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Magnetic ordering in strong anisotropic ferromagnetic bilayers with dipolar and antiferromagnetic
interlayer exchange interactions: Monte Carlo approach
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In this work, multilayer films consisting of two strong-anisotropic ferromagnetic layers antiferromagnetically
coupled by a nonmagnetic spacer are studied by Monte Carlo simulations. The system is modeled by an Ising-
based Hamiltonian that depends on both the intralayer exchange and dipolar constants and on the interlayer
exchange constant (IEC). The ground state of the monolayers (null IEC) corresponds to alternate stripe domains
with width h defined by the ratio between the exchange and dipolar constants (δ). The results show that IEC alters
the energy balance that controls the stripe domain formation, leading to a ground state characterized by in-plane
stripes out-plane antiferromagnetically coupled. When temperature increases two regimes are identified: an IEC-
dominated regime where the orientational and positional orders are simultaneously lost in both layers, driving
the system to the tetragonal liquid (TL) phase, and a dipolar-dominated one where signs of layers decoupling
and the onset of positional disorder are observed. The last could be related with an intermediate nematic phase
(NM). From the study of the nonequilibrium dynamics, the phase transitions to TL phase are characterized as
continuous and those to the NM one as Kosterlitz-Thouless type. Also, for both layers the critical temperatures
are the same and increase with IEC magnitude. Furthermore, the obtained critical exponents depend on the IEC
values, which is indicative of a weak universality. For the dipolar-dominated regime, the decoupling between
layers is also evidenced by the difference between their critical exponents.
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I. INTRODUCTION

The development and improvement of thin-film growth
techniques have made it possible to obtain stacks of ultrathin
magnetic films and nonmagnetic materials by controlling dif-
ferent growth conditions, as well as improving aspects related
to epitaxial growth and stoichiometry in the samples [1–7].
The rich spectrum of the involved materials has triggered ex-
tensive studies to understand their fundamental nature as well
as to design novel materials. In this way, magnetic multilayers
have led to new phenomena that have extended their range
of applications. The first among these is the existence of an
interlayer exchange. coupling (IEC) between magnetic layers
by means of a nonmagnetic spacer. This coupling leads to
systems with significantly different states and dynamic prop-
erties. In the case of metallic layers, the IEC is essentially
of the Ruderman-Kittel-Kasuya-Yosida type and is associ-
ated with oscillations in the spin density of the nonmagnetic
spacer caused by adjacent ferromagnets. The oscillations in
turn lead to an IEC that also oscillates from ferromagnetic
to antiferromagnetic with the distance between the ferromag-
netic layers [1,8,9]. In this way, by changing the thickness of
the nonmagnetic spacer it is possible to tune the interaction,
whereas for thick spacers the IEC is suppressed. For insulating
spacers, the IEC depends on the spin-polarized tunneling, and
its strength decays exponentially with the spacer thickness
[3]. Even though the metallic character of the ferromagnetic
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layers was considered as an inherent element of the IEC, it was
also reported in the case of multilayers based on ferromag-
netic diluted semiconductors [6,10–14]. In these systems, the
magnetic properties can be controlled not only by changing
the spacer thickness but also by tuning the energy barrier of
spacer and carrier density in the system. This fact has pro-
vided versatility for manipulating of magnetization reversal,
consequently of resistance. Multilayers with antiferromag-
netic IEC—referred to as synthetic antiferromagnets due to
the overall structure—were crucial for the discovery of the
phenomena of giant magnetoresistance and tunneling magne-
toresistance that kick-started the fields of nanomagnetism and
spintronics.

On the other hand, it is well known that in ferromag-
netic thin films, the interplay between exchange interactions
with perpendicular and shape anisotropies may lead to the
emergence of stripe domains [15,16]. These configurations
are characterized by an alternating (up-and-down) out-of-
plane orientation of the magnetization. The presence of
stripes has been reported when the perpendicular anisotropy-
energy density, K⊥, exceeds the magnetostatic one, 1/2μ0Ms

2

(Ms is the saturation magnetization of the system), i.e.,
when the quality factor Q = (2K⊥)/(μ0Ms

2) > 1 [15,16].
This kind of stripe domain is characterized by thin do-
main walls, that is, very sharp transitions between stripes
with opposite magnetization orientations. For moderate or
low K⊥, i.e., with Q < 1, it is possible to observe a re-
orientation transition from planar to out-of-plane modulated
magnetization states above a critical thickness that is char-
acteristic of material [15,16]. These stripe domains present
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wide domain walls, i.e., a smooth variation of the magne-
tization profile between stripes with opposite magnetization
orientations.

In order to reveal the underlying mechanisms that define
the thermal and magnetic behavior, common to magnetic thin
films, several theoretical approaches—based on the Hamil-
tonians of Ising [17–27] and Heisenberg [28–34]—have
been proposed. These models include anisotropy and dipolar
terms. It is important to remark that the dipolar term has
a long-range character and is related to the magnetostatic
energy and, consequently, with the shape anisotropy. In this
way, the competition between interactions acting on different
scales leads to frustration of the ferromagnetic order, i.e.,
the short-range exchange interaction that favors an uniform
ordered state is frustrated by a weaker long-range dipolar
interaction.

For films with strong perpendicular anisotropy Q > 1, only
spin-up and spin-down states need to be considered; thus, the
anisotropy term can be approximated as constant, implying
that it does not need to be considered for energy minimiza-
tion. These systems have been intensively studied by means
of the bidimensional Ising model with dipolar interactions.
The phase diagram was obtained by Monte Carlo simulations
and is characterized by phases with null total magnetization
[17,18,23,24,27]. This includes at low temperatures the anti-
ferromagnetic and stripe phases with width h = n (named hn),
where n is an integer number measured in lattice units that
increases with the ratio between the exchange (J) and dipolar
(g) constants, δ = J/g. At high temperatures, the positional
order of the stripes vanishes, driving to a nematic (NM) or
a tetragonal liquid (TL) phase depending on δ. In the NM
phase, the positional order is lost while the orientational one
is conserved. On the other hand, the TL phase presents stripes
of mutually perpendicular orientations forming labyrinthine
patterns without both positional and orientational order.

If the temperature is raised enough, then a phase
transition between the NM and TL phases takes place
[20,23,24,27,35,36]. The order of the mentioned transitions
has been the subject of a longstanding controversy [18,20,27].
Recently, the hn-TL transitions were classified as continuous,
and the critical exponents were estimated [22,23]. On the
other hand, hn-NM-TL transitions were conjectured to be of
the Kosterlitz-Thouless type [24], in agreement with theoreti-
cal predictions [37].

Focusing on the multilayers formed by two strong-
anisotropic ferromagnetic layers, the Ising model was used
as a workbench due to its simplicity. The physical interest
for many investigations comes from the IEC dependence on
the order-disorder transition temperature. By considering that
each layer may be thought of as an effective field acting on
the other, a power-law dependence on the critical temperature
with IEC strength was predicted with an exponent 1

ϕ
, where ϕ

is named the shift exponent. For identical intralayer exchange
constants, the shift exponent was predicted as ϕ = γ , where
γ is the magnetic susceptibility critical exponent of the un-
derlying bidimensional model [38–42]. However, for different
exchange couplings the shift exponent prediction ϕ = γ /2
[43] was not validated, and the reported values suggest that ϕ

is not related to γ [39,44]. In order to determine the conditions
for the compensation, i.e., the occurrence of zero total magne-

tization at nonzero magnetization of the layers, systems with
nonequivalent layers were investigated. Diaz and Branco have
used Monte Carlo simulations to investigate the compensation
phenomenon determining that can be observed in systems
constituted by three magnetic layers [26] or by multilayers
with random diluted magnetic sites [45,46]. On the other
hand, Mayberry et al. [47] used numerical simulations to
extend the studies to multilayer systems with different thick-
nesses and number of layers, reporting temperature-magnetic
field phase diagrams. In all cases, two phase transitions were
observed. The first one occurs at low fields between a con-
figuration where all layers are antiferromagnetically aligned
and another intermediate that exhibits partial alignment with
the field. The second transition is produced at higher val-
ues of the field and happens between the intermediate and
paramagnetic phases. Moreover, the former transition has a
first-order character, whereas the latter changes to continuous
when the temperature is increased. Both transitions are con-
nected through a tricritical point.

As mentioned, the dipolar interaction plays a key role
in magnetic behavior because it defines the magnetostatic
energy, although it has been neglected in all of the above-
mentioned theoretical works about strong-anisotropic multi-
layers. This is in large part due to the difficulties introduced
by its long-range character, which limits the system size used
in the simulations and leads to strong finite-size effects. So,
any convincing finite-size effect scaling, with a reliable de-
termination of the phase behavior, becomes a difficult task to
perform. In this context, studies of the dynamic evolution in
the short-time regime—named short-time dynamics (STD)—
is a powerful technique to study the phase transitions by
means of Monte Carlo simulations. In fact, the STD method
has been successfully applied to characterize the phase be-
havior in both equilibrium and nonequilibrium systems (see
Ref. [48] and references therein), as well as to the case of a
monolayer modeled by the Ising model with dipolar interac-
tions [22–24].

The aim of this work is to study the phase behavior of
multilayer systems formed by two strong-anisotropic ferro-
magnetic layers that exhibit stripe domains by using Monte
Carlo simulations. The systems are modeled employing an
Ising-like Hamiltonian with intralayer dipolar and ferromag-
netic exchange interactions and interlayer antiferromagnetic
coupling. For the sake of simulate different thicknesses of
the nonmagnetic spacer, different interlayer constants are
considered.

The paper is organized as follows: in Sec. II the utilized
model is introduced, in Sec. III the simulation details and
a summary of STD technique are outlined, in Sec. IV the
results are presented and discussed. Finally, the conclusions
are reported in Sec. V.

II. FORMULATION OF THE MODEL

As mentioned in the previous section, for ultrathin films
with strong perpendicular anisotropy, only spin-up and spin-
down states need to be considered. This fact allows us to make
use of the Ising model with dipolar interactions to simulate its
behavior. The multilayer system studied is composed of two
ferromagnetic monolayers coupled by an antiferromagnetic
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IEC. Each layer is considered as a bidimensional Ising model
on a square lattice, which is concentrically placed one over
the other. The Hamiltonian of the model, hereinafter called
antiferromagnetic-multilayer Ising dipolar, AF-MID, reads:

H = − J1

∑
〈i, j〉

SiS j − J2

∑
〈i, j〉

σiσ j + g1

∑
i, j

SiS j

r3
i, j

+ g2

∑
i, j

σiσ j

r3
i, j

− J3

∑
i

Siσi, (1)

where Si, σi(= ±1) are the spin variables of the layers labeled
1 and 2. The first two terms are the ferromagnetic intralayer
interactions with exchange constants J1 > 0 and J2 > 0, and
the sum runs over all pairs of nearest-neighbor (NN) spins
into each layer. The following two terms correspond to dipolar
interactions with strengths g1 > 0 and g2 > 0, and the sum
runs over all pairs of spins (i, j) separated by a distance ri j

(measured in crystal units) within the same layer. The last term
describes the coupling between layers with antiferromagnetic
IEC J3 < 0; consequently, the sum involves NN spins located
in different layers. On the other hand, the dipolar interactions
between layer has not been taken into account, since IEC is
mediated by a nonmagnetic spacer and its strength decays
inversely proportional to the thickness. Furthermore, with the
aim to investigate the thermal properties, the system is in
contact with a thermal bath at the temperature T .

Based on the monolayer phase diagram of the Ising model
with dipolar interaction [18,24] the following values were
selected, J2 = 2, J1 = 1, and g1 = g2 = 1, for the exchange
and dipolar constants measured in unit of J1, respectively.
These values refer to δ1 = 1 and δ2 = 2, which match the
monolayers with ground states h1 and h2, respectively. The
former presents a continuous transition to the TL phase, while
the latter exhibits two Kosterlitz-Thouless– (KT) type transi-
tions, h2-NM and NM-TL, at temperatures higher than those
corresponding to the monolayer with δ = 1 (see Ref. [24]
and Table I). On the other hand, the IEC was chosen to take
the following values, J3 = −1.5,−1, 0, and J3 = −0.5, also
measured in units of J1, which are related to the increasing
thickness of the nonmagnetic spacer. The selected parameters
allow us to study the effects of the perturbation introduced by
the IEC on the magnetic and thermal behavior of the layers,
which present not only different domain structures but also
different critical behavior.

III. SHORT-TIME DYNAMICS
AND SIMULATION DETAILS

In the AF-MID model, the long-range character of the
dipolar interactions, as well as the frustration introduced
by the competition between interactions acting on differ-
ent scales, makes the description of the phase transitions a
difficult task to perform. In the case of the Monte Carlo sim-
ulations, the large simulation times required for equilibration
limit the system sizes and hinder a finite-size scaling anal-
ysis. This fact can lead to misinterpretations of the results,
for example, to confuse a weak first-order with a continu-
ous phase transition. In this context, the STD method is a
powerful tool to overcome those difficulties [48]. Concerning
the monolayer version of the AF-MID that is equivalent to

the uncoupled layer, J3 = 0, this method has already been
successfully employed to determine the phase transition order,
and when corresponds, to characterize the critical behavior
[22–24].

The STD focuses on the time evolution of the order param-
eter and its moments within the early stages of the dynamics
in a neighborhood of the phase transition point for different
values of the control parameter. In this way, the simulations
proceed under nonequilibrium conditions for a short time
interval (tmic, tmax), where tmic and tmax are the times when
the time correlation length ξ (t ) is of the order of a lattice
spacing and the system size L, respectively. As a consequence,
STD is free of the critical slowdown because tmax is shorter
than the equilibration time. In the present work, the control
parameter is the temperature (T ). Since the system exhibits
phases that are similar to those observed in the monolayer, the
same observables can be employed to investigate the phase
transitions, but in this case, they were measured for each layer.
The order parameter is that introduced by Booth et al. [25]:

Ohv ≡ nv − nh

nv + nh
, (2)

where nv (nh) is the number of vertical (horizontal) bonds of
the NN antiparallel spins. With this definition, Ohv = +1 (−1)
when the system is in the stripe horizontal (vertical) ordered
phase and Ohv = 0 in the TL or paramagnetic phases. Also,
the susceptibility of the orientational order parameter χ , the
second-order Binder cumulant U , the autocorrelation function
A, and the logarithmic derivative D with respect to the reduced
temperature ζ = (T − Tc)/Tc evaluated at the critical point Tc

(if exists) are defined in the following way:

χ = N

T

(〈
O2

hv

〉 − 〈Ohv〉2
)
, (3)

U = 1 −
〈
O2

hv

〉
〈Ohv〉2

, (4)

A = 1

N

〈
N∑
i

Si(t )Si(0)

〉
, (5)

D = ∂log(〈Ohv〉)

∂ζ
|ζ=0, (6)

where N = L2 is the number of spins of each layer and 〈. . . 〉
indicates the average over different thermal histories from
equivalent initial conditions. To simplify the notation 〈Ohv〉
and 〈O2

hv〉 are changed to Ohv and O2
hv , respectively.

For continuous transitions, at the critical point (T = Tc),
the time series of the observables exhibit a power-law behav-
ior in the (tmic, tmax) interval when the system is initialized
from the ground state (ordered configurations, OC) or the
paramagnetic one (disordered configurations, DC) at T = 0
or T = ∞, respectively [48,49]. The power-law exponents are
related to the critical exponents defined at equilibrium. For
T � Tc the power laws are modified by scaling functions that
depend on the reduced temperature ζ , resulting in deviations
from the proposed behavior at T = Tc. This allows us to deter-
mine the critical temperature as well as the critical exponents
from the localization of the best power law (for more details
see the review in Ref. [48] and references therein).
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For the case of OC initial condition (ground state), the time
evolution of the observables is as follows:

Ohv (t ) ∝ t− β

νz , (7)

χ (t ) ∝ t
γ

νz , (8)

U (t ) ∝ t
d
z , (9)

D(t ) ∝ t
1
νz . (10)

However, if the system starts from DC initial conditions
(PM state) that correspond to Ohv = 0, then the power-law
behavior of the O2

hv (t ) and A(t ) is given by:

O2
hv (t ) = T

N
χ (t ) ∝ t

γ

νz , (11)

A(t ) ∝ t−λ, (12)

where β, ν, and γ are the static critical exponents for Ohv , ξ ,
and χ , respectively; z and λ are the dynamic exponents of time
correlation length ξ (t ) and autocorrelation.

For the first-order phase transitions, ξ (t ) also diverge as
a power law but at the metastability limits of the coexisting
phases. This fact leads to the identification of these points as
the spinodals [48]. However, if the system is started from the
OC condition, then the spinodal value of the order parameter,
Osp

hv
, must be taken into account, so Ohv (t ) − Osp

hv
decays as a

power law. The difference between spinodal temperatures de-
fines the strength of the transition and allows us to distinguish
between continuous and weak first-order transitions [48].

Furthermore, the STD was also able to characterize topo-
logical KT transitions in models with short-range interactions,
such as the XY, fully frustrated XY, and six-state clock models
[50–54] and long-range ones [24]. For T � TKT (TKT is the
transition temperature), the STD evolution of the order pa-
rameter and its moments follows a power law with exponent
μ that depends on T [48,52,54]. Therefore, the system is
said to remain critical and the transition has an infinite order.
It is important to note that in the monolayer version of the
AF-MID model for δ � 2, STD allowed us to determine that
the hn-NM and NM-TL phase transitions were both KT and to
locate the transition temperatures TKT [24].

In this work, Monte Carlo simulations were performed
in square lattices with size L = 128 using the Metropolis
algorithm with heat bath dynamics. This size allows us to
avoid artificial frustration and ensure that it is commensu-
rate with the width of the stripes in the h1 and h2 phases.
Periodic boundary conditions were implemented in the plane
of the layers through the Ewald sums for proper treatment
of the long-range character of the dipolar interactions, while
free boundary conditions were set out in the perpendicular
direction. In order to obtain the equilibrium configurations
for each set of interaction constant values, the simulations
were carried out until equilibration times of 107 Monte Carlo
steps (MCS) for several temperatures. Furthermore, the STD
observables were averaged over 5000 different realizations for
each temperature.

FIG. 1. Equilibrium spin configurations obtained after 107 MCS
of layers 1 (upper row) and 2 (lower row) for different tempera-
tures as indicated in the respective legends. The data correspond
to J3 = −1.5.

IV. RESULTS AND DISCUSSION

In this section equilibrium configurations obtained by sim-
ulations until 107 MCS, as well as the phase transitions
between them, characterized by STD, are presented and dis-
cussed in decreasing order of IEC strengh J3. Furthermore,
the results of the correlation functions are discussed in the last
subsection.

A. Phase transitions for IEC J3 = −1.5

Figure 1 shows snapshots of the AF-MID equilibrium spin
configurations for IEC J3 = −1.5 at different temperatures.
As can be observed, at low T , both layers show the in-plane
h2 ordered configuration and are out-of-plane antiferromag-
netically coupled. This configuration can be identified as the
ground state of the system, hereafter named AFh2. When
the temperature increases, this phase remains stable up to
T > 1.0, where the orientational order is lost and the TL phase
emerges in both layers. However, they even exhibit a weak
coupling. This result is indicative of a single AFh2-TL phase
transition.

Figures 2(a) and 2(b) exhibit the dynamic evolution of Ohv

when the system is started from the OC, i.e., AFh2, at the
temperatures indicated in the figures. The power-law fits for
both layers were obtained from the data corresponding to the
temperature T OC = 1.082(2). The error bars were determined
as the neighboring temperatures where the evolution shows
tiny deviations from the power law due to the scaling function.

On the other hand, Figs. 3(a) and 3(b) display the time
evolution of O2

hv , when the system is quenched from the
DC, i.e., the paramagnetic phase. As in the OC case, the
power-law regime is attained at the temperature T DC =
1.082(2) and the error was estimated using the same
procedure.

The fact that T OC coincides with T DC suggests a continu-
ous phase transition between the AFh2 and TL phases. Thus,
T = 1.082(2) can be interpreted as the critical temperature Tc

of this transition. Furthermore, the exponents fitted for Ohv

and O2
hv can be identified as the STD dynamic exponents, β

νz
and γ

νz , according to Eqs. (7) and (11), respectively. They are
listed in Table I. This assumption is supported by the behavior
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FIG. 2. Dynamic evolution of Ohv (t ) for layers 1 (a) and 2 (b) at
the temperatures stated in the legend, when the system was ini-
tialized from OC. The power-law fits are indicated by solid lines
and correspond to T OC = 1.082 for both layers, while deviations
from this behavior are clearly observed, allowing us to define the
error bars.

of the susceptibility measured from the OC also at Tc = 1.082,
which is displayed in Figs. 4(a) and 4(b) for layers 1 and 2,
respectively. In fact, the data can be well fitted by Eq. (8)
and the exponents present a difference smaller than 3% with
respect to the values obtained from the O2

hv evolution. The
estimated Tc is higher than that reported for the transition
h1-TL of the monolayer with δ = 1 [22] and for NM-TL
exhibited by the monolayer with δ = 2 [24] (see Table I and
Fig. 5) that are associated with J1 and J2, respectively. There-
fore, an IEC whose strength is the average of the intralayer
ferromagnetic exchange constants stabilizes the stripe phase,
allowing the presence of the orientational order at higher T .
Furthermore, this IEC value may suppress the intermediate
NM phase between the h2 and TL phases in layer 2. Moreover,
the transition AFh2-TL is performed by a simultaneous loss of
the orientational and positional order in direct way without a
NM intermediate phase.

Figure 6 exhibits the dynamic evolution from the initial OC
at Tc = 1.082 of the Binder cumulant, U (t ), and logarithmic
derivative of the orientational order parameter evaluated at the
critical point, D(t ). The data were fitted with Eqs. (9) and (10),
for U (t ) and D(t ), respectively. The obtained exponents are
also included in Table I.

By combining the STD exponents corresponding to the
initial OC (AFh2) with d = 2, the dynamic and static crit-

FIG. 3. Time evolution of O2
hv for layers 1 (a) and 2 (b) at

the stated temperatures when the system was initialized from DC.
The power-law fits are indicated by solid lines and correspond to
the temperature T DC = 1.082 for both layers. In addition, the closest
temperatures allow us to determine the error bars.

ical exponents z, ν, γ , and β can be calculated for each
layer. These values are displayed in Table II, together with
those calculated for the monolayer with δ = 1. As shown in
Table II, the critical exponents γ and ν are the same within
error bars for both layers. On the other hand, the values of the
exponents z and β obtained for each layer differ by about 5%
and 7%, respectively. This result is indicative that similar crit-
ical behavior occurs in both layers. By focusing the attention
on layer 1, its critical exponents significantly differ from those
calculated for the monolayer with δ = 1. This reflects that the
IEC with layer 2 leads not only to stabilize the orientational
order with an h2 phase at higher temperatures but also to alter
its critical behavior.

B. Phase transitions for IEC J3 = −1.0

By using the previously described procedure, the equi-
librium spin configurations at different temperatures were
obtained. The results show the AFh2 phase at low temper-
atures and the TL one at T � 1.0. On the other hand, a
similar STD behavior of the observables was obtained (not
shown for the sake of space). Indeed, the dynamic relaxation
of Ohv from the AFh2 phase (OC) exhibits a power law at
T OC = 1.012(4) for both layers. In turn, O2

hv presents the best
power law at T DC = 1.008(4), when the system is quenched
from DC. These temperatures are the same within error bars,
which is a hallmark of the continuous phase transition at
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FIG. 4. Log-log plots of the susceptibility χ (t ) at the critical
point Tc = 1.082, when the system was initialized from OC (AFh2)
for (a) layer 1 and (b) layer 2. The solid lines correspond to the fit of
data with Eq. (8).

Tc = 1.012(4). Furthermore, the estimated Tc is again larger
than the transition temperatures to TL fase of both δ = 1 and
δ = 2 monolayer cases but smaller than that of J3 = −1.5 case
(see Table I and Fig. 5). This means that a IEC of magnitude
J3 = −1.0 still favors the presence of the orientational order
at larger temperatures. As will be discussed in Sec. IV D this
transition could be related with a NM-TL.

In order to calculate the critical exponents, Table I reports
the estimated values of the STD exponents. For layer 2, the
values of the exponent γ

νz obtained from both initial conditions
(OC and DC) are very close. On the other hand, for layer 1,

FIG. 5. Critical temperatures obtained by using the STD analysis
from AFh2 initial configuration for (a) layer 1 and (b) layer 2. The
corresponding phase transitions are indicated in the legend. The
figure also shows the monolayers data with δ = 1 and δ = 2, taken
from Refs. [22,24].

the difference between these exponents is about of 5%. This
result supports the continuous character of the transition to TL
phase.

Table II presents the calculated critical exponents from
STD. As can be observed, the exponents γ and ν are the same
within the error bars, while z and β present departures larger
than J3 = −1.5 case. This result suggests a similar critical
behavior for both layers. Moreover, all estimated critical ex-
ponents are smaller than those calculated for J3 = −1.5. In

TABLE I. Critical temperatures and STD exponents for the investigated values of J3. For the sake of comparison, the critical temperatures
and STD exponents of the monolayer model with δ = 1.0 are also reported [22]. In addition, the KT temperatures of both h2-NM and NM-TL
phase transitions are exhibited for the monolayer case corresponding to δ = 2.0 [24]. More details are presented in the text.

Model Tc
β

νz
γ

νz
1
νz

d
z

J3 Layer OC DC OC OC DC OC OC

−1.5 1 1.082(2) 1.082(2) 0.0423(4) 0.546(5) 0.561(4) 0.457(3) 0.626(5)
2 1.082(2) 1.082(2) 0.0419(4) 0.594(4) 0.571(4) 0.501(4) 0.671(5)

−1.0 1 1.012(4) 1.008(4) 0.0447(2) 0.598(7) 0.643(7) 0.590(6) 0.691(6)
2 1.012(4) 1.008(4) 0.0442(2) 0.682(4) 0.669(7) 0.653(5) 0.770(5)

−0.5 1 0.883(1) 0.882(2) 0.0212(2) 0.235(6) 0.31(4) 0.49(1) 0.277(6)
2 0.883(1) 0.880(2) 0.0212(2) 0.586(4) 0.671(5) 0.577(6) 0.639(5)

Monolayer δ = 1.0 0.395(1) 0.396(2) 0.0804(5) 0.740(8) 0.747(5) 0.552(6) 0.903(8)
Monolayer δ = 2.0 0.774(2) and 0.805(5) – – – – –
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TABLE II. Critical exponents calculated from STD exponents of the transition to TL phase, obtained from initial OC for each layer. The
corresponding results of the monolayer system with δ = 1 are also displayed [22].

J3 Layer z ν γ β

−1.5 1 3.19(3) 0.685(7) 1.19(2) 0.093(1)
2 2.98(2) 0.670(8) 1.19(2) 0.084(1)

−1.0 1 2.89(3) 0.586(8) 1.01(2) 0.076(1)
2 2.60(2) 0.590(6) 1.04(1) 0.068(1)

−0.5 1 7.2(2) 0.283(8) 0.48(2) 0.043(1)
2 3.13(2) 0.554(7) 1.02(1) 0.037(1)

Monolayer δ = 1.0 2.21(2) 0.82(1) 1.34(2) 0.146(2)

this way, the results are indicative of a weak universality in
the AF-MID model.

C. Phase transitions for IEC J = −0.5

The equilibrium spin configurations at different temper-
atures are exposed in Fig. 7. As in the previous cases, the
system exhibits the AFh2 phase at low temperatures, but at
larger values of T some differences in the behaviors of the
layers appear. In fact, at T ∼ 0.80, layer 2 begins to lose
the positional order but the orientational one is conserved,
indicating a transition to a possible NM phase. On the other
hand, layer 1 begins to exhibit positional disorder at T ∼ 0.5
(not shown). Even if exists an evident orientational order at
T ∼ 0.80, the presence of a NM phase cannot be assured. By
increasing the temperature even more, the orientational order
is also lost, and at T = 0.9, the existence of a TL phase is
clear in both layers.

The dynamic evolution of Ohv (t ) from the OC, is quite sim-
ilar to the former investigated cases. In fact, Figs. 8(a) and 8(b)
show that the best power-law behavior was determined to be at

T OC = 0.883(1) for both layers. The error bars were assessed
by following the previously described procedure. Figures 9(a)
and 9(b) show the time evolution of O2

hv (t ), when the system
is quenched from the DC initial condition. A critical regime
is observed and the best power-law behavior was obtained
at T DC = 0.882(2) for layer 1 and at T DC = 0.880(2) for
layer 2. These temperatures match within error bars with that
obtained for Ohv (t ). As a consequence, this result is indicative
of a continuous phase transition to the TL phase. Also, this
transition temperature is lower than those of the previous J3

cases but remains higher than that corresponding to NM-TL
transition displayed by the monolayer with δ = 2.

However, at lower temperatures, O2
hv does not show the

characteristic deviations due to the scaling function that were
already observed for the previous cases. Instead, Fig. 10
shows that this observable displays a power-law behavior in
the interval 0.55 � T � 0.84, with exponents that increase
with T , as shown in Fig. 11. As mentioned in Sec. III,
this dynamic behavior is considered a signature of a KT
phase transition since the system remains critical for all tem-
peratures below the transition temperature TKT [24,48]. The

FIG. 6. Log-log plots of the time series of U (t ) and D(t ) at the critical point, Tc = 1.082, of J3 = −1.5 from OC. [(a) and (c)] Layer 1 and
[(b) and (d)] layer 2. The solid lines indicated the fits of data with Eqs. (9) and (10).
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FIG. 7. Equilibrium spin configurations obtained after 107 MCS
of layers 1 (upper row) and 2 (lower row) at different tempera-
tures, as indicated in the respective legends. The data correspond
to J3 = −0.5.

snapshot of layer 2—exhibited in Fig. 7—shows at T = 0.87
the orientational order characteristic of NM phase, so the KT
transition would occur between this phase and the ordered
AFh2. In the following section, the study of the spatial cor-
relation and autocorrelation functions will allow us to identify
the intermediate phase as an NM one. The exposed results in
Figs. 10 and 11 suggest that the transition AFh2-NM is of the
KT type with a transition temperature TKT � 0.84, because

FIG. 8. Dynamic evolution of Ohv (t ) at the temperatures indi-
cated in the legend, when the system was initialized from OC.
(a) Layer 1 and (b) layer 2. The best power-law fits with Eq. (7),
indicated with solid lines, were found for T OC = 0.883 in both lay-
ers, while deviations from this behavior can clearly be observed.

FIG. 9. Time evolution of O2
hv at the indicated temperatures when

the system was initialized from DC. (a) Layer 1 and (b) layer 2.
The best fits with Eq. (11), indicated with solid lines, correspond
to the temperatures T DC = 0.882 and T DC = 0.880 for layers 1 and
2, respectively.

it is the last temperature where the power-law behavior of
O2

hv is observed. It is important to note that a similar dynamic
behavior was already observed in the monolayer system with
δ = 2. However, in that case, both phase transitions (h2-NM
and NM-TL) were reported are KT type [24]. Here the value
of the IEC may be responsible for changing the character of
the transition NM-TL, i.e., from KT to continuous for layer 2.

Regarding layer 1, the lack of positional order prevents
to be conclusive about the presence of an NM phase in the
neighborhood of KT transition (see upper row of Fig. 7).
This may be due to the IEC low value, which is not large
enough to keep the positional order in the h2 phase with the
increase of the thermal fluctuations, like in the former IEC
values. Nevertheless, a noticeable orientational order can still
be detected without a clear antiferromagnetic-coupled config-
uration between layers. So the IEC should be meant as a weak
external magnetic field applied to layer 1, whose direction is
regulated by the NM phase in layer 2. This field competes
with thermal fluctuations, leading to small ordering. Finally,
layer 1 presents a TL phase that mixes spin domains of widths
h = 1 and h = 2 without any sign of AF coupling. In the next
section, this subject will be discussed based on the study of
the spatial correlation functions.

Furthermore, if the theoretical values of ν = 0.5 and η =
0.25 for KT transition are used in the hyperscaling rela-
tionship γ

ν
= (d − η), then the dynamic exponent z can be
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FIG. 10. Log-log plot of the O2
hv time evolution for (a) layers 1

and (b) layer 2 at the indicated temperature, when the system was
initialized from DC. The data were multiplied by the same factor for
the sake of clarity. The fits with power laws are indicated with solid
lines. More details in the text.

estimated for the AFh2-NM transition since μ = γ

νz for T =
0.84 (see Fig. 11). The obtained values are z = 1.42(1) and
z = 1.357(5) for layers 1 and 2, respectively. These are close
to the estimated for the h2-NM transition in the monolayer
with δ = 2, i.e., z = 1.57(2) [24].

Coming back to the critical behavior of the transition to TL
phase, Table I reports the critical temperatures and the STD
exponents obtained from the fit of time series of Ohv (t ), χ (t ),
U (t ), and D(t ) at T OC = 0.883 and O2

hv (t ) at T DC = 0.882.
As can be observed, there is a noticeable difference between
the values of γ

νz obtained by the fits of O2
hv (t ) and χ (t )

from the DC and OC initial conditions, respectively. This
discrepancy may be related to the proximity of the KT
transition that interferes the continuous transition by affecting
the correlations developing from each initial condition.
Table II summarizes the critical exponents calculated from
the STD exponents. For layer 2, the static exponents β

and ν follow a decreasing trend with J3, while γ remains
closer to the value corresponding to J3 = −1.0. Besides, the
dynamic exponent z remains near 3, which is close to the
h2-TL values reported for the monolayer system in the with
1.23 � δ � 1.9 range [23]. On the other hand, the exponents
of layer 1 are significantly different from those of layer 2.
The estimated value of the z exponent indicates a strong
slowing down in the dynamics of layer 1. As mentioned,
J3 = −0.5 is insufficient to ensure the positional order in
layer 1 and the antiferromagnetic coupling between layers at

FIG. 11. STD exponents of O2
hv for layers (a) 1 and (b) 2 in

the interval 0.55 � T � 0.84. The STD exponents of the continuous
phase transition to TL phase are also shown.

temperatures T > 0.882. Moreover, the monolayer with the
same parameters is already in the TL phase at temperatures
where the positional disorder begins to be observed in the
AF-MID. So the slowing down in the dynamics could be
consequence of the competition between the weak local field
generated by layer 2 and thermal fluctuations.

D. Correlations

In this section, the results related to the spatial corre-
lation and time autocorrelation functions are exhibited and
discussed. Since the system presents ordered anisotropic
phases, it is mandatory to study the longitudinal and transver-
sal correlation functions, i.e., parallel and perpendicular to the
spin stripes, respectively. These functions are defined as:

Cx(r) = 1

N

〈∑
y

∑
x

s(x + r, y)s(x, y)

〉
, (13)

Cy(r) = 1

N

〈∑
x

∑
y

s(x, y + r)s(x, y)

〉
, (14)

where the subscripts y and x are designated as the longitudinal
and transversal directions, s is the spin variable on each layer
[σ or S, see Eq. (1)], and r is the distance between the spins
at positions (x + r, y) or (x, y + r) and (x, y). It is important
to remark that the measurements of Eqs. (13) were performed
once the system reached equilibrium states. The angle brack-
ets indicate realization averages.
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FIG. 12. Spatial correlation functions Cy(r) and Cx (r) corresponding to J3 = −0.5, and temperatures [(a) and (c)] T = 0.87 and [(b) and
(c)] T = 0.90. The fits of the data with functions fx (r), fy(r), and g(r) (defined in the text) are indicated with solid lines.

Figure 12 presents the behavior of the correlation functions
at two temperatures, T = 0.87 [Figs. 12(a) and 12(c)] and
T = 0.90 [Figs. 12(b) and 12(d)], for IEC J3 = −0.5.

Figure 12(a) shows the transversal correlations Cy(r),
which can be fitted with oscillating functions modulated with
exponential decays, i.e., fy(r) = A0e−r/ξ sin[k(r + φ)], where
A0 is the amplitude, ξ is the spatial correlation length, φ is
the phase shift, and k = π

2 since the stripe width is h = 2.
The estimated parameters are ξ = 39(2) [ξ = 37(2)] lattice
units A0 = 0.27(1) [A0 = 086(3)] and φ = −0.89(1) [φ =
−0.86(3)] for layer 1 (layer 2). Figure 12(c) presents Cx(r)
data that are well fitted with power law fx(r) ∼ r−ω, with
exponent ω = 0.080(2) [ω = 0.093(2)] for layer 1 (layer 2).

The fact that longitudinal correlations decay algebraically
while transversal correlations do it exponentially suggests that
the orientational order is preserved, but positional ordering
is lost. These features allow us to classify the intermediate
phase between AFh2 and TL as NM, according to the
theoretical approach by Abanov et al. [55] and observed in
the Monte Carlo simulations perfomed in Refs. [19,24] for the
monolayer with δ = 2. Regarding the difference between the
amplitudes (A0) estimated for both layers, it may reasonably
be linked to the major positional disorder exhibited by layer 1.

Figures 12(b) and 12(d) display the correlation functions
at T = 0.90, i.e., in the TL phase (see the last column of
snapshots in Fig. 7). The difference between the magnitudes
between layers is also evident, but Cx(r) ∼ Cy(r) of each
layer, unlike the NM phase. This finding is an indication
of the isotropic character of the TL phase. In view of this
result a single expression is proposed that contains both the
lack of orientational order and the oscillations characteristic
of this phase. So the proposed correlation function is g(r) =
e−x/ξ [A0 + A1sin(k(r − A2)] for both directions, where again
k = π

2 and Ai are fitting constants. As can be observed, the
data can be well fitted with the last function. The estimated

correlation length ranged in the interval 5.5 � ξ � 6.7 lattice
units, which is much smaller than in the transversal correlation
lengths of the NM phase.

The short-time behavior of the autocorrelation function
A(t ), defined in Eq. (12), is displayed in Fig. 13. This function
exhibits, for both layers, a power-law behavior up to T =
0.84, like O2

hv in Fig. 10. Furthermore, the estimated exponent
λ also increases with T , as shown in the inset. The fact that
both A(t ) and O2

hv (t ) behave similarly up to the same temper-
ature suggests that the system remains critical (see Ref. [48]),
supporting the conjecture about a Kosterlitz-Thouless transi-
tion between the AFh2-NM phases. It is important to mention
that the same analysis was performed on the systems with the
other J3 IEC values, but similar behaviors on the correlations
(spatial and autocorrelation) were found only for J3 = −1.0.
So the NM intermediate phase seems to emerge after a KT
transition at low values of the interlayer coupling. In this way,
Abanov et al. have predicted that the stripe orientational order
could support topological excitations, as bound dislocation
pairs with opposite Burger vectors, which proliferate when
the temperature increase until TKT. From this temperature, un-
bound dislocations multiply, producing the lack of positional
order. The authors also guess that the NM phase is stable over
a finite range of temperatures until orientational order disap-
pears and the disordered TL structure emerges. So the bound
and unbound dislocation pairs would play a similar role to the
well-known bound and unbound vortices in the XY models.

V. CONCLUSIONS

Synthetic antiferromagnets in thin-film geometries are the
object of intensive research with the aim of better understand-
ing their magnetic and thermal properties. The description of
these systems should take into account that they are composed
of ferromagnetic multilayers, with an antiferromagnetic IEC
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FIG. 13. Log-log plots of the autocorrelation function versus
time of (a) layer 1 and (b) layer 2 corresponding to J3 = −0.5 for
the temperatures indicated in the legend. The solid lines indicate the
fits of the data with Eq. (12). The inset shows the exponent λ as a
function ot the temperature.

provided by the spacer layer. The strength of IEC can be
controlled by the thickness of the spacer. In particular, multi-
layers that exhibit a strong perpendicular anisotropy have been
modeled by layered Ising spins with antiferromagnetic IEC.
However, when the multilayer also displays stripe domains,
the dipolar interaction plays a fundamental role in the energy
balance, so it must be included in the Hamiltonian.

In the present work, multilayer systems formed by two
strong-anisotropic ferromagnetic layers that exhibit stripe
domains at low temperatures, separated by a nonmagnetic
spacer, were studied using Monte Carlo simulations. The sys-
tems were modeled by an Ising-like Hamiltonian with dipolar
and ferromagnetic exchange intralayer interactions and anti-
ferromagnetic IEC (AF-MID). For the ferromagnetic layers,
identified by 1 and 2, the exchange and dipolar constants
were selected as J2 = 2 and g1 = g2 = 1 relative to J1 that
correspond to δ1 = 1 and δ2 = 2, respectively. In the case of
the monolayers, these parameters match the ground states h1

and h2 that are characterized by stripe domain widths h = 1

and h = 2, respectively. For the sake of simulating different
thicknesses of the nonmagnetic spacer, different IEC con-
stants were considered (J3 = −0, 5,−1.0, and −1.5).

The results show that IEC alters the energy balance that
controls the stripe domain formation. Due to this, the obtained
ground state was the in-plane h2 phase and out-of-plane anti-
ferromagnetic coupled one (AFh2), minimizing the interlayer
energy for all studied IEC. In this way, two competing reversal
modes are developed under thermal fluctuations. One of them,
the IEC-dominated regime (J3 = −1.5), where AFh2 phase
losses simultaneously both orientational and positional order
by a continuous phase transition to TL. The other one, the
dipolar-dominated regime (J3 � −1.0), where the first AFh2

loses the positional order, leading to an intermediate NM
phase through a KT-type transition, and subsequently the ori-
entational order is missing via a continuous phase transition
to the TL phase. As consequence, the last regime presents
the same phase transitions that the monolayer with δ = 2, but
exhibiting a continuous character for the NM-TL transition.
On the other hand, this IEC value is insufficient to keep the
positional order in layer 1 above the critical temperature h1-
TL of the monolayer with δ = 1. However, a detailed study of
the spin correlation functions confirm the presence of an NM
phase.

Concerning the critical behavior, the same critical temper-
ature is found for all the layers. The obtained values increase
with the absolute value of J3 and remain larger than those
corresponding to the monolayers with δ = 1 or δ = 2. Con-
sequently, the thermal stability of the ordered phase enhances
with |J3|, in agreement with previous results of the short-range
models. On the other hand, the set of critical exponents of
the continuous phase transitions differ from both estimated
for the monolayer and for the three different values of J3.
This last result indicates a weak universality. Furthermore,
for J3 = −0.5 the layer decoupling is also evident by the
significant difference between the critical exponents obtained
for each layer.

As a final thought, the AF-MID model could be useful for
modeling systems whose properties can be controlled well
via advanced thin-film deposition techniques. Also, it can
be applied as a tool for tailoring the different energy terms
studying the effects of the competition between interactions.
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