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Phase-space path-integral representation of the quantum density of states:
Monte Carlo simulation of strongly correlated soft-sphere fermions
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The Wigner formulation of quantum mechanics is used to derive a path-integral representation of the quantum
density of states (DOS) of strongly correlated fermions in the canonical ensemble. A path-integral Monte
Carlo approach for the simulation of DOS and other thermodynamic functions is suggested. The derived
Wigner function in the phase space resembles the Maxwell-Boltzmann distribution but allows for quantum
effects. We consider a three-dimensional quantum system of strongly correlated soft-sphere fermions at different
densities and temperatures. The calculated properties include the DOS, momentum distribution functions,
spin-resolved radial distribution functions, potentials of mean force, and related energy levels obtained from
the Bohr-Sommerfeld condition. We observe sharp peaks on DOS and momentum distribution curves, which are
explained by the appearance of fermionic bound states.
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I. INTRODUCTION

Density of states (DOS) is one of the fundamental concepts
of statistical physics. The DOS �(E ) is defined as the number
of states in the range from E to E + δE per unit volume. This
function can be used to compute all thermodynamic properties
of a system and is highly relevant for the study of a wide
variety of systems, including strongly coupled systems of
particles with a rough energy landscape. The DOS permits
us to directly compute the free energy and entropy and is
instrumental for the study of phase transitions.

Due to the importance of DOS, many works are devoted
to the calculation of this quantity using, in particular, gen-
eralized ensembles and reweighting techniques [1–3]. The
most prominent approach is the Wang-Landau (WL) algo-
rithm, which is a Monte Carlo technique for computing the
DOS of classical and quantum systems [4–11]. DOS can be
directly calculated in density functional theory (DFT) [12] and
therefore the DOS analysis is widely used in solid-state and
condensed-matter physics [13,14]. However, DFT cannot be
applied for some systems or leads to a severe computational
workload [15].

Attempts to develop fast and accurate methods for calculat-
ing DOS and thermodynamic functions have been repeatedly
made [16–18]. An interesting approach involving path inte-
grals was suggested in the article [19], in which the entropic
sampling [20] was applied within the Wang-Landau algorithm
to calculate the DOS for a three-dimensional (3D) quantum
system of harmonic oscillators at a finite temperature. In the
path-integral formalism quantum particles are presented as
“trajectories” in the configuration space or “ring polymers”
consisting of a lot of “beads” connected by harmonic-like
bonds (springs) [19]. As a result, the exact data for the energy
and canonical distribution were reproduced for a wide range
of temperatures.

The main disadvantage of the path-integral Monte Carlo
method (PIMC) for simulations of Fermi systems is the

“fermionic sign problem” arising due to the antisymmetriza-
tion of a fermion density matrix [21] and resulting in
thermodynamic quantities being small differences of large
numbers associated with even and odd permutations. As
a consequence, the statistical error in PIMC simulations
grows exponentially with the number of particles. To over-
come this issue many approaches were developed [22–26].
In Refs. [27,28] to avoid the “fermionic sign problem,” a
restricted fixed-node path-integral Monte Carlo (RPIMC) ap-
proach was offered. In RPIMC only positive permutations are
taken into account and the accuracy of the results depends on
the conformation of the nodal surface.

An alternative approach based on the Wigner formulation
of quantum mechanics in the phase space [29,30] was used
in Refs. [31,32] to avoid the antisymmetrization of matrix
elements and hence the “sign problem.” This approach al-
lows us to reproduce the Pauli blocking of fermions and is
able to calculate quantum momentum distribution functions as
well as transport properties [23]. Average values of quantum
operators in the phase space are also available. However,
the approach is not applicable at high degeneracy. Thus, the
“fermionic sign problem” for strongly correlated fermions has
not been completely solved since the early 1970s.

In this paper we continue developing the phase-space path-
integral technique by applying it to the DOS of a strongly
coupled soft-sphere fermions. The developed DOS approxi-
mation is antisymmetrized and is more accurate and rigorous
in comparison with the previous ones [31–33]. Let us stress
that the Wigner approach to quantum mechanics can in-
corporate two semiclassical concepts: the Bohr-Sommerfeld
quantization condition and the Heisenberg correspondence
principle for obtaining approximate matrix elements of any
operator (see the recently developed symmetrical quasiclassi-
cal Meyer-Miller approach [34–36]). In our paper we develop
a PIMC method based on the Wigner approach (WPIMC)
being a compromise between the accuracy and speed of
simulations.
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A simple model of 3D soft-sphere fermions is well known
in statistical physics and was chosen to demonstrate the
correctness of our method. This model includes the one-
component plasma, which is of great astrophysical importance
[37,38]. Moreover, the theoretical studies of strongly interact-
ing particles obeying the Fermi-Dirac statistics is the subject
of general interest in many fields of physics, in particular,
plasma under extreme conditions [23], uniform electron gas
[39], quantum liquids such as 3He [40], and so on. The sug-
gested approach is applicable for predicting DOS not only for
bulk structures (3D) but also for surfaces (2D) in multicom-
ponent systems.

In Sec. II we consider a path-integral description of quan-
tum DOS in the Wigner formulation of quantum mechanics.
In Sec. III we present the results of our simulations by the
WPIMC method for a 3D quantum system of strongly cor-
related soft-sphere fermions. DOS, momentum distribution
functions, spin-resolved radial distribution functions, poten-
tials of mean force, and related energy levels obtained from
the Bohr-Sommerfeld condition are calculated. In Sec. IV we
summarize the obtained properties and discuss their physical
meaning. The derivation of the quantum effective interparticle
interaction as well as the details of the WPIMC method are
given in Appendixes A and B.

II. PATH-INTEGRAL REPRESENTATION
OF THE DENSITY OF STATES

The DOS is a fundamental function of a system and can
be used to compute important thermodynamic properties such
as, for example, internal energy, entropy, and heat capacity. It
can be defined as �(E ) = Tr{δ(EÎ − Ĥ )} [41], where Î is the
unit operator and Ĥ is the Hamiltonian of the system, while δ

is the delta function. The expression �(E )dE determines the
number of states between E and E + dE per unit volume [42].

The Hamiltonian of the system Ĥ = K̂ + Û contains the
kinetic energy K̂ and the potential energy Û taken as the sum
of pair interactions φ(r) = ε(σ/r)n, where r is the interparti-
cle distance, σ characterizes the effective particle size, ε sets
the energy scale, and n determines the potential hardness. As
an example, we consider the parameters ε/kB � 27K (kB is
the Boltzmann constant) and σ = 2.71 Å used to described
quantum helium-3 in the canonical ensemble [43].

The useful identical form of �(E ) is

�(E ) = Tr{δ(EÎ − Ĥ )Î} = Tr
{
δ(EÎ − Ĥ )e(EÎ−Ĥ )

}
= 1

2π

∫
dωTr

{
eiω(EÎ−Ĥ )e(EÎ−Ĥ )}

= 1

2π

∫
dωTr

{
eκ (ω)(EÎ−Ĥ )}

= 1

2π

∫
dω

∫
dq1〈q1|eκ (ω)(EÎ−Ĥ )|q1〉, (1)

where κ (ω) = 1 + iω, angular brackets 〈q|q̃〉 denote the
scalar product of the eigenvectors |q〉 and |q̃〉 of the posi-
tion operator q̂ [30], the angular brackets in the expression
〈q1|Â|q〉 denote the scalar product of vectors |q1〉 and |Â|q〉,
and i is the imaginary unit. Henceforth it is convenient to
imply that energy is expressed in units of kBT (T is the

FIG. 1. The symbolic representation of the DOS by Eq. (2),
where the “vertical” 〈qj | exp iω

M (EÎ − Ĥ )|q̃ j〉 and “horizontal”

〈qj | exp 1
M (EÎ − Ĥ )|qj+1〉 (〈q̃ j | exp 1

M (EÎ − Ĥ )|q̃ j+1〉) matrix ele-
ments are shown by the related arrows.

temperature of the system) and q1 is a 3N-dimensional vector
of the particle positions.

The main difficulty is that the operators of kinetic
and potential energy do not commutate and, as a con-
sequence, an exact explicit analytical expression for the
DOS is unknown. Nevertheless, it can be constructed
using a path-integral approach [21,22,44] based on the
semigroup property exp (κ (ω)(EÎ − Ĥ )) = exp (ε(ω)(EÎ −
Ĥ )) × · · · × exp (ε(ω)(EÎ − Ĥ )) with ε(ω) = κ (ω)/M (M is
a large positive integer), so that

�(E ) = 1

2π

∫
dω

∫
dq1〈q1|eκ (ω)(EÎ−Ĥ )|q1〉

= 1

2π

∫
dω

M∏
j=1

∫
dq jdq̃ j

× 〈q1|eiω(EÎ−Ĥ )/M |q̃1〉〈q̃1|e(EÎ−Ĥ )/M |q̃2〉
× 〈q̃2|eiω(EÎ−Ĥ )/M |q2〉〈q2|e(EÎ−Ĥ )/M |q3〉
× 〈q3|eiω(EÎ−Ĥ )/M |q̃3〉〈q̃3|e(EÎ−Ĥ )/M |q̃4〉 . . .

× 〈q̃M |eiω(EÎ−Ĥ )/M |qM〉〈qM |e(EÎ−Ĥ )/M |q1〉, (2)

where we used the position representation of the operators.
In order to understand Eq. (2) its mathematical structure is
shown in Fig. 1 in a symbolic form. Here the variables Qj and
ξ j are defined as Qj = (q̃ j + q j )/2, ξ j = (q̃ j − q j ) for j =
1, . . . , M (qj = Qj − ξ j/2, and q̃ j = Qj + ξ j/2). Further, for
convenience we will use both set of variables (Q, ξ ) and
(q, q̃).

The Weyl symbol of the operator Ĥ is the Hamiltonian
function H (p, q) defined as [29,30]

H (p, q) =
∫

dξ exp(i〈p|ξ 〉)〈q − ξ/2|Ĥ |q + ξ/2〉, (3)

where ξ and p are 3N-dimensional vectors. The inverse
Fourier transform allows us to express the matrix elements of
an operator through their Weyl symbols. So for large M with
the error of the order of (1/M )2 required for the path-integral
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approach [21,22] we have

〈Qj − ξ j/2| exp
iω

M
(EÎ − Ĥ )|Qj + ξ j/2〉

≈ 〈Qj − ξ j/2|Î + iω

M
(EÎ − Ĥ )|Qj + ξ j/2〉 + O

(
1

M2

)

=
(

1

2π

)3N ∫
dPje

−i〈Pj |ξ j〉
{

1 + iω

M
[E − H (Pj, Qj )]

}

≈
(

1

2π

)3N ∫
dPje

−i〈Pj |ξ j〉eiω[E−H (Pj ,Qj )]/M + O

(
1

M2

)
,

(4)

where H (Pj, Qj ) = 〈Pj |Pj〉/2m + U (Qj ) are the sums of the
Hamilton functions for N particles at a given j.

The final expression for the product is
M∏

j=1

〈q j | exp
iω

M
(EÎ − Ĥ )|q̃ j〉 ≈

(
1

2π

)3NM

×
M∏

j=1

∫
dPj exp(−i〈Pj |ξ j〉) exp

iω

M
[E − H (Pj, Qj )].

(5)

This is the operator analog of the limM→∞(1 + x/M )M =
(ex/M )M .

Then the DOS is presented as

�(E ) =
(

1

2π

)3NM+1 ∫
dQdP

∫
dωeiω[E−H (P,Q)]

∫
dξe−i〈P|ξ〉

× 〈q̃1|e(EÎ−Ĥ )/M |q̃2〉〈q2|e(EÎ−Ĥ )/M |q3〉
× 〈q̃3|e(EÎ−Ĥ )/M |q̃4〉 · · · 〈qM |e(EÎ−Ĥ )/M |q1〉, (6)

where only “horizontal” matrix elements remained (see
Fig. 1), H (P, Q) = ∑M

j=1 H (Pj, Qj )/M, Q = {Q1, . . . , QM},
and P = {P1, . . . , PM}, ξ = {ξ1, . . . , ξM} are 3NM-
dimensional vectors and

∏M
j=1 dq jdq̃ j = dQdξ .

The final expression for the DOS in the Wigner represen-
tation can be written as

�(E ) = exp(E )
∫

dQdPδ[E − H (P, Q)]W (P, Q), (7)

where δ[E − H (P, Q)] is the path-integral analog of the Weyl
symbol of the operator δ(EÎ − Ĥ ) [29,30],

δ[E − H (P, Q)] = 1

2π

∫
dωeiω(E−H (P,Q))

≈ 1

2π

∫
dωei〈P|ξ〉

M∏
j=1

〈q j |eiω(EÎ−Ĥ )/M |q̃ j〉,

(8)

and the generalization of the Wigner function W (P, Q) can be
defined as

W (P, Q) =
(

1

2π

)3NM

e−E
∫

dξe−i〈P|ξ〉

× 〈q̃1|e(EÎ−Ĥ )/M |q̃2〉〈q2|e(EÎ−Ĥ )/M |q3〉 · · ·
× 〈qM |e(EÎ−Ĥ )/M |q1〉. (9)

Herein we assume that the operator Ĥ does not depend on the
spin variables. However, the spin variables σ and the Fermi
statistics can be taken into account by the following redefini-
tion of W (P, Q) in the canonical ensemble with temperature
T :

W (P, Q) = 1

Z (β )N!
exp(−E )

∑
σ

∑
P

(−1)κPS (σ,Pσ ′)
∣∣
σ ′=σ

∫
dξ exp(−i〈P|ξ 〉)

× 〈q̃1| exp
1

M
(EÎ − Ĥ )|q̃2〉〈q2| exp

1

M
(EÎ − Ĥ )|q3〉〈q̃3| exp

1

M
(EÎ − Ĥ )|q̃4〉 · · · 〈qM | exp

1

M
(EÎ − Ĥ )|q1〉

= 1

Z (β )N!

∫
dξ exp(−i〈P|ξ 〉)ρ (1) . . . ρ (M−1)

∑
σ

∑
P

(−1)κPS (σ,Pσ ′)|σ ′=σ Pρ (M )|q(M+1)=q1 , (10)

where the sum is taken over all permutations P with the parity
κP and index j labels the off-diagonal high-temperature
density matrices ρ ( j) ≡ 〈Qj ± ξ j/2|e− 1

M Ĥ |Qj+1 ± ξ j/2〉.
Here, as in expression (6), only the “horizontal” matrix
elements are present. With the error of the order of 1/M2

each high-temperature factor can be presented in the form
ρ ( j) = 〈Qj ± ξ j/2|e− 1

M Ĥ |Qj+1 ± ξ j+1/2〉≈ e− 1
M Û (Qj±ξ j/2)ρ

( j)
0

with ρ
( j)
0 = 〈Qj ± ξ j/2|e− 1

M K̂ |Qj+1 ± ξ( j+1)/2〉, arising from
neglecting the commutator [K,U ]/(2M2) and further terms
of the expansion. In the limit M → ∞ the error of the whole
product of high-temperature factors tends to zero (∝ 1/M )
and we have an exact path-integral representation of the
Wigner functions.

We imply that momenta and positions are dimension-
less variables pλ̃/h̄ and q/λ̃ related to a temperature MT
[λ̃ =

√
2π h̄2β/(mM )]. Spin gives rise to the standard spin

part of the density matrix S (σ,Pσ ′) = ∏N
k=1 δ(σk, σPk )

(δ(σk, σt ) is the Kronecker symbol) with exchange effects
accounted for by the permutation operator P acting on co-
ordinates of particles q̃M+1 and spin projections σ ′.

In general the complex-valued integral over ξ in the def-
inition of the Wigner function (10) cannot be calculated
analytically. Moreover, this integration is inconvenient for
Monte Carlo calculation. To overcome this difficulty we have
to obtain an explicit expression for W (P, Q). However, an-
alytic integration over ξ is possible only for the linear or
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harmonic potentials, when the power of variable ξ is not more
than two. For this reason we use an approximation for poten-
tial energy U arising, for example, from the Taylor expansion
up to the first order with respect to ξ [32,45],

U (Qj ± ξ j/2) ≈ U (Qj ) ± 1

2

〈
ξ

∣∣∣∣∂U (Qj )

∂Qj

〉
. (11)

Here the second term denotes the scalar product of the vector
ξ and the multidimensional gradient of pseudopotental energy.

Then let us replace the variables of integration Qj by ζ j for
any given permutation P using the substitution [32,45],

Qj = (P̃QM+1 − Q1)
j − 1

M
+ Q1 + ζ j, (12)

where P̃ is the matrix representing the permutation operator
P equal to the unit matrix E with appropriately transposed
columns. This replacement presents each trajectory Qj as the
sum of the “straight line” (P̃QM+1 − Q1) j−1

M + Q1 and the
deviation ζ j from it for j = 1, . . . , M + 1 (here QM+1 = Q1,
while in a general case QM+1 �= Q1). As a consequence the
matrix elements can be rewritten in the form of a path integral
over “closed” trajectories {ζ1, . . . , ζM} with ζ1 = ζM+1 = 0
(“ring polymers”).

Then after the Hubbard-Stratonovich transformations and
some additional ones (including analytical continuation of
φ and the integration over ξ and x) the main contribution
to the Wigner function can be written in the form con-
taining the Maxwell distribution with quantum corrections
[46–48],

W (P, Q) = C(M )

Z (β )N!

∑
σ

∑
P

(±1)κPS (σ,Pσ ′)
∣∣
σ ′=σ

∫
dξ exp

{
−i〈ξ |P〉 − π

M∑
j=1

{
|Qj+1 − Qj |2 + 1

4
|ξ j+1 − ξ j |2

+ (−1) j

[
〈Qj+1 − Qj |ξ j+1 − ξ j〉 +

〈
ξ j

∣∣∣∣∣ ∂U P̃
j

2M∂ζ j

〉]}
− UP

}

= C(M )

Z (β )N!

∑
σ

∑
P

(±1)κPS (σ,Pσ ′)
∣∣
σ ′=σ

× exp

{
−π

|P̃Q1 − Q1|2
M

−
M∑

j=1

π |η j |2 − UP

}∫
dx exp

{
−

M∑
j=1

〈x j |x j〉
2

}

×
∫

dξ exp

(
−i〈ξ |P〉 − i

M∑
j=1

{〈
x j

2
+ η j

∣∣∣∣(−1) j[ξ j+1 − ξ j]

〉
− i(−1) j

〈
ξ j

∣∣∣∣ ∂U P̃
j

2M∂ζ j

〉})

≈ C̃(M )

Z (β )N!
exp

[
−

M∑
j=1

π |η j |2 − UE

]
exp

{
M

4π

M∑
j=1

〈iP̄j |iP̄j〉
}

× det‖φ̃kt
∥∥N/2

1 det
∥∥φ̃kt‖Ne

(N/2+1), (13)

where η j ≡ ζ j+1 − ζ j ,

UE = 1

M

M∑
j=1

Uj (Q1 + ζ j ),

UP = 1

M

M∑
j=1

U P̃
j

[
(P̃Q1 − Q1)

j − 1

M
+ Q1 + ζ j

]
,

φ̃kt = exp{−π |rkt |2/M} exp

{
− 1

M

M∑
j=1

(
φ̄kt

j − φkt
j

)}
,

φ̄kt
j = φ

[∣∣∣∣rtk
2 j

M
+ rkt + (

ζ k
j − ζ t

j

)∣∣∣∣
]
,

φkt
j = φ

[∣∣rkt + (
ζ k

j − ζ t
j

)∣∣],
P̄j ≈ Pj − i(−1) j 1

2M

∂U P̃
j

2∂ζ j
,

and rkt ≡ (Qk
1 − Qt

1). The partial derivatives have here 3N
components. The constants C(M ) as well as C̃(M ) are can-
celed in Monte Carlo calculations.

In the thermodynamic limit the main contribution in the
sum over spin variables comes from the term related to the
equal numbers N/2 of fermions with the same spin projection
[23,24] and the sum over permutations gives the product of
determinants. The partition function Z is canceled in Monte
Carlo calculations.

Let us stress that approximation (13) has the correct
limits in the cases of weakly and strongly degenerate
fermionic systems. Indeed, in the classical limit the main
contribution comes from the diagonal matrix elements
due to the factor exp{−π |rkt |2/M} and potential energies
(UE ) in the exponents have to be related to the identical
permutation.

At the same time, when the thermal wavelength is of the
order of the average interparticle distance and the trajectories
are highly entangled the potential energy weekly depends on
permutations and can be approximated by the potential energy
(UE ) related to the identical permutaion [47,48].

Thus, the problem is reduced to calculating the matrix el-
ements of the density matrix ρ = exp (−Ĥ ), which is similar
to the simulation of thermodynamic properties and, according
to Eq. (7), the problem of DOS calculation is reduced to the
consideration of the internal-energy histogram in the canoni-
cal ensemble multiplied by exp(E ).
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III. RESULTS OF SIMULATIONS

Here, as an interesting example, we present the results of
the WPIMC calculations of the radial (RDFs) and momen-
tum (MDFs) distribution functions, as well as the DOS for
the 3D system of Fermi particles strongly interacting via the
soft-sphere potential with hardness n = 0.2 and n = 1.4. Here
the density of soft spheres is characterized by the parameter
rs = a/σ defined as the ratio of the mean distance between the
particles a = [3/(4πρ̃ )]1/3 to σ (ρ̃ is the number density). The
results presented below have been obtained for the following
physical parameters used in Ref. [43] for PIMC simulations
of helium-3: ε � 27 K, σ � 5.2 aB (aB is the Bohr radius),
ma = 3.016 is the soft-sphere mass in atomic units.

To calculate these functions by the WPIMC (see Ap-
pendix B for details) the Markovian chain of particle
configurations were generated using the Metropolis algo-
rithm. We use a standard basic Monte Carlo cell with periodic
boundary conditions. Between 106 and 3 × 106 equilibrium
configurations of 300, 600, and 900 particles represented by
20 and 40 “beads” have been used to calculate average val-
ues. The convergence and statistical error of the calculated
functions were tested with increasing number of Monte Carlo
steps, number of particles and beads at a different hardness of
the soft-sphere potential. It turned out that 600 particles repre-
sented by 20 beads were enough to reach good convergence.

The RDF [49,50], MDF, internal-energy distribution func-
tion and DOS can be written as follows:

gab(r) =
∫

dPdQ δ
(∣∣Qa

1 − Qb
1

∣∣ − r
)

W (P, Q),

W (|Pa|) =
∫

dP̃dQ δ(|Pa| − |P̃|)W (P̃, Q),

W (E ) =
∫

dPdQ δ(E − H (P, Q))W (P, Q),

�(E ) = exp(E )W (E ), (14)

where a and b label fermions and E and H (P, Q) are energy
per particle. The RDF gab is proportional to the probability
density to find a pair of particles of types a and b at a certain
distance r from each other. In an isotropic system the RDF
depends only on the difference of coordinates because of the
translational invariance of the system. In a classical noninter-
acting system of particles gab ≡ 1, while interaction, quantum
effects and statistics result in the spacial redistribution of
particles and a nonmonotonic RDF.

The MDF and internal energy are defined by the Maxwell -
Boltzmann distribution and interparticle interaction. In 2D
and 3D systems the DOS is proportional to � ∼ const and
� ∼ √

E , respectively [41].
Figure 2 shows some typical results of the WPIMC simula-

tions. We present the RDFs (g), MDFs [W (|P|)], DOS [�(E )],
the potentials of the mean force [W (2)(r)] and estimations
of the averaged energy levels (EL) in the system of strongly
coupled fermions.

A. Radial distribution functions

To analyze the conditions of arising the individual sep-
arated sharp high peaks on the DOS and MDF curves let

us consider the RDFs. The difference revealed between the
RDFs with the same and opposite spin projections of fermions
is impressive. At small interparticle distances all RDFs tend
to zero due to the repulsion of the soft-sphere potential. An
additional contribution to the repulsion of fermions with the
same spin projection at distances of the order of the thermal
wavelength (lines 2) is caused by the Fermi statistics effect
described by the exchange determinant in (13). This addi-
tional repulsion leads to the formation of cavities (usually
called exchange-correlation holes) for fermions with the same
spin projection and results in the formation of high peaks
on the corresponding RDFs due to the strong excluded vol-
ume effect [51]. The RDFs for fermions with the same spin
projection show that the characteristic “size” of an exchange-
correlation cavity with corresponding peaks is of the order of
the soft-sphere thermal wavelength (λ/σ ∼ 0.63, rs = 3.77,
and λ/σ ∼ 1, rs = 6.84 for temperatures T = 40 K and T =
20 K, respectively), which is less than the average interparticle
distance. Let us stress that the strong excluded volume effect
was observed in the classical systems of hard spheres in the
early 1970s [52] and was derived analytically for the 1D case
in Ref. [50]. For fermions with the opposite spin projections
the interparticle interaction is not enough to form any peaks
on the RDF. At large interparticle distances the RDFs decay
monotonically to unity due to the short-range repulsion of the
potential. With increasing density and hardness the height of
the peaks is growing.

B. Potentials of mean force, the Bohr-Sommerfeld condition,
energy levels, and MDFs

To analyze the conditions of arising the individual sep-
arated sharp high peaks on the DOS and MDF curves let
us consider RDFs and the corresponding potentials of mean
interparticle force. The potentials of mean force (PMF) W (k)

[49] of a classical N-particle system is defined up to an arbi-
trary constant as

−∇ jW
(k) =

∫
e−βU (−∇ jU )dqk+1 . . . dqN∫

e−βU dqk+1 . . . dqN
, (15)

where j = 1, 2, . . . , k. Here −∇ jW (k) is the “mean force”
acting on a jth particle at a given position of any k particles.
For k = 2 W (2) is related to the RDF of the system as g(r) =
e−βW (2) (r), while according to the virial expansion [50,53]
g(r) = e−βW (2) (r) = e−βφ(r), which is valid in the low-density
limit. The difference between W (2)(r) and φ(r) shows the
influence of quantum effects and medium on the interparticle
interaction.

The PMFs in Figs. 2(b1)–2(b3) are related to the discussed
above RDFs in Figs. 2(a1)–2(a3). The PMFs determine the
effective two-particle interaction and can be used in the mean-
field theory. The depth of a PMF increases with increasing
density, temperature, and hardness n, while the width of a
PMF is of the order of the thermal wavelength and becomes
smaller with increasing temperature. Fast oscillations are at-
tributed to the Monte Carlo statistical error.

To estimate the possibility of arising bound states in a
PMF the semiclassical Bohr-Sommerfeld condition [54] can
be used for a particle in an effective spherically symmetric
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

FIG. 2. The typical spin resolved RDFs [(a1)–(a3)], potentials of mean force (PMFs) as well as the averaged energy levels EL [(b1)–(b3)],
DOS [(c1)–(c3)], and momentum distribution functions MDFs [(d1)–(d3)]. Panels from the left-hand side to the right one: (left) T = 40 K,
rs = 3.77, and n = 0.2; (middle) T = 20 K, rs = 6.84, and n = 1.4; and (right) T = 40 K, rs = 3.77, and n = 1.4. Lines gab(r) in panels
(a1)–(a3): 1 and 2, the same and opposite spin projections, respectively. Lines W (2)(r) + L(L+1)

2r2 in panels (b1)–(b3): 1, at L = 0 and 2, at
L = 1. Horisontal lines EL in panels (b1)–(b3) at L = 0 and L = 1: 1 and 2 — nr = 0; 3 and 4 — nr = 1, respectively. Lines � in panels
(c1)–(c3): 1, WPIMC; 2, ideal system. Lines W (|P|) in panels (d1)–(d3): 1, WPIMC; 2, the Maxwell distribution function. Results are in
conditional units. Irregular oscillations indicate the Monte Carlo statistical error.

well. The PMF is determined up to an arbitrary constant, so
to agree with the virial expansion at low density we have
to assume here that W (2)(r) = 0 in the limit r → ∞. So the
effective Schrödinger equation for the radial part R(r) of the
wave function in atomic units looks like

− 1

2
R′′ + L(L + 1)

2r2
R −

(
kBT

Ha

)
ma

me
ln(g(r))R

=
(

EL

Ha

)
ma

me
R, (16)

where EL is the energy level, L = 0, 1, 2, . . . is the orbital
quantum number [54]. The Bohr-Sommerfeld condition has
the form ∫ r2(E )

r1(E )
p(r)dr = π

(
nr + 1

2

)
, (17)

where

p(r) =
√

2

[
Ẽ +

(
kBT

Ha

)
ma

me
ln(g(r))

]
−

(
L + 1

2

)2

r2
.
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Here Ẽ = ( E
Ha ) ma

me
, ma, and me are the soft-sphere and electron

masses, respectively, nr is the number of zeros of R(r) [54]
and for any energy E � W (2)

min there are only two turning points
r1 and r2. Lines 1 and 2 in Figs. 2(b1)–2(b3) show the PMF
W (2)(r) and the sum of W (2)(r) and L(L+1/2)

2r2 for L = 1.
The energy levels of bound states obtained from the Bohr-

Sommerfeld condition [54] are presented at L = 0 and L = 1
by horizontal solid lines 1 and 2 for nr = 0 and by dashed
lines 3 and 4 for nr = 1 in Figs. 2(b1)–2(b3), respectively.
The energy levels EL are obtained according to Eq. (17). The
RDFs for fermions with opposite spin projections are nonzero
inside the PMF wells. As a consequence some fermions can
occupy these energy levels forming a nonstable triplet cluster
of two particles with the same spin and one with the opposite
spin [33]. For a soft-sphere potential with n = 0.2, Eq. (17)
cannot be satisfied under any energy E .

C. DOS and momentum distribution

Figures 2(c1)–2(c3) and Figs. 2(d1)–2(d3) demonstrate the
DOS and MDFs for a strongly coupled system of soft-sphere
fermions. For a very soft interparticle potential with hardness
n = 0.2 the WPIMC DOS and MDFs are nearly classical:
� ∼ √

E and W (E ) is the Maxwell-Boltzmann distribution
function (see left column in Fig. 2). We also confirm the
agreement of our calculations for ideal fermions with the ideal
DOS and Maxwell MDF, which demonstrate the accuracy of
our approach in a wide range of particle momentum, where the
decay of MDF is about six orders of magnitude (not shown).

Figures 2(c1)–2(c3) and Figs. 2(d1)–2(d3) show that strong
interaction results in the sharp peaks on the DOS and MDF
curves. These peaks arise due to the interference of quan-
tum effects and degeneracy introduced by the determinant in
Eq. (13). As �(E ) and W (E ) are normalized to unity the ap-
pearance of sharp peaks is compensated by the extended pits
on both functions, which can be clearly seen in Figs. 2(c1)–
2(c3) and Figs. 2(d1)–2(d3) of Fig. 2 [�(E ) = exp(E )W (E )].

From the physical point of view, the soft-sphere repulsive
interaction increases the energy of any given phase-space
configuration in comparison with the same configuration of
the ideal system. As the energy distribution is proportional to
the fraction of phase-space states with an energy equal to E ,
then this fraction [W (E )] needs to be shifted to larger energy.
As a consequence, this is also true for DOS, which we can see
in Fig. 2.

Let us note that in Figs. 2(b1)–2(b3) and Figs. 2(c1)–2(c3)
the energy is in “atomic units for considered soft spheres,”
so it is normalized by temperature ∼27 K [27 = ( T

Ha ) ma
mekB

].
As the energy scale on the horizontal axis of the middle
column (T = 20/27 K) is two times larger than in the left
and right ones (T = 40/27 K), the position in the absolute
energy of the double peak of the DOS in the middle column
resembles practically the analogous one in the right column,
which supports weak dependence of � on temperature. The
higher density in the right column (rs = 3.77) results in the
appearance of the additional peaks at low energy (E/27 ∼ 1)
in comparison with the middle column (rs = 6.84).

The momenta corresponding to the discussed above bound
states can be estimated as the average values of momentum
〈p(r)λ/h̄〉 in (17). Let us stress that the noticeable repetition

and correlation in the positions of the three peaks on the
MDF in Fig. 2(d) is supported by the structure of the energy
levels corresponding to the Bohr-Sommerfeld condition. The
peak heights are higher for increasing temperature and density
(see the middle and right columns) (T = 20 K, rs = 6.84, and
n = 1.4) and (T = 40 K, rs = 3.77, and n = 1.4). The same
tendency of increasing peak heights can be seen in Fig. 2(d) at
increasing hardness from n = 0.2 to n = 1.4 and fixed values
of other parameters (see left and right columns). The physical
reason of this tendency is the increasing sharp variation of the
characteristic spatial potential energy field and the decreasing
ratio of the particle thermal wavelength to the potential field
spacial landscape (due to a faster decay of singularities).

IV. DISCUSSION

Density of states is an important property that can be
used to calculate thermodynamic potential and other ther-
modynamic functions (including entropy) of a classical or
quantum system of particles. Contrary to the Wang-Landau
method [4–11], which was applied to a classical system, this
article deals with quantum systems. The Wigner formulation
of quantum mechanics was used to derive the path-integral
representation of the quantum density of states in the canoni-
cal ensemble. The WPIMC approach is able to calculate DOS,
thermodynamic functions, and MDF in one simulation. The
obtained MDF resembles the Maxwell-Boltzmann distribu-
tion but takes into account quantum effects.

The 3D quantum system of strongly correlated soft-sphere
fermions was considered as an interesting physical exam-
ple. A number of properties were calculated by the WPIMC
method for different densities and temperatures, including
DOS, MDFs, spin-resolved RDFs, PMFs, and related semi-
classical energy levels.

The physical meaning of the sharp peaks arising on the
RDFs, DOS, and MDFs has been analyzed and explained by
the manifestation of the Fermi repulsion and bound states.
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APPENDIX A: QUANTUM PSEUDOPOTENTIAL
FOR SOFT-SPHERE FERMIONS

The high-temperature density matrix ρ ( j) =
〈r ( j)|e−εĤ |r ( j+1)〉 can be expressed as a product of
two-particle density matrices [23],

ρ(rl , r′
l , rt , r′

t ; ε) = 1

λ̃6
exp

[
− π

λ̃2
|rl − r′

l |2
]

× exp

[
− π

λ̃2
|rt − r′

t |2
]

exp
[ − ε�OD

lt

]
.

(A1)
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This formula results from the factorization of the den-
sity matrix into the kinetic and potential parts, ρ ≈ ρK

0 ρU .
The off-diagonal density matrix element (A1) involves
an effective pair interaction by a pseudopotential, which
can be expressed approximately via its diagonal elements,
�OD

lt (rl , r′
l , rt , r′

t ; ε) ≈ [�lt (rl − rt ; ε) + �lt (r′
l − r′

t ; ε)]/2.
To estimate �(r) for each high-temperature density matrix

we use the Kelbg functional [55,56], allowing us to take into
account quantum effects in interparticle interaction. The peu-
dopotential �(r) is defined by the Fourier transform v(t ) of
the potential φ(r). This transform can be found at n < 3 for
the corresponding Yukawa-like potential exp(−κr)/rn in the
limit of “zero screening” (κ → 0),

v(t ) = 4πt n�(2 − n) sin(nπ/2)

t3
, (A2)

where � is the gamma function. The resulting quantum pseu-
dopotential has the following form:

�(r) =
√

π

8π3

∫ ∞

0
v(t ) exp[−(λ̃t )2/4]

× sin(tr)erfi(λ̃t/2)

(tr)λ̃t
4πt2dt, (A3)

where erfi(z) = i efr(iz), erf (z) is the error function [55].
This pseudopotential is finite at zero interparticle distance
�(0) = λ−n�(1 − n/2) and decreases according to the power
law (λ/r)n for distances larger than the thermal wavelength.

For more accurate accounting for quantum effects the “po-
tential energy” U (q j, q j+1) in (10) and (13) (see Appendix A)
has to be taken as the sum of pair interactions given by �OD

with �(r). Pseudopotential � was also used in the Hamil-
ton function H (p, q) in the Weyl’s symbol of the operator
δ(EÎ − Ĥ ) [see Eqs. (3) and (7)].

APPENDIX B: WIGNER-PATH INTEGRAL MONTE
CARLO METHOD

In this article the WPIMC approach is used in the frame-
work of approximation (13) of the Wigner function. In
general, to calculate average values of any quantum oper-
ator 〈Â〉 the following representation of 〈Â〉 can be used
[22–24,32]:

〈Â〉 =
∫

dPdQA(P, Q)W (P, Q)

= 〈A(P, Q) · h(P, Q)〉W̃

〈h(P, Q)〉W̃
, (B1)

where, for example, the Weyl’s symbol of operator Â is

A(P, Q) = δ[E − H (P, Q)]. (B2)

Here brackets 〈g(P, Q)〉W̃ denote the averaging of any function
g(P, Q) with a weight W̃ (P, Q),

〈g(P, Q)〉W̃ =
∫

dPdQ g(P, Q)W̃ (P, Q). (B3)

To calculate the main contribution to 〈Â〉 the function W̃ (P, Q)
can be written as the absolute value of a real part of the Wigner
functions [30] and a function h(P, Q) accounting for the sign
of Re(W (P, Q)) [23,24,30],

h(P, Q) = sgn(Re(W (P, Q))),

W̃ (P, Q) = |Re(W (P, Q))|. (B4)

Note that the partition function Z and constant C̃(M ) in (13)
are canceled in Monte Carlo calculations.

The basic idea of a Monte Carlo method is to replace
the integration in Eq. (B3) with the averaging over samples
{x̄1, x̄2, . . . , x̄M̃} of a random vector x̄,

〈Â〉 =
∑M̃

i=1 A(xi )h(xi )∑N
i=1 h(xi )

, (B5)

where the random quantities xi ≡ (P, Q)i are drawn from any
distribution W̃ (x)/Q (Q = ∫

�
W̃ (x)dx). According to the law

of large numbers, if random vectors xi are not correlated,
then the statistical error is proportional to 1/

√
N and can be

estimated using the 3σ rule. If h(xi ) ≡ 1, then this expression
gives the usual average value.

The samples {x̄1, x̄2, . . . , x̄M̃} of a random vector x̄ with a
probability density W̃ (x̄) can be obtained using the Metropolis
algorithm. The Metropolis algorithm is based on the Markov
process, which can be constructed by using the transition
probabilities. This algorithm consists of sequential steps di-
vided into two substeps: proposal and acceptance. Suppose
the system is in a state x̄i, i.e., the random vector x̄ has a value
x̄i. On the proposal step a new random vector x̄′

i is generated.
On the acceptance step this new state can be accepted with
a probability A(x̄i → x̄′

i ), and then x̄i+1 = x̄′
i, or rejected, and

then x̄i+1 = x̄i. The acceptance probability A(x̄i → x̄′
i ) must

be set to satisfy the detailed balance equation, and the most
common choice is

A(x̄i → x̄′
i ) = max

(
1,

W̃ (x̄′
i )

W̃ (x̄i )

)
. (B6)

The arising stationary distribution of {x̄i} has to be equal to
W̃ (x).
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