodality of the distribution for small ε1(2) is not
captured in the mean-field limit but is noise-induced, which
requires a stochastic treatment to understand the dynamics
of the model [31,47,49]. A detailed discussion follows in
Sec. VI.

III. SOLUTION OF THE MASTER EQUATION

The master equation (9) is a system of differential equa-
tions for each value of n whose exact solutions are difficult to
obtain except in the simplest of cases. A useful technique that
reduces the master equation and converts it into a single linear
partial differential equation is the method of a probability-
generating function [54]. This transformation is useful to
obtain exact solutions in one-step reaction processes where
for each interaction or reaction the number of agents changing
their type is not more than one. These types of interactions
have been well studied in stochastic gene networks and are
the most preferred technique to obtain probability distribu-
tions analytically [56]. The probability-generating function is
defined as � (n0 )(s, t ) = ∑n=N

n=0 snP(n, t |n0, t0) with the sum-
mation limited to the finite system size N . Multiplying both
sides of the master equation (9) by sn, summing from n = 0
to n = N and redefining the terms in terms of the generating
function, we arrive at the transformed master equation in
terms of the probability-generating function � (n0 )(s, t ) which
is given by

∂� (n0 )(s, t )

∂t
= (1 − s)[N (1 − s) + (sε1 + ε2)]

∂� (n0 )(s, t )

∂s

− (1 − s)

{
(1 − s)

∂

∂s

[
s
∂� (n0 )(s, t )

∂s

]

+ ε1N � (n0 )(s, t )

}
. (12)

To solve the above equation, we use the separation of variables
method in s and t by expanding the probability-generating
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function as a series in the eigenfunctions of the PDE [57].
This is given by

� (n0 )(s, t ) =
N∑

m=0

C(n0 )
m ψ (n0 )

m (s) eλmt . (13)

Here λm is the mth eigenvalue corresponding to the eigenfunc-
tion ψ (n0 )

m (s) and C(n0 )
m are expansion coefficients that depend

on the initial conditions. To compute the solution, it is conve-
nient to expand the eigenfunction itself as a polynomial series
in (1 − s) [49],

ψ (n0 )
m (s) =

N∑
k=0

bm
k (1 − s)k, (14)

where bm
k are the series coefficients which have to be de-

termined. Using 1 − s for the series expansion gives us a
one-term recursion in bm

k , instead of the multiterm one we
would get by expanding in a series in s. Substituting the above
in Eq. (12) and applying reflecting boundary conditions, we
can solve for the eigenvalues λm and series coefficients bm

k .
After some algebra, we obtain the expression for the eigen-
value to be

λm = −m (m − 1 + ε1 + ε2), (15)

and the coefficients bm
k are given by the recurrence relation,

bk
k = 1,

bm
k+1 = (k − N ) (k + ε1)

λm + (k + 1) (k + ε1 + ε2)
bm

k for m � k < N,

bm
k = 0 for k < m. (16)

Following some algebraic manipulation, the above recurrence
relation can be solved for bm

k explicitly and is found to be

bm
k =

{
(−1)k−m

(N−m
k−m

) (ε1+m)k−m

(ε1+ε2+2m)k−m
m � k < N

0 otherwise
. (17)

Here
(n

k

)
are binomial coefficients and (x)n = x(x + 1)(x +

2) · · · (x + n − 1) denotes the Pochhammer symbol [58].
Although it is possible to calculate the probability distribution
for any initial condition n0, this paper focuses on two specific
boundary states, n0 = 0 and n0 = N . In the subsequent sub-
sections, we derive an explicit expression for these two cases.

A. Probability distribution with initial condition n0 = 0

We now solve for the expansion coefficients C(n0 )
m in

Eq. (13) for the case where the system at the beginning has
only zealots holding opinion A and zero susceptible agents of
the same type (n0 = NA = 0 and NB = N) at time t0 = 0. This
initial condition can be represented mathematically as

Pn(t = 0|0) = P(n, 0|0, 0) = δn,0, (18)

where δn,0 is the Kronecker delta function. This condition
fixes the probability-generating function �0(s, t ) to take the
value 1 at time t = 0,

� (0)(s, 0) =
N∑

m=0

C(0)
m

N∑
k=m

bm
k (1 − s)k = 1. (19)

FIG. 1. Probability distribution Pn(t |0) for times (a) t =
0.1 (− · −), (b) t = 5 (- -), (c) t = 500 (——) with ε1 = 0.10,
ε2 = 0.15, and N = 25.

By noting that the above equation has to be true for any
value of s, we substitute s = 0 to get the following system
of equations:

� (0)(0, 0) =
N∑

m=0

C(0)
m

N∑
k=m

bm
k = 1 =

N∑
k=0

k∑
m=0

C(0)
m bm

k , (20)

where we have used the triangular property for double sums
in the last expression. Using the property bk

k = 1 and fixing
C0 = 1, the above set of equations simplifies to

k∑
m=0

C(0)
m bm

k = 0, 1 � k � N. (21)

This is a triangular system of linear equations in C(0)
m . Substi-

tuting Eq. (17) for bm
k , the equations can be solved by repeated

substitution leading to the following solution:

C(0)
m =

(
N

m

)
(ε1)m

(ε1 + ε2 + m − 1)m
. (22)

Having determined bm
k and C(0)

m , the probability distribution
of the model starting from the initial condition n0 = 0 can be
calculated from the probability-generating function using the
following property [54]

Pn(t |n0) = 1

n!

∂n� (0)(s, t )

∂sn

∣∣∣∣
s→0

. (23)

Differentiating the generating function n times, the probability
distribution Pn(t |0) is then exactly given by the following
expression:

Pn(t |0) = (−1)n
N∑

m=0

C(0)
m

N∑
j=m

(
j

n

)
bm

j eλmt (24)

with the values of Cm and bm
j as determined above. The plot of

the exact time-dependent probability distribution for the initial
condition considered here is plotted in Fig. 1 for different
values of ε1(2) and time t .

A special case is the stationary probability distribution
which is obtained by taking t → ∞ in Eq. (24). Doing so, it
can be noted that the nonzero contribution comes from only
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the m = 0 term corresponding to the zero eigenvalue. The
stationary probability distribution, Ps(n), is given by

Ps(n) = lim
t→∞ Pn(t |0) =

(
N

n

)
(ε1)n(ε2)N−n

(ε1 + ε2)N
. (25)

It is to be noted that the final steady-state distribution is
independent of the initial condition.

B. Probability distribution with initial condition n0 = N

We now solve for the generating function � (N )(s, t ) by
determining the expansion coefficients C(N )

m in the converse
scenario of the previous subsection wherein all the suscep-
tible agents are only of type A (NA = n0 = N and NB = 0)
and none of the susceptible agents are of type B. The initial
probability distribution is given by

Pn(t = 0|N ) = P(n, 0|N, 0) = δn,N . (26)

The generating function � (N )(s, t ) at time t = 0 should then
be equal to

� (N )(s, 0) =
N∑

m=0

C(N )
m

N∑
k=m

bm
k (1 − s)k = sN . (27)

To solve the above equations for C(N )
m , it is convenient to define

1 − s = y, and the summation term in the above equation
becomes

N∑
k=0

k∑
m=0

C(N )
m bm

k yk = (1 − y)N =
N∑

k=0

(
N

k

)
(−1)kyk . (28)

Here we have used the triangular property for double sums and
in the last equation, we have expanded (1 − y)N as a binomial
series in y. The final system of equations can be obtained by
comparing the coefficients of the kth power of y on both sides
of the above equation, which results in the following system
of equations:

k∑
m=0

C(N )
m bm

k = (−1)k

(
N

k

)
, 0 � k � N, (29)

whose solution is obtained by repeated substitution and is
given by

C(N )
0 = 1, C(N )

m = (−1)m

(
N

m

)
(ε2)m

(ε1 + ε2 + m − 1)m
.

(30)

FIG. 2. Probability distribution Pn(t |N ) for times (a) t = 0.1
(− · −), (b) t = 5 (–), (c) t = 500 (red). ε1 = 0.10, ε2 = 0.15, and
N = 25.

The probability distribution Pn(t |N ) is then given by the fol-
lowing expression:

Pn(t |N ) = (−1)n
N∑

m=0

C(N )
m

N∑
j=m

(
j

n

)
bm

j eλmt . (31)

The plot of the exact time-dependent probability distribution
for the initial condition considered here is plotted in Fig. 2 for
various values of ε1(2) and time t .

IV. FIRST-PASSAGE SWITCHING DISTRIBUTION

The first-passage switching distribution (FPSD) denoted
by ρ(t |n0) for the system to switch from n = 0 to n = N
can be calculated from the probability distribution derived in
the previous section using the method of renewal processes
([53,54]). Towards this, we consider the probability PN (t |0) of
being found in the state n = N starting from state n = 0. It can
be obtained by calculating the probability, ρ(t ′|0), of reaching
the state n = N for the first time at t ′, and having reached
there, calculating the probability PN (t − t ′|N ) to be found in
the state N in the remaining time t − t ′ and integrating over
all possible times t ′. Mathematically, it can be represented by
the convolution integral,

PN (t |0) =
∫ t

0
dt ′ ρ(t ′|0) PN (t − t ′|N ). (32)

In the above equation, PN (t |0) can be obtained by substituting
n = N in Eq. (24), which after some manipulations results in
the following expression:

PN (t |0) =
N∑

m=0

(−1)m

(
N

m

)
(ε1)N

(ε1 + ε2 + m)N

ε1 + ε2 + 2m − 1

ε1 + ε2 + m − 1
eλmt =

N∑
m=0

ameλmt . (33)

Similarly, the expression for PN (t |N ) is obtained by substituting n = N in Eq. (31) and is given by

PN (t |N ) =
N∑

m=0

(
N

m

)
(ε2)m(ε1 + m)N−m

(ε1 + ε2 + m)N

ε1 + ε2 + 2m − 1

ε1 + ε2 + m − 1
eλmt =

N∑
m=0

bmeλmt . (34)
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FIG. 3. Comparison of exact first-passage switching distribution
(FPSD) with Monte Carlo simulations (·) for ε1 = 0.05, ε2 = 0.01,
and N = 50.

For notational convenience, we have abbreviated the coeffi-
cient of eλmt in the previous two expressions as am and bm.

Equation (32) is an integral equation that has to be solved
for ρ(t |0), and the convolutional structure of the equation sug-
gests the use of Laplace transforms to find the solution [53].
The Laplace transformed equation is given by

ρ̃(s|0) = L(ρ(t |0)) = P̃N (s|0)

P̃N (s|N )
=

∑N
m=0

am
s+|λm|∑N

m=0
bm

s+|λm|
, (35)

where L denotes the Laplace transform. s is the Laplace
variable in the context of Laplace transforms, |λm| is the
absolute value of the eigenvalue, and P̃N denotes the Laplace
transformed distributions. This is the exact Laplace transform
of FPSD, which has to be inverted using the inverse Laplace
transform (ILT) to obtain the FPSD in t space:

ρ(t |0) = L−1(ρ̃(s|0)) = 1

2π i

∫ γ+i∞

γ−i∞
ρ(s|0)est ds

=
N∑

k=1

Ress→pk (ρ̃(s|0)est ). (36)

The previous expression denotes the sum over the residues of
the Laplace transform of FPSD multiplied by the exponential
term [57]. The integrand is analytic except for N simple poles
pk , which arises due to the exponential dependence of PN (t |N )
on time. Except for the smallest and the largest pole which can
be approximately determined, the rest of the poles have to be
calculated numerically. In addition, since all the eigenvalues
of the probability distribution are negative [Eq. (15)] the poles
of the Laplace transform are also negative with the following
property:

0 > p1 � p2 � p3 · · · � pN . (37)

The FPSD has been plotted in Fig. 3 for a representative
value of the parameters ε1(2) and compared with Monte Carlo
simulations. The shape of the distribution for other parameter
values is qualitatively the same. In the following subsection,
we will calculate the small- and long-time limits of the FPS
analytically.

FIG. 4. Comparison of the exact first-passage switching distri-
bution (——) with the long-time limit [Eq. (39)] (∗) for ε1 = 0.05,
ε2 = 0.01, and N = 50.

A. Long-time limit of the first-passage switching distribution

The long-time behavior (t � 1) can be calculated by tak-
ing the s � 1 limit from the Laplace transform of FPSD
[Eq. (35)]. As can be seen in Eq. (36) in the limit of s � 1,
the leading contribution comes from the residue at the pole,
which has the largest value, p1. This pole can be determined
by expanding ρ̃(s|0) in the small-s limit. It can be seen in
Eq. (35) that the poles are the zeros of P̃N (s|N ) and p1 can be
determined in the small-s limit by expanding it in a series in s
and solving for its roots. This is found to be

p1 ≈ − b0|λ1|
b0 + |λ1|

∑N
k=1

bk
|λk |

. (38)

Substituting it in Eq. (36) and keeping only the residue at p1,
we get the following expression for the long-time limit of the
FPSD:

ρ(t |0)
t�1−−→ Ress→p1

(
P̃N (s|0)

P̃N (s|N )

)
ep1t . (39)

The residue is computed at s = p1, yielding the predominant
term in the FPSD. A comparison of the exact distribution with
the above expression in the long-time limit is shown in Fig. 4
and shows good agreement in the relevant regime.

From the small-s limit, we can obtain the moments of the
FPSD, in particular, the mean switching time (MST), which is
the first moment of the FPSD, and mean square switching time
(MSST), which is the second moment of the FPSD [54]. To
obtain these values, we use the series property of the Laplace
transform to be a generator of the moments of the probability
distribution. The coefficients of the series expansion in s give
the corresponding moments,∫ ∞

0
ρ(t |0)e−st dt = 1 + s〈T 〉S + s2

2
〈T 2〉S + O(s3), (40)

where

〈T 〉S =
∫ ∞

0
t ρ(t |0) dt, (41)

〈T 2〉S =
∫ ∞

0
t2 ρ(t |0) dt (42)
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TABLE I. Comparison of Monte Carlo simulation (prefix: Sim)
and exact results (prefix: Exact) of the mean return time (MST) and
mean square switching time (MSST). We have taken N = 50, and
the number of trials for the simulation is 106.

ε1 ε2 Sim-〈T 〉S Sim-〈T 2〉S Exact-〈T 〉S Exact-〈T 2〉S

0.05 0.01 21.17 858.72 21.15 855.49
0.05 1.1 110.53 24 223.58 110.63 24 240.71
1.1 0.05 1.57 3.45 1.57 3.4433
1.1 1.5 9.11 154.12 9.09 153.53

are the first (MST) and second moments (MSST) of FPSD.
Expanding the Laplace transform given by Eq. (35) in a Taylor
series around s = 0 and retaining terms of order s and s2/2
we get

〈T 〉S = 1

a0

N∑
k=1

bk − ak

|λk| , (43)

〈T 2〉S = 2

a2
0

[
a0

N∑
k=1

bk − ak

|λk|2 −
(

N∑
k=1

bk

|λk|

)(
N∑

k=1

ak

|λk|

)

+
(

N∑
k=1

bk

|λk|

)2
⎤
⎦. (44)

These expressions are exact and compare very well with nu-
merical simulations as shown in Table I.

While the above expressions are exact, the complexity of
the expressions hide the parameter dependence of these quan-
tities. To obtain simple and explicit formulas, we now derive
the expression for MST in the physically relevant small pa-
rameter regime of switching from the metastable state n = 0
to n = N . This can be obtained by taking the limit ε1(2) � 1 of
Eq. (43) and is derived in Appendix A. The small parameter
limit of MST is given by

〈T 〉S ≈ 1

ε1

(
1 + N − 1

N
(ε1 + ε2)

)
, (45)

where we have ignored terms of O(ε2
1 , ε

2
2 , ε1ε2,

ε1(2)

N ).

B. Small-time limit of the first-passage switching distribution

The small-time limit (t � 1) of the FPSD can be obtained
in the Laplace transformed space in the large s limit (s � 1).
To calculate this, we consider the large s expansion of P̃N (s|0)
defined in Eq. (35). It is given by

P̃N (s|0) = 1

s

N∑
k=0

ak

∞∑
j=0

(
−|λk|

s

) j

. (46)

The above sum is derived in Appendix B and is given by

N∑
k=0

ak|λk| j =
⎧⎨
⎩

0 j < N
(−1)N N! (ε1)N j = N
N! (ε1)N g(ε1, ε2, N ) j > N

, (47)

where g(ε1, ε2, N ) is a function of ε1, ε2 and can be ignored in
the small-time limit that is of interest in this section. Similarly,
expanding P̃N (s|N ), which is the denominator of Eq. (35),
in the same way gives to the leading order P̃N (s|N ) = 1. To

obtain this, we have made use of the property
∑N

k=0 bk = 1,
which follows from the initial condition PN (t = 0|N ) = 1.
The Laplace transformed FPSD [Eq. (35)] in the large-s limit
is then given by

ρ̃(s|0) ≈ 1

sN
N! (ε1)N when s � 1. (48)

Taking its inverse Laplace transform, we get the small-time
limit of the FPSD:

ρ(t |0) = L−1[ρ̃(s|0)] = N (ε1)N tN−1, (49)

which is a polynomial in time of order N − 1.

V. FIRST-PASSAGE RETURN DISTRIBUTION

In this section we derive the first passage return distribution
(FPRD) for the system’s return to the initial boundary state
for the first time after exiting the state. Given that we have
already computed the probability PN (t |N ) in Eq. (31), which
gives the likelihood of being in state N at time t after starting
from the same state, we use the state n = N as the reference
to calculate FPRD. We formulate the equation governing the
FPRD by observing that PN (t |N ) can be expressed as a sum
of probabilities as

PN (t |N ) =
∞∑

i=0

P(i)
N (t ), (50)

where P(i)
N (t ) is the probability that the system is in state

n = N after visiting this state exactly i times by time t . In
particular, i = 0 corresponds to the system not having left the
initial state, i.e., the survival probability, which is given by
(see Appendix C) for the derivation

P(0)
N (t ) ≡ S(t ) = e−Nε2t . (51)

We now write the expression for P(1)
N (t ), which is the probabil-

ity for the system to have returned to the state N after exactly
one exit. This is given by

P(1)
N (t ) =

∫ t

0
S(t − t2)

[∫ t2

0
dt1 L(t1)F (t2 − t1)

]
dt2. (52)

This is a double convolution integral where L(t ) represents
the probability of the system departing from the state n = N
by time t , defined as L(t ) = −dS(t )/dt . F (t ) denotes the
probability of the system’s return to the state for the first
time by time t , which is precisely the first-passage return
distribution (FPRD). The inner integral above denotes the
probability of finding the system in state N at time t2 following
a single exit and the subsequent return. Following this return,
S(t ) denotes the probability of remaining in the state n = N
without any further exits. The structure of Eq. (52) is that of a
double convolution and can be represented using the standard
notation for convolutions as

P(1)
N (t ) = [(L ∗ F ) ∗ S](t ), (53)

where ∗ denotes the convolution operation. Continuing with
the same reasoning, we can represent the probability P(i)

N (t ) in
terms of multiple i + 1-fold convolutions as

P(i)
N (t ) = [(L ∗ F )i ∗ S](t ). (54)

024139-7



SANTOSH KUDTARKAR PHYSICAL REVIEW E 109, 024139 (2024)

FIG. 5. Comparison of exact first-passage return probability dis-
tribution (FPRD) with Monte Carlo simulations (·) for ε1 = 0.05,
ε2 = 0.01, and N = 50.

Using this expression, Eq. (50) can then be written as

PN (t |N ) = S(t ) +
∞∑

i=1

[(L ∗ F )i ∗ S](t ). (55)

This equation has to be solved for F (t ), which is the FPRD.
Due to its convolutional nature, Laplace transforms are a
convenient method of solution. Taking the Laplace transform
of both sides of the equation we obtain

F̃ (s) = 1

L̃(s)

(
1 − S̃(s)

P̃N (s|N )

)
, (56)

where as mentioned earlier the ∼ symbol on the functions
denotes the Laplace transforms. Substituting the expressions
for S̃(s), L̃(s), and PN (s|N ), the expression for F̃ (s) can be
obtained and is given by

F̃ (s) = (s + d )

d
− s

d
(
b0 + ∑N

m=1
s bm

s+|λm|
) , (57)

where we have defined d = Nε2. Similar to the case of the
FPSD, we can use the inverse Laplace transform to invert
the above equation to obtain the FPRD distribution. It can be
noted that the poles of F̃ (s) are the same as the poles of ρ̃(s|0)
and occur at the zeros of P̃N (s|N ), which are denoted by pk .
The FPRD is then given by

F (t ) =
N∑

k=1

Ress→pk [F̃ (s)est ]. (58)

In Fig. 5 we plot the FPRD for a specific value of the parame-
ter ε1(2) and compare it with results obtained by Monte Carlo
simulations. The qualitative nature of FPRD remains the same
for different parameter values.

A. Long-time limit of the first-passage return distribution
and the mean return time

Similar to the procedure employed for finding the long-
time limit of FPSD in Sec. IV A, the Laplace transform of F (t )
given in Eq. (57) can be inverted in the limit of s → 0 to obtain
the long-time limit of FPRD. In this limit, the dominant pole

FIG. 6. Comparison of the exact first-passage return distribution
(——) with the expression of the long-time limit [Eq. (59) (∗) for
ε1 = 0.05, ε2 = 0.01, and N = 50.

is given by the smallest absolute value of the pole of P̃N (s|N ),
which has been obtained earlier in Eq. (38). The long-time
limit is determined by the first term of the sum in Eq. (58),
which is given by

F (t ) = p2
1(p1 + |λ1|)

db0|λ1| ep1t . (59)

This is a good approximation in the small parameter limit. The
comparison between the actual distribution and the long-time
approximation is given in Fig. 6 and shows excellent agree-
ment validating the goodness of the approximation. Similar
to the first-passage switching distribution (FPSD), this also
exhibits exponential decay in the long-time limit with the
same rate constant p1.

The mean return time (MRT) and the mean square return
time (MSRT) can be obtained by expanding F̃ (s) in the small
s limit. This series is given by∫ ∞

0
F (t )e−st dt = 1 + s〈T 〉R + s2

2
〈T 2〉R + O(s3), (60)

where 〈T 〉R and 〈T 2〉R are the MRT and MSRT of F (t ) and
are defined similarly to the MST and MSST. Using similar
methods given in Sec. IV A, the following expressions for
MRT and MSRT are obtained:

〈T 〉R = 1

Nε2

(
1

b0
− 1

)
, (61)

〈T 2〉R = 2

b2
0Nε2

N∑
i=1

bi

|λi| , (62)

where b0 = (ε1)N/(ε1 + ε2)N . These results have been vali-
dated with Monte Carlo simulations and show good agree-
ment as shown in Table II.

The mean return time (MRT) in the limit of ε1(2) � 1, N �
1 can be derived using methods similar to those used in the
limit of and MST as given in Appendix A,

〈T 〉R ≈ {1 + (ε2 + 2ε1)[γ + log(N )]}
Nε1

, (63)

where γ is the Euler constant.
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TABLE II. Comparison of Monte Carlo simulation (prefix: Sim)
and exact results (prefix: Exact) of the mean return time (MRT) and
mean square return time (MSRT). We have taken N = 50, and the
number of trials for the simulation is 500 000.

ε1 ε2 Sim-〈T 〉R Sim-〈T 2〉R Exact-〈T 〉R Exact–〈T 2〉R

0.05 0.01 0.50 17.16 0.50 17.75
0.05 1.1 28.27 6187.32 28.10 6137.87
1.1 0.05 0.0958 0.09895 0.0963 0.0996
1.1 1.5 3.23 53.35 3.25 54.07

B. Small-time limit of the first-passage return distribution

The small-time limit of the FPRD can be obtained from
F̃ (s) by taking the large-s (s � 1) limit. We expand Eq. (57)
in a series in s around s = ∞ and keeping the leading two
terms in the series, we get

F̃ (s) = d2 − d2

ds
+ 2dd2 − d3 − d3

ds2
+ O(1/s3). (64)

Here d = Nε2 = ∑N
m=1 bm|λm|, d2 = ∑N

m=1 bm|λm|2,
and d3 = ∑N

m=1 bm|λm|3. From the derivation given in
Appendix D, we obtain the following formulas for the sums:

d2 = d (α+ + d ), (65)

d3 = d[(α+ + d )2 + α+α−], (66)

where α+ = N − 1 + ε1 and α− = (N − 1)(1 + ε2). Substi-
tuting the above in Eq. (64), we obtain

F̃ (s) = α+

s
− α+(α+ + α−)

s2
+ O(1/s3). (67)

Taking the inverse Laplace transform, the small time limit of
the FPRD is given by

F (t ) = α+ − α+(α+ + α−)t + O(t2). (68)

From the above it can be inferred that unlike FPSD, the lead-
ing behavior of FPRD is a constant.

VI. DISCUSSION

We now discuss salient aspects of the results that we
have derived in this paper. The time-dependent probability
distribution has been precisely derived from the master equa-
tion under two distinct initial conditions, when n0 = 0 and
n0 = N . To examine the influence of noise on this probability
distribution, we focus on the long-time limit, leading to the
establishment of the steady-state probability distribution. This
is given in Eq. (25), which is obtained by taking the t → ∞
limit of the exact probability distribution given in Eq. (24).
It can be noted that the final steady-state distribution is in-
dependent of the initial condition. By studying the parameter
dependence of the steady-state distribution, two regimes can
be discerned: (1) unimodal when either of ε1 or ε2 exceeds
1.00 and (2) bimodal when both ε1 and ε2 fall below 1.0. The
uni- or bimodal nature depends solely on the noise parameters
and is independent of the system size N . In the unimodal
regime, the mode is situated below N/2 when ε1 < ε2 and
at n = 0 when ε1 < 1 < ε2. Conversely when ε1 > ε2, the

FIG. 7. Comparison of the steady-state probability distribution
for (a) ε1 = 0.1, ε2 = 0.15 (· - ·) (b) ε1 = 1.1, ε2 = 0.1 (–), (c) ε1 =
1.0, ε2 = 1.0 (· · ·), and (d) ε1 = 3.1, ε2 = 3.1 (thick line).

mode is located above N/2 and in particular at n = N when
ε2 < 1 < ε1. Symmetry is achieved with the mode precisely
at N/2 when ε1 = ε2 > 1, signifying an equal likelihood for
either opinion to be held. Conversely, the bimodal regime has
peaks at n = 0 and n = N , which take equal values when
ε1 = ε2. A special case arises when ε1 = ε2 = 1. Substituting
this in Eq. (25) results in a constant probability distribution
given by Ps(n) = 1

N+1 [49]. This indicates a phase transition
from an unimodal to a bimodal state when both transition rates
cross the threshold of 1. The steady-state probability distribu-
tion, depicted in Fig. 7, illustrates both unimodal and bimodal
states across a range of parameter values. In the context of
opinion dynamics, the unimodal distribution represents the
coexistence of opinions A and B, when both ε1(2) > 1 and
the bimodal denotes the fixation of one opinion indicating
consensus. The dependence on parameters of the unimodal
and bimodal phases reveals two interesting paths to a phase
transition, namely, (1) by changing the noise term ε and/or
(2) from the definition of ε1(2), by changing the number of
zealots within the population.

Using the expression of the exact probability distribution
we have established renewal equations to compute the distri-
bution of first-passage times which represents the time taken
by the system to transition entirely from one consensus state to
another (FPSD). This is given in Eq. (36) using the residues of
the Laplace transform. To examine the parameter dependence,
we have analyzed the long-time [Eq. (39)] and small-time
limits [Eq. (49)] of FPSD. Notably, in the asymptotic regime,
the leading behavior of the long-time limit is characterized by
an exponential function, with the rate constant p1 given by
Eq. (38). It can be demonstrated that in the small parameter
limit (ε1(2) � 1), p1 ≈ −ε1 and ρ(t |0) ∝ e−ε1t , signifying that
the switching dynamics from n = 0 to n = N in the long term
is governed by a relatively slow drop off due to the smallness
of ε1. The small-time limit has been similarly derived and is
given by Eq. (49), which reveals the polynomial dependence
on time, namely, ρ(t |0) ∝ tN−1 when t � 1. The constant of
proportionality however scales rapidly with system size N .
This is exact for any system size. To enable comparison with
the behavior obtained from Fokker-Planck equations, which is
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the continuum limit of the master equation, one can take the
large N and small t limit keeping Nt constant. Equation (49)
then becomes

ρ(t |0) =
√

2π

�(ε1)

1

t ε1+ 3
2

e− 1
t , (69)

where we have made use of the asymptotic properties of
the Pochhammer symbol in the limit of N � 1 and �(n)
denotes the gamma function [58]. The negative exponential
dependence on inverse time as t → 0 and the time-dependent
power-law behavior are distinctive features of first-passage
probabilities within the Fokker-Planck framework [55]. How-
ever, the −3/2 power-law dependence in the Fokker-Planck
framework is modified to −(ε1 + 3/2), which has been de-
rived using the exact formalism presented in this paper. In the
limit of ε1 � 1, the power-law dependence agrees with the
Fokker-Planck formalism.

We now discuss the small parameter dependence of the
mean-switching time (MST) from the metastable state n = 0
to n = N given in Eq. (45). It can be noticed in the limit of
ε1 � 1, the primary contribution to the mean switching time
(MST) is inversely proportional to the switching parameter
ε1 and remains unaffected by the system size N ,viz, 〈T 〉S ∼
1/ε1. Importantly, it is only in the subleading term that N
emerges, and this dependence on N becomes irrelevant for
N � 1. This suggests that under small noise conditions, the
MST exhibits constancy as a function of system size as its
leading behavior.

We now consider the first-passage return distribution
(FPRD). It exhibits exponential dependence with the same
rate constant as that of the first-passage switching (FPSD)
distribution in the long-time limit [compare Eq. (39) with
Eq. (59)], i.e., F (t ) ∝ e−p1t . However, it is in the small-time
limit that they differ significantly. While the FPSD vanishes at
time t = 0, FPRD takes a nonzero value F (0) = N − 1 + ε1

which depends on both system size N and ε1. An interesting
aspect to note here is that like in the case of MST, the leading
order behavior is inversely proportional to ε1 but unlike MST,
it is inversely proportional to the size of the system N , namely,
〈T 〉R ∼ 1/(Nε1). This reveals that the MRT is not only
affected by system size, but the larger its value the lower the
time taken on average to the return to the initial metastable
state.

VII. CONCLUSION

In conclusion, the stochastic dynamics of opinion forma-
tion within a diverse population have been the focus of our
investigation into the first-passage dynamics of an asymmetric
noisy voter model with heterogeneous switching rates. Our
analytical approach is rooted in the exact solution of the
master equation for all values of the system size N and helps
in unraveling the behavior of the system. The bimodal and
unimodal behavior exhibited by the model has a significant
influence on the switching transitions between opinion states.
The derivation of the first-passage switching and return dis-
tributions across various parameter regimes has revealed the
presence of the exponential distribution in the long-time limit.

The quantitative aspects of the asymmetric voter model
have been elucidated by the exact derivation of the mean

switching and return times (MST and MRT) and mean square
switching and return times (MSST and MSRT). Notably, the
MST’s inverse proportionality to the noise parameter and its
independence of the system size in the small parameter limit
for large systems underscores the universality of the phenom-
ena of dependence on noise. This finding implies that the time
required for the system to transition between opinion states
is primarily governed by the switching rate (noise), which is
an interesting aspect that enhances the understanding of the
temporal aspects of the noisy voter model. In addition, the
mean return time (MRT) has shown an inverse relationship
between the noise parameter and the system size. This stands
in stark contrast to the almost size-independent nature of the
MST.

The methods employed in this paper have been validated
through Monte Carlo simulations. The findings hold impli-
cations for sociophysics and biophysics. The ability to model
opinion dynamics in populations with heterogenous switching
rates is not only pertinent to understanding social networks’
evolution but also bears relevance to biological systems pro-
viding a broader understanding of complex systems. The
analytical framework and the exact results derived in this
paper open avenues for exploring more complex scenarios,
incorporating additional parameters and opinion states to
model real-world contexts analytically. For instance, one can
explore the effect of external influences, such as media or
influential individuals on opinion dynamics or the inclusion
of multiple opinion states effect the system’s behavior. While
we have studied the complete network where interactions
between agents are long-ranged, it would be interesting to
study the dynamics of asymmetric noise in the context of
short-range interactions. Addressing these questions and ex-
panding the scope of our model could offer deeper insights
into the underlying mechanisms governing opinion dynamics
in heterogeneous populations.
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APPENDIX A: MEAN SWITCHING TIME IN THE SMALL
PARAMETER LIMIT

The exact expression for the mean switching time (MST)
is given in Eq. (43),

〈T 〉S =
N∑

m=1

(
bm − am

a0

)
1

|λm| , (A1)

where

am = (−1)m

(
N

m

)
(ε1)N

(ε1 + ε2 + m)N

ε1 + ε2 + 2m − 1

ε1 + ε2 + m − 1
, (A2)

bm =
(

N

m

)
(ε2)m(ε1 + m)N−m

(ε1 + ε2 + m)N

ε1 + ε2 + 2m − 1

ε1 + ε2 + m − 1
, (A3)

a0 = (ε1)N

(ε1 + ε2)N
. (A4)
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The small switching parameter limit (ε1, ε2 � 1)implies that
λm = −m(m − 1 + ε1 + ε2), which appears in the denomina-
tor of Eq. (43), is greater than 1 for all m > 1 and is equal
to ε1 + ε2 for m = 1. This results in only the first term of the
sum being the dominant term of the MST and is given by

〈T 〉S ≈ N (ε1 + ε2)N (ε1 + ε2 + 1)

(ε1)N (ε1 + ε2 + 1)N ((ε1 + ε2)2

× [(ε1)N + ε2(1 + ε1)N−1]. (A5)

To simplify this expression, we now make use of the following
two properties of the Pochhammer symbol:

(x)N

(1 + x)N
= x

x + N
= x

(
1 − x

N

)
+ O

(
x3

N2

)
,

(1 + x)N−1

(x)N
= 1

x
,

which are applicable in the limit of x � 1. Using these expres-
sions and assuming that N � ε1, ε2, we arrive at the following
result:

〈T 〉S ≈ 1

ε1

(
1 + N − 1

N
(ε1 + ε2)

)
+ O(ε2

1 , ε
2
2 , ε1ε2,

ε1(2)

N
).

(A6)

APPENDIX B: SUMMATION OF
∑N

m=0 amλ j
m

The summation given in Eq. (47) can be derived by noting
that

PN (t |0) =
N∑

m=0

am eλmt

⇒ ∂ jPN (t |0)

∂t j

∣∣∣∣
t→0

=
N∑

m=0

amλ j
m. (B1)

We employ the initial condition Pn(t = 0|0) = δn,0 and
repeatedly differentiate the master equation (9) multiple times
to get the following identities:

∂ jPN (t |0)

∂t j

∣∣∣∣
t→0

=
{

0 1 � j < N∏N
k=1 W +(N − k) j = N

. (B2)

Using the expression for the W +(n), we obtain the result given
in Eq. (47),

∏N
k=1 W +(N − k) = N!(ε1)N .

APPENDIX C: PROBABILITY OF SURVIVAL
IN THE STATE n = N

The probability S(t ) for the system to remain in the state
n = N without transitions can be inferred from the master
equation (9) by substituting n = N and ignoring all con-
tributions to this state from the neighboring state, namely,
PN−1(t |N ) as we are interested in the persistence of the system
in state N . The resulting equation then is given by

dS(t )

dt
= −Nε2S(t ). (C1)

Since we are looking at survival at least for time t , we solve
the above equation in the time range from t to ∞ to obtain the

following result:

S(t ) = e−Nε2t . (C2)

The exponential dependence of the survival time is as ex-
pected from Markov property which underlies the master
equation [54].

APPENDIX D: SUMMATION OF
∑N

m=0 bmλ j
m

By differentiating j times the summation given in Eq. (34)
and taking the limit t → 0, we get

PN (t |N ) =
N∑

m=0

bm eλmt

⇒ ∂ jPN (t |N )

∂t j

∣∣∣∣
t→0

=
N∑

m=0

bmλ j
m. (D1)

We employ the initial condition Pn(t = 0|N ) = δn,N and re-
peatedly differentiate the master equation (9) multiple times
to obtain the following recurrent system of equations:

∂ jPN (t |N )

∂t j

∣∣∣∣
t→0

= W +(N − 1)
∂ j−1PN−1(t |N )

∂t j−1

∣∣∣∣
t→0

−W −(N )
∂ j−1PN (t |N )

∂t j−1

∣∣∣∣
t→0

, (D2)

∂ j−1PN−1(t |N )

∂t j−1

∣∣∣∣
t→0

= W −(N )
∂ j−2PN (t |N )

∂t j−2

∣∣∣∣
t→0

− [W +(N − 1) + W −(N − 1)]

× ∂ j−2PN−1(t |N )

∂t j−2

∣∣∣∣
t→0

. (D3)

We can recursively solve the above two equations to obtain
a closed-form solution. In this paper we are interested only
in the results corresponding to j = 1, 2, 3. The solutions are
given by

N∑
k=0

bkλk = −d, (D4)

N∑
k=0

bkλ
2
k = d (α+ + d ), (D5)

N∑
k=0

bkλ
3
k = −d[(α+ + d )2 + α+α−], (D6)

where we have defined

d = W −(N ) = Nε2, (D7)

α+ = W +(N − 1) = N − 1 + ε1, (D8)

α− = W −(N − 1) = (N − 1)(1 + ε2). (D9)
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