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During the intercalation of lithium in layered host materials such as graphite, lithium atoms can move within
the plane between two neighboring graphene sheets, but cannot cross the sheets. Repulsive interactions between
atoms in different layers lead to the existence of ordered phases called “stages,” with stage n consisting of one
filled layer out of n, the others being empty. Such systems can be conveniently described by a multilayer Cahn-
Hilliard model, which can be seen as a mean-field approximation of a lattice-gas model with intra- and interlayer
interactions between lithium atoms. In this paper, the dynamics of stage formation after a rapid quench to lower
temperature is analyzed, both by a linear stability analysis and by numerical simulation of the full equations. In
particular, the competition between stages 2 and 3 is studied in detail. The linear stability analysis predicts that
stage 2 always grows the fastest, even in the composition range where stage 3 is the stable equilibrium state. This
is borne out by the numerical simulations, which show that stage 3 emerges only during the nonlinear coarsening
of stage 2. Some consequences of this finding for the charge-discharge dynamics of electrodes in batteries are
briefly discussed.
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I. INTRODUCTION

The advent of portable consumer electronics in the 1970s
has boosted the research on lithium batteries, leading in 1991
to the first commercialization by Sony and Asahi Kasei of a
rechargeable lithium-ion battery (LIB), with graphite at the
negative electrode and LiCoO2 at the positive electrode [1,2].
Beyond the portable electronic devices market, LIBs are now
successfully used for electromobility and are considered as
a technology of interest for stationary energy storage [3].
Current research investigates a large variety of LIB active
materials and postlithium ion concepts to meet the demand for
better performing and safer storage technologies [4]. Never-
theless, graphite still remains the dominant negative electrode
material in commercial cells [5]. It has the benefit of being
abundant and cheap, to have an excellent cycling capacity, a
low thermodynamic potential and a decent specific capacity
of 372 mAh/g. However, it also has some well-known lim-
itations, such as its slow kinetics, solid-electrolyte interface
(SEI) formation upon cycling, and lithium plating upon fast-
charge [6]. A better understanding of its intrinsic properties is
necessary to overcome these problems.

Graphite is a lamellar material made of two-dimensional
graphene layers stacked upon each other and linked by rel-
atively weak van der Waals forces. Lithium ions can be
reversibly intercalated in between adjacent graphene layers
[7–9], but the diffusion of lithium across the graphene layer is
highly unlikely [10–13]. For high enough lithium concentra-
tion, a staging phenomenon occurs: lithium ions form ordered
structures with filled layers regularly separated by empty ones
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[14]. These structures are referred to by a stage number, stage
n meaning that one out of every n galleries is filled, with the
others being empty. The different stages correspond to or-
dered phases of the layered structure, and coexistence between
different stages is possible. During charge and discharge, a se-
quence of stages occurs, and the voltage-charge curve exhibits
plateaux during the replacement of one stage by another one.

There is a large consensus with regards to the structures
of lithiated graphite at high lithium concentrations [15,16].
In contrast, for low lithium concentrations, i.e., stages with a
number higher than 2, there is an ongoing discussion about
the precise compositions and structure of the stages [7–9].
Moreover, a hysteresis between charge and discharge is also
reported both in the entropy measurement [17] and in the
structural evolution between the stages [18–21]. Indeed, dur-
ing lithiation the sequence is pure graphite, dilute stage 1,
stage 3L, stage 2, and stage 1, whereas during delithiation
a stage 2L can be observed between stage 2 and 3L. Here,
the denomination L stands for “liquidlike,” in reference to
the absence of lithium ordering in the plane between the
graphene layers. For a good description of these transitions,
a model is needed that captures all the different stages with
their respective symmetries, in particular stage 3.

The representation in which a layer is completely full or
empty, known as the Rüddorf-Hofmann model [14], cannot
explain the kinetics of staging transitions between stages with
even and odd numbers, for example, between stages 2 and
3. This is because, as lithium migration from one layer to
another can occur only at the edges of the graphite particles
or at grain boundaries, the Rüddorf-Hofmann representation
would require an entire gallery to be emptied or filled for this
transition to occur. Five decades ago, Daumas and Herold [22]
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FIG. 1. Illustration of graphite staging structure based on the
Daumas-Hérold representation. Black lines represent graphene
planes and gray domains the lithium islands. Stage 2 is represented
on the left and stage 3 on the right together with the interactions
between lithium atoms.

proposed the domain model, where the lithium ions occupy
the galleries as islands, locally maintaining the staging. This
structure in islands is schematically illustrated in Fig. 1 with
a coexistence of two regions, one in stage 2 on the left and
one in stage 3 on the right. The fact that graphite tends to
phase-separate into these Li-rich and Li-poor regions is a key
element to understand the kinetics of stage transitions and will
affect both the lithium transport inside the graphite particles
and the lithium insertion at its surface [23,24]. A model able
to capture the formation of these Li-rich and Li-poor domains
is therefore necessary to study the dynamics of the transition
between stages 2 and 3.

Diffuse-interface models based on the physics of first-order
phase transitions [25–27] have been widely used to study
phase-separating systems [28,29]. They naturally capture do-
main formation and interface motion, and work on diffusive
timescales. In the field of LIBs, renewed attention has been
given to these approaches for their ability to predict and sim-
ulate phase separation in two-phase materials such as LFP
[30–35]. To capture staging in intercalation compounds, a
multilayer diffuse-interface model has been developed in the
1980s [36,37]. In this approach, the concentration of lithium
in each gallery is treated by a separate evolution equation. The
model considers attractive in-plane interactions and repulsive
interplanar interactions between intercalants. A mean-field
approximation is then used to obtain a free-energy model.
It contains a square-gradient energy term for each layer that
arises from the attractive in-plane interactions.

This multilayer diffuse-interface framework is an attrac-
tive tool to analyze multiphase lamellar LIB active materials
such as graphite. Hawrylak and Subbaswamy [38] simulated
a six-layer system and demonstrated the intrinsic tendency
of the system to form Daumas-Herold islands and its ability
to transition between stages 2 and 3. More recently, using
a bilayer model, Bazant et al. [24,39,40] have studied the
dynamics of intercalation between three stable phases, stage
1′ (dilute solid solution), stage 2, and stage 1, and compared
it to the direct optical imaging from Guo et al. [40]. They
highlight the occurrence of “checkerboard” domains which
cannot be captured by solid-solution models based on Fick-
ian diffusion. Such models can be refined in various ways
to yield a more quantitative description of specific systems.

For instance, the free-energy model of Hawrylak and Sub-
baswamy [38] leads to the formation of a stage 3/2 which
has two full layers and one empty and is thus symmetric to
the stage 3 (through an exchange of full and empty layers).
Such a stage is, however, not observed in the experiments on
graphite. Chandesris et al. [41], showed that the asymmetry
of the graphite phase diagram can be captured by introducing
a continuous screening effect for the repulsive interaction
between second neighbours. The resulting model predicts the
formation of the staged phases 2 and 3, without the occurrence
of the 3/2 stage. Agrawal and Bai [42] used the two-layer
model of Bazant et al. [24,39] in a multiscale simulation
framework to describe charge and discharge of a compos-
ite electrode containing many graphite particles. Given the
computational cost associated to the multilayered phase-field
approach, some authors [24,43–46] also developed reduced
phase-field models to capture some of the features of the phase
transforming behavior of lithiated graphite while studying the
coupling with the other transport phenomena at the electrode
scale and the consequences during fast charge.

The latter references go beyond a simple use of multilayer
phase-field models. Indeed, the electrode of a real battery
has a complex architecture, and different transport processes
occur in series during the charge-discharge process: lithium
atoms have to be transported through the electrolyte, then
enter the active material, which can have itself a complex
and polycrystalline microstructure, through an intercalation
reaction at the surface, and finally migrate inside the particles
of the active material. Each of these transport processes occurs
on a different scale and exhibits different complexities, so
that multiscale and multiphysics modeling are required for
a holistic modeling of battery operation [43–49]. However, a
more detailed knowledge on each of the sub-processes is also
needed for a precise description.

Whereas the transition between stages 2 and 1 at high
lithium concentration is certainly more relevant for the op-
timization of battery electrode operation in the fast charging
regime [46], the competition between stages 2 and 3 at low
lithium concentration remains a poorly understood problem
that is interesting from a fundamental point of view and might
impact other aging mechanisms induced by internal mechani-
cal stress and concentration-dependent side reactions. To shed
new light on this question, we deliberately choose to focus on
a particularly simple situation: the spinodal decomposition of
a homogeneous unstable initial state, without external driving,
in a one-dimensional stack of graphite without defects or
grain boundaries. The great advantage of this setting is that
it can by analyzed analytically by a linear stability analysis.
Hawrylak and Subbaswamy [38] mention such an analysis,
but do not provide any details. Agrawal and Bai [42] perform a
linear stability analysis in the context of open driven systems,
taking into account local interfacial currents. But since the
underlying model has only two-layers, the growth rate of the
stage 3 inside the particle cannot be captured. In conclusion,
no complete treatment of this question is as of yet available.

Here, we lay out a general formulation for the stability
analysis of multilayer staging models without external driv-
ing, and apply it to the model of Chandesris et al. [41]. The
analysis is carried out in terms of normal modes, so that any
stage that is compatible with the symmetries of the system can
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appear. Therefore, competition between stages 2 and 3 can be
studied in systems with a number of layers that is a common
multiplier of 2 and 3; we choose the smallest such number,
which is six. We confirm a statement already made by Hawry-
lak and Subbaswamy [38], namely, that stage 2 grows faster
than stage 3, even for initial compositions for which stage 3 is
the thermodynamically stable state. We conduct a systematic
parametric study to ensure that this result is generic to all mod-
els that exhibit the experimentally observed staging sequence.
Numerical simulations are then carried out to verify this pre-
diction, and to study how the system approaches the correct
equilibrium by nonlinear domain-coarsening processes.

In the following, we will first introduce the model in
Sec. II, and then present the linear stability analysis in Sec. III.
In Sec. IV, numerical simulations are performed to test the
prediction on the linear stability analysis and to study the
transition from stage 2 to stage 3 during domain coarsening.
Some possible consequences of these findings for behavior
during charge and discharge are discusses in Sec. V, followed
by the general conclusion.

II. MODEL

We consider a system of Nz graphene layers stacked along
the z axis (See Fig. 1). Since lithium atoms cannot jump be-
tween layers, a separate concentration field is defined in each
layer. These fields are functions of the continuous coordinates
in the plane x and y [24,38].

A. Free-energy model

Let c j (x, y) be the local lithium concentration (in units
of mole per unit volume) in layer number j. We define the
scaled concentration c̃ j (x, y) = c j (x, y)/cmax, where cmax is
the maximum possible concentration in the layer for the
studied material. The latter can be related to the number of
possible intercalation sites per unit volume, NV , by NV =
NAcmax, where NA is the Avogadro number. The total Gibbs
free energy of the system, G, may be written in terms of local
volumetric free-energy density G, as

G =
∫

V
G dV

=
Nz∑
j=1

Lj

∫
S

[
1

2
κ (∇ c̃ j )

2 + g(c̃ j )

+ g(1)(c̃ j, c̃ j±1) + g(2)(c̃ j, c̃ j±1, c̃ j±2)

]
dx dy. (1)

Here, V is the volume of the material, and S and Lj are the sur-
face area and the thickness of one graphite layer. In this work,
we will neglect the volume dilatation due to intercalation
and take Lj = Lz as a constant independent of j. In the first
term of Eq. (1), the gradient operator is applied in the plane
(along directions x and y), and κ is a constant coefficient of
dimension energy per unit length. This is the gradient-square
term introduced by Cahn and Hilliard [25]. It describes the
energy penalty linked to any inhomogeneity in concentration
and arises from attractive in-plane interactions between the
lithium atoms.

The second term in Eq. (1) describes the thermodynamics
of a single layer. The simplest model that leads to phase

separation within a layer is the regular solution model that is
a mean-field approximation of the lattice gas model [29]:

g(c̃ j ) = NV {kBT [c̃ j ln(c̃ j ) + (1 − c̃ j ) ln(1 − c̃ j )]

+ �ac̃ j (1 − c̃ j ) + c̃ jμref}, (2)

where kB is the Boltzmann constant, and T is the temperature.
The first term in Eq. (2) is due to the configurational entropy
of full and empty intercalation sites, while the second term
results from the attractive interaction between lithium atoms
within the same plane, with �a being the corresponding inter-
action parameter. Finally, μref is a reference potential.

The last two terms of Eq. (1) arise from the interactions
between lithium atoms in different planes. The first-neighbor
interaction energy g(1) may be written as

g(1)(c̃ j, c̃ j±1) = NV
�b

2
(c̃ j c̃ j+1 + c̃ j c̃ j−1), (3)

where �b describes the interaction strength. Since this pa-
rameter is positive, it will cost energy to have high lithium
concentration in adjacent layers for a given position (x, y),
which will favor the appearance of stage 2.

Interlayer interactions of longer range are necessary to
obtain staging phenomena beyond stage 2. A simple repulsive
second-neighbor interaction of the form g(2) = �cc̃ j c̃ j+2, as in
[36,38] would favor stage 3. However, it was found that this
expression leads to a phase diagram that is symmetric with
respect to half-filling (c̃ j = 1/2): a new stage 3/2 appears,
in which two full layers are separated by a single empty
one [37,41]. Since this stage is not observed in experiments,
we therefore use a more complex expression for the second-
neighbor interactions which includes a continuous screening
effect introduced in a previous work [41]:

g(2)(c̃ j, c̃ j±1, c̃ j±2)

= NV
�c

2
[c̃ j (1 − c̃ j+1)c̃ j+2 + c̃ j (1 − c̃ j−1)c̃ j−2]. (4)

With this expression, high concentrations of intercalants in
the next-nearest-neighbor layers are energetically penalized,
except if intercalants are also present in between. The effect
of this screening can be assessed considering two limits:

(1) �c(1 − c̃ j+1) ≈ �c for low value of c̃ j+1, favoring the
formation of stage 3 at low lithium concentration;

(2) �c(1 − c̃ j+1) ≈ 0 for high value of c̃ j+1, favoring the
formation of stage 2 (instead of stage 3/2) at high lithium
concentration.

Interactions of longer range are mentioned in several pa-
pers [36–38]. As these interactions rapidly decrease with the
distance between layers and are not crucial to analyze transi-
tions between stage 2 and stage 3, they are neglected in the
present study.

B. Kinetics

The kinetic equations for the concentration fields are
formulated using the thermodynamic theory of irreversible
processes [25,28,50,51]. Since the atoms cannot jump from
one layer to another, each concentration field satisfies a con-
servation law,

∂ c̃ j

∂t
= −∇ · Jj, (5)
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where Jj is the flux of lithium atoms in layer j. This flux can
be expressed as

Jj = −Mc̃ j∇μ j, (6)

where μ j is the chemical potential in layer j. The latter is
defined as the variational derivative of the free energy with
respect to the concentration within this layer:

μ j = 1

cmax

δG

δc̃ j
. (7)

In Eq. (6), M is the mobility. Whereas a constant mobility is
used in some papers [38,41], we choose here an expression
that is consistent with diffusion of atoms on a lattice [24],

M(c̃ j ) = D

NAkBT
(1 − c̃ j ), (8)

with D being the tracer diffusivity in the dilute limit. Gather-
ing Eqs. (5)–(8), we have

∂ c̃ j

∂t
= ∇ ·

(
M(c̃ j )∇ δG

δc̃ j

)
, (9)

where we have defined

M(c̃ j ) = D

NV kBT
c̃ j (1 − c̃ j ). (10)

The factor c̃ j (1 − c̃ j ) ensures that there is no mass transport
when there is no lithium, and when the layer is completely
full.

III. THEORETICAL ANALYSIS

A. Phase diagram

For given interaction parameters, the phase diagram can
be determined by minimization of the free-energy functional
under the constraint of mass conservation. The details of this
procedure are described in Ref. [41]; therefore, we will sum-
marize here only the most important points.

For a single layer, the intralayer free energy g(c̃ j ) is a
double-well function due to the competition between config-
urational entropy and the attractive in-plane interactions of
strength �a. This leads to the coexistence of concentrated
and dilute domains in the same layer, with equilibrium com-
positions given by the common tangent to g(c̃ j ) [24,41]. For
multiple layers, the formation of the ordered stages is driven
by the repulsive interlayer interactions (illustrated by �b and
�c in Fig. 1). A given stage at equilibrium is characterized
by the co-existence of lithium-poor and lithium-rich domains.
Since all the layers are in contact with the same external
medium (the electrolyte), the chemical potential must be the
same in all layers. Therefore, the equilibrium compositions of
a given stage can again be determined by a double-tangent
construction. This also yields the equilibrium potential, which
can be different for each stage. The equilibrium compositions
also differ from the ones in a single layer.

The equilibrium between two different stages occurs when
their chemical potential and their grand potential, defined
as G(c) − μeqc, are the same. The coexisting stages have
different average compositions (filling fractions). For filling
fractions that fall in between these two values, the two stages

TABLE I. List of model parameters.

cmax 30 000 mol m−3

�a 64.3 meV
�b 23.1 meV
�c 4.1 meV
μref 0 J
κ 3 × 10−6 J m−1

D 1.25 × 10−12 m2 s−1

coexist, with volume fractions that are determined by the lever
rule.

In the following, we will use a parameter set that was
developed in Ref. [41], see Table I. The corresponding phase
diagram is presented in Fig. 2. With the screened second
neighbor interaction of Eq. (4), the phase diagram is not
symmetric. For mean filling fractions below 0.5, there are two
regions of phase coexistence: one for dilute stage 1/stage 3
and one for stage 3/stage 2. In contrast, for mean filling frac-
tions above 0.5, the only phase coexistence is between stage
2 and stage 1. At room temperature, 298 K, the sequence of
stages that occurs for increasing filling fraction is: dilute stage
1′, coexistence of stages 1′ and 3, pure stage 3, coexistence
of stages 3 and 2, pure stage 2, coexistence of stages 2 and 1,
and finally pure stage 1. When only one stage is present, the
equilibrium chemical potential is an increasing function of the
filling fraction; in contrast, during coexistence of two stages,
the potential remains fixed to its equilibrium value at phase
coexistence, and only the phase fractions change. Therefore,
the curve of potential versus filling fraction exhibits a plateau
whenever two stages coexist. Note that the quantity that is
usually measured is the electric potential, which is propor-
tional to the negative of the chemical potential. In the model,
the value of �a determines the concentration difference be-
tween dense and dilute domains and the width of the voltage
plateaus, whereas the interlayer interaction energies �b and
�c will influence the potential differences between the differ-
ent plateaus and the limits of phase coexistence. The orders
of magnitude of all the interaction parameters are similar to
previously reported values [24,30,39].

The maximum concentration of lithium cmax can be eval-
uated theoretically from the crystal structure or estimated
experimentally from the reversible capacity. The value used

FIG. 2. Phase diagram of lithium intercalated graphite with the
thermodynamic parameters of Table I.
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in this work, cmax = 30 000 mol/m3, falls within the range of
averaged values reported in the liiondb database for graphite
[52]. The value of the reference potential μref was set to
zero as it has no impact on the phase diagram. The values
of the gradient penalty coefficient and of the diffusivity will
be discussed later.

Compared to experimental phase diagrams close to room-
temperature [7,53,54], the predicted diagram does not capture
all the details at low average filling fraction and overestimates
the mean filling fraction of stage 3. This might be improved by
including longer-range lithium interactions [37] and/or more
complex interactions with the graphite structure [55]. These
more complex approaches, however, still need to demonstrate
their ability to fully describe the transitions occurring at low
filling fraction.

B. Spinodal decomposition

Spinodal decomposition is a spontaneous transition from
a single homogeneous but unstable phase into two phases
with lower free energy. It can be induced by a quench, that
is, the system temperature is rapidly changed. Even though
such experiments have, to our knowledge, not been reported
for intercalation materials, it is still instructive to analyze this
situation. Indeed, the initial stages of spinodal decomposition
can be understood analytically with the help of a linear stabil-
ity analysis.

To conduct such an analysis for our model, we consider a
system with periodic boundary conditions in the z direction.
Furthermore, in the following we simplify the calculations
by supposing that the concentration is invariant along the y
direction; the layers are thus one-dimensional. This represents
a cut through a graphite particle in a direction that is normal to
the particle-electrolyte interface and to the graphene planes.
The results of the stability analysis would be unchanged for
a full two-dimensional treatment because of the rotational
invariance within the planes. A particle of linear size L is
considered, with no-flux boundary conditions at both sides.

To make notations more compact, the expressions of the
interaction energies are rewritten as follows:

g(1)(c̃ j, c̃ j±1) = 1
2 [ f (1)(c̃ j, c̃ j+1) + f (1)(c̃ j, c̃ j−1)], (11)

with f (1)(c̃ j, c̃ j+1) = NV �bc̃ j c̃ j+1. Similarly, for the next-
nearest-neighbor interaction term, we write

g(2)(c̃ j, c̃ j±1, c̃ j±2) = 1
2

[
f (2)(c̃ j, c̃ j+1, c̃ j+2)

+ f (2)(c̃ j, c̃ j−1, c̃ j−2)
]
, (12)

with f (2)(c̃ j, c̃ j+1, c̃ j+2) = NV �cc̃ j (1 − c̃ j+1)c̃ j+1. Further-
more, in the following, ∂�mn f corresponds to the derivation
of f � times with respect to its first argument, m times with
respect to its second argument and n times with respect to the
third one, and ∂t is the regular time derivative.

With these notations, Eq. (9) combined with the free-
energy model of Eqs. (1)–(4) reads

∂t c̃ j = ∇ · M∇[−κ∇2c̃ j + g′(c̃ j ) + ∂10 f (1)(c̃ j, c̃ j+1)

+ ∂10 f (1)(c̃ j, c̃ j−1) + ∂100 f (2)(c̃ j, c̃ j+1, c̃ j+2)

+ ∂100 f (2)(c̃ j, c̃ j−1, c̃ j−2) + ∂010 f (2)(c̃ j−1, c̃ j, c̃ j+1)
]
.

(13)

To linearize this expression, we consider that all filling
fractions consist of fluctuations around an average initial com-
position c̄ that is the same for all layers:

c̃ j (x, t ) = c + δc̃ j (x, t ). (14)

Using Taylor series and neglecting all term that are nonlin-
ear in the perturbations (δc̃ jδc̃i etc.), the following system is
obtained:

∂tδc̃ j = ∇ · M∇[−κ∇2δc̃ j + g′′δc̃ j

+ ∂11 f (1)δc̃ j+1 + 2∂20 f (1)δc̃ j + ∂11 f (1)δc̃ j−1

+ ∂101 f (2)δc̃ j+2 + 2∂110 f (2)δc̃ j+1 + 2∂200 f (2)δc̃ j

+ ∂101 f (2)δc̃ j−2 + 2∂110 f (2)δc̃ j−1 + 2∂020 f (2)δc̃ j
]
,

(15)

where only the zeroth-order term is kept in the mobility,
and all the derivatives with respect to c̃ are evaluated at the
unperturbed concentration c̄. This equation can be written in
matrix form:

∂tδc̃ = Hδc̃, (16)

where δc̃ = (
δc̃1
...

δc̃Nz

) and H is the symmetric circulant matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C 0 · · · 0 C B

B . . .
. . .

. . . 0 C

C . . .
. . . C 0 0

0 . . . A B . . .
...

...
. . . C B . . . 0

0 0 . . .
. . . C

C 0 . . .
. . .

. . . B
B C 0 · · · 0 C B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

A =∇ · M∇(−κ∇2 + g′′ + 2∂20 f (1) + 2∂200 f (2) + ∂020 f (2) ),

(17)

B = ∇ · M∇(
∂11 f (1) + 2∂110 f (2)) (18)

C = ∇ · M∇∂101 f (2). (19)

The circulant structure is due to the invariance of the system
with respect to discrete translation along z by one layer.

The system (16) is a partial differential equation with a
time derivative on the left-hand side and space derivatives on
the right-hand side. Separation of variables then yields that the
solution is exponential in time. Furthermore, the translation
invariance in space implies that the spatial solution can be
expanded in terms of plane waves. Therefore, the general
solution is of the form

δc̃(x, t ) =
Nz−1∑
m=0

+∞∑
n=−∞

1

2

(
amneiknxeωm (kn )tvm + c.c.

)
, (20)

where vm are the eigenvectors of the matrix H , kn = 2πn/L
is the wave number along x (the discrete values are due to
the finite system size), ωm(kn) is the growth rate associated
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to the eigenvector vm and wave number kn, and amn are the
amplitudes of each mode. In the following, we will assume
that the system size L is large enough for the kn to form a
quasicontinuum, and drop the index n. With these notations,
the growth rates are directly related to the eigenvalues λm of
the matrix H :

ωm(k) = λm(k). (21)

The number of different eigenvectors equals the number of
layers. The eigenvectors of a circulant matrix are the discrete
plane waves along z:

vm = 1√
Nz

⎛
⎜⎜⎜⎜⎜⎜⎝

1

exp
(

2iπm
Nz

)
...

exp
( 2iπm(Nz−1)

Nz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

Introducing the solution (20) in the system (16), we can
express the coefficients A, B, and C of the matrix as function
of the wave number k:

A(k) = −Mk2
(
κk2 + g′′ + 2∂20 f (1) + 2∂200 f (2) + ∂020 f (2)

)
,

(23)

B(k) = −Mk2
(
∂11 f (1) + 2∂110 f (2)

)
, (24)

C(k) = −Mk2∂101 f (2). (25)

As the matrix H is a symmetric circulant matrix, the expres-
sion for the eigenvalues is easy to find and reads

λm(k) = A(k) + 2B(k) cos
2πm

Nz
+ 2C(k) cos

4πm

Nz
. (26)

Although the number of layers in a graphite particle may
be very large, we can consider a much smaller number of
layers in the analysis depending on the number of stages we
want to study. In the following, to detail the expressions of
the different growth rates, we consider Nz = 6 layers which
is compatible with the appearance of both stages 2 and 3. It
is useful here to detail the relations between eigenvectors and
stages, and to label the growth rates by the stage number rather
than the index of the eigenvalue.

The eigenvector associated to the mode m = 0 is uniform
(all elements are 1). The corresponding growth rate therefore
describes the evolution of the local average concentration.
Since this has the same symmetry as stage 1 (all layers behave
the same way) we label the corresponding growth rate with
index 1:

ω1(k) = A + 2B + 2C

= −Mk2

{
κk2 + NV

[
kBT

c̄(1 − c̄)

− 2�a + 2�b − 2�c(3c̄ − 1)

]}
. (27)

The modes m = 1 and m = 5 are degenerate due to the up-
down symmetry. The corresponding eigenvectors correspond
to discrete plane waves, in the z direction, of wavelength 6Lz,

FIG. 3. Growth rates for the different stages for an average
composition of c̄ = 0.3, a temperature of T = 298 K and the ther-
modynamic parameters of Table I.

propagating in the positive and negative z direction, respec-
tively. Therefore, these modes would correspond to a stage 6,
which does not appear in the phase diagram. The correspond-
ing growth rate is

ω6(k) = A + B − C

= −Mk2

{
κk2 + NV

[
kBT

c̄(1 − c̄)

− 2�a + �b − �c(c̄ + 1)

]}
. (28)

Similarly, the modes m = 2 and m = 4 are also degenerate,
and the corresponding eigenvectors are discrete plane waves
of wavelength 3; these modes are therefore associated with
stage 3, and their growth rate is

ω3(k) = A − B − C

= −Mk2

{
κk2 + NV

[
kBT

c̄(1 − c̄)

− 2�a − �b + �c(3c̄ − 1)

]}
. (29)

Finally, the last mode, m = 3, has an eigenvector proportional
to (−1) j and corresponds to stage 2, with a growth rate of

ω2(k) = A − 2B + 2C

= −Mk2

{
κk2 + NV

[
kBT

c̄(1 − c̄)

− 2�a − 2�b + 2�c(c̄ + 1)

]}
. (30)

An example for a stability spectrum (the growth rates of
the different modes as a function of the wave number k) is
displayed in Fig. 3 for the parameters from Table I, and for
an average composition c̄ = 0.3 at T = 298 K. A mode is
unstable (and a phase decomposition is observed) when its
growth rate is positive. For example, for stage 2, the system
is unstable for wave numbers between −6.34 × 106 m−1 and
6.34 × 106 m−1. On the contrary, we can see that stage 6 is
stable for all wave numbers for this temperature and average
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composition. For this mean filling fraction of c̄ = 0.3, the
growth rate of stage 2 is higher than the one of stage 3. This
is remarkable because, according to the phase diagram, stage
3 should be present at equilibrium. The theoretical analysis
thus predicts that stage 2 should emerge during the first few
instants of a spinodal decomposition right after a quench, even
though the final state must be stage 3.

C. Characteristic wave numbers and growth rates

For each mode (stage), there are two noteworthy wave
numbers: the one where the growth rate reaches its maximum
value, kmax; and the marginal one for which the growth rate
is zero, k0. To compute these numbers, the growth rates are
rewritten in the general form

ωα (k) = −Mk2[κk2 − �α (c̄)] (31)

for α = 1, 2, 3, or 6, where �α ,

�1 = NV

[
− kBT

c̄(1 − c̄)
+ 2�a − 2�b + 2�c(3c̄ − 1)

]
,

�2 = NV

[
− kBT

c̄(1 − c̄)
+ 2�a + 2�b − 2�c(c̄ + 1)

]
,

�3 = NV

[
− kBT

c̄(1 − c̄)
+ 2�a + �b − �c(3c̄ − 1)

]
,

�6 = NV

[
− kBT

c̄(1 − c̄)
+ 2�a − �b + �c(c̄ + 1)

]
,

is the part that originates from interactions and entropy in
Eqs. (27)–(29). Computing the k0 and kmax values only makes
sense for unstable states, when �α (c̄) > 0. For k0, one needs
to find where ωα (k) = 0 with k �= 0,

k(α)
0 =

√
�α

κ
. (32)

Figure 3 shows that kmax is found when the first derivative of
ωα (k) = 0 and k �= 0,

k(α)
max =

√
�α

2κ
. (33)

The corresponding maximal growth rate is

ω(α)
max = M

�2
α

4κ
. (34)

The mode corresponding to this maximal growth rate will
dominate the emerging pattern; therefore, the inverse of its
growth rate gives a characteristic timescale for phase separa-
tion, which we will denote by τdec, and which depends on the
initial composition,

τdec = 4κ

M�α (c̄)2
. (35)

The growth rates of the different stages depend on the inter-
action energies (�a, �b, and �c) through the coefficients �α .
The condition �α (c̄) > 0 determines the composition range
in which mode α is unstable. Since the growth rate increases
with �α , the mode with the highest � grows the fastest and has
the widest unstable composition range. Of particular interest

is the competition between stages 2 and 3. The condition
�2 > �3 is equivalent to

�c

�b
<

1

3 − c̄
. (36)

For the parameters of Table I, this is the case for all values of
c̄, such that stage 2 always grows the fastest at short times.
It can also be shown that for these parameters, the onset
of spinodal decomposition, obtained by solving �α (c̄) = 0,
occurs for lower composition for stage 2 than for stage 3. The
competition of growth rates between stages 1 and 2 deserves
also some attention. The condition �2 > �1 is equivalent to

�c

�b
<

1

2c̄
. (37)

If we consider all the possible filling fractions, then this condi-
tion reduces to �c < 2�b, which is fulfilled for the parameters
of Table I. This means that stage 2 will always appear before
any potential decomposition between stage 1 and stage 1′.

As will be shown below (Sec. V), these conclusions remain
valid for other ratios of the interlayer free energies �c and �b,
as long as the ratio leads to the right staging sequences.

IV. NUMERICAL SIMULATIONS

A. Numerical method

To study the kinetics of spinodal decomposition beyond the
early times during which the linearization is valid, numerical
simulations are needed. The free-energy model of Sec II A
is introduced in the multilayer formulation of Eq. (9). As
in the theoretical analysis, a system of six layers makes it
possible to capture both stage 2 and stage 3. Periodic boundary
conditions are used in the z direction. The system is supposed
to be invariant along the y direction. The particle size is fixed
to 25 μm, which corresponds to a typical size of graphite
particles in standard electrodes. The value of D is taken from
Ref. [24], in coherence with the dependence of the mobility
on the local lithium filling fraction [see Eq. (10)].

An important issue is the choice of the gradient penalty
term κ . In a mean-field approximation, its value is related to
the strength and spatial range of attrative in-plane interaction
between lithium atoms [29]; an order-of magnitude estimation
of 10−10 J m−1 has been given in Ref. [30]. Since the gradi-
ent energy penalizes spatial variations of the concentration,
it directly influences the thickness of the diffuse interfaces
between concentrated and dilute domains in the same layer.
This thickness, which can be estimated as λ ≈ √

κ/(�aNV ), is
of the order of a few nanometers for the quoted value of κ . The
thickness of the interfaces yields a practical constraint, since
the spacing of the numerical grid must be smaller than the
interface thickness to properly resolve the interfaces. For this
reason, a particle of size 25 μm cannot be simulated with this
value of κ within reasonable simulation times. Therefore, in
the present work, a larger value is used, κ = 3 × 10−6 J m−1.
Some consequences of this choice will be discussed below.

A finite-volume method is used to discretize the equa-
tions in the x-direction. The grid spacing is chosen to ensure
that it is small enough to capture the interfaces between
lithium-poor and lithium-rich domains. Given the stiffness of
the problem and to keep the computational time reasonable the
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time integration is carried out using an implicit method. The
nonlinear system of equations arising from the implicitation
is solved using a Newton method combined with a GMRES
solver for the resolution of the linear problem [56,57]. The
algorithm adapted from [56,57] has been implemented in an
in-house code, originally developed for the study of diffuse
interface models in fluid mechanics [58].

Spinodal decomposition occurs when a homogeneous
phase is linearly unstable and spontaneously separates into
two phases. The simulation of this phenomenon is possible
by imposing a zero lithium flux at both x = 0 and x = L and
by initializing the simulation with an homogeneous filling
fraction c̄ in all the layers. Since the decomposition cannot
happen if the composition is perfectly homogeneous, a small
perturbation δc̃ j (x) is added to the average initial composi-
tion. In the generic case a randomly uniformly distributed
perturbation of up to ±5% was added to each grid point.
For the comparison between simulation and theory the initial
conditions are given below.

B. Validation: Linear regime

A comparison between the theoretical growth rates pre-
dicted by the linear stability analysis and the simulated ones
has been performed. Since the linear stability analysis is valid
only for small δc̃ j , the comparison is performed at short times
after the quench. Two successive Fourier transforms are ap-
plied to the composition fields obtained from the simulations.
The first is a discrete Fourier transform in the z direction,

ĉm(x, t ) = 1

Nz

Nz−1∑
j=0

c̃ j (x, t )eiqm j, (38)

where qm = 2πm/Nz is the discrete wave number in the z
direction. This post-treatment allows us to distinguish the
stages at all times and depths in the graphite particle. Further-
more, we perform a continuous Fourier transform along the x
direction,

c̄mn(t ) = 1

L

∫ L

0
ĉm(x, t )eiknxdx, (39)

where kn = 2πn/L is the wave number along x, which takes
discrete values due to the finite system size. The combination
of the two transforms yields the Fourier coefficient of mode
number m with wave number kn along x,

c̄mn(t ) = 1

NzL

∫ L

0

⎛
⎝Nz−1∑

j=0

c̃ j (x, t )eiqm j

⎞
⎠eiknxdx. (40)

In the numerical implementation, Simpson’s rule has been
used to compute the integral. In the regime immediately after
the quench, the logarithm of the amplitude |c̄mn(t )| varies
linearly with time, and a fit of the slope provides the growth
rate.

Using the linear superposition principle, it should be theo-
retically possible to extract the growth rates of all the modes
from a single simulation with a random initial fluctuation.
However, the precision is deteriorated by roundoff errors,
and therefore simulations were performed for each individual
mode and each wavelength. All the simulations have an aver-

FIG. 4. Numerical (symbols) and analytical (lines) growth rates
for stage 2 (diamonds and dashed red line) and stage 3 (circles
and dash-dotted green line) for an initial composition c̄ = 0.3, a
temperature T = 298 K and the parameters of Table I.

age initial composition of c̄ = 0.3, as in the results of Fig. 3.
The perturbations corresponds to a prescribed mode and a
prescribed plane wave. For stage two, the initial compositions
are

c̃ j (x, 0) = c̄ + cos(knx + jπ )

1000
with n = [0, . . . , 27],

(41)

while for stage three

c̃ j (x, 0) = c̄ + cos(knx + 2 jπ/3)

1000

with n = [−23, . . . , 23]. (42)

These expressions correspond, respectively, to the eigenvec-
tors m = 3 and m = 2 of Eqs. (20) and (22), with amplitudes
a3n = a2n = 1/1000. The number of simulated modes was
determined as a function of system size and the theoretically
calculated marginal wave number such as to cover all the
relevant range of the stability spectrum. The amplitude of
the fluctuations (1/1000) was small enough to ensure a suf-
ficiently long duration of the linear regime for obtaining good
fits of the growth rates. A total number of 75 simulations have
been performed to analyze the growth rate of each individual
mode and each wavelength. Figure 4 shows the comparison
of the growth rates obtained from the numerical simulations
and from the linear stability analysis. The excellent agreement
between theory and simulation confirms the validity of the
linear stability analysis as well as the implementation of the
numerical model.

All the plane waves with k < k0 will grow exponentially
in time, the fastest one being the closest to kmax. Therefore,
at the end of the linear stage the size of the lithium islands
should be of the order of 2π/kmax. This prediction can be ver-
ified by performing simulations of spinodal decompositions
with random initial perturbation for two different initial mean
filling fractions, c̄ = 0.5 and c̄ = 0.2. The stability spectra are
presented in Fig. 5 together with snapshots of the simulations
at early times. For c̄ = 0.5, kmax is expected to be larger than
for c̄ = 0.2, leading to smaller islands. This is consistent with
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FIG. 5. Top: Snapshots of spinodal decompositions for two different initial mean filling fraction : c̄ = 0.5 (left) and c̄ = 0.2 (right). The
snapshots are taken slightly after the end of the linear regime to achieve a sufficient contrast between dilute and dense domains. Bottom:
Corresponding linear stability analysis growth rate curves with an emphasis on the wave number for which the stage 2 is at its maximum, k(2)

max

(black dashed lines).

the snapshot pictures, where the wavelength of the fastest
growing mode, 2π/kmax, is displayed for comparison. The
agreement is very satisfactory.

The linear stability analysis also predicts the growth rate of
the perturbations. At c̄ = 0.5, the growth rate of the leading
mode ω2(kmax) is of the order 10.5 s−1, corresponding to a
characteristic decomposition time τdec ≈ 0.1 s, in coherence
with the formation of well-developed domains in less than
half a second, as can be seen Fig. 5 on the left. At lower filling
fraction, c̄ = 0.2, the growth rate of the leading mode is much
lower, ω2(kmax) ≈ 0.034 s−1 corresponding to a characteristic
decomposition time τdec ≈ 30 s. Even after 162 s, one can
barely identify the domains in the snapshot picture of Fig. 5
on the right. While for c̄ = 0.3, stage 6 is stable for any wave
number (Fig. 3), we can notice that it is slightly unstable for
c̄ = 0.5 as can be noticed on Fig 5 (left). However, since it is
not the dominant unstable mode, it will not easily be observed.

C. Coarsening: The nonlinear regime

Figure 6 presents snapshots at different times of the spin-
odal decomposition starting from an initial filling fraction of
c̄ = 0.3 with a random initial fluctuation. At the top part of
each subfigure, the lithium content in all of the 6 layers and
for the whole particle depth can be seen in the form of a
gray-scale heat-map. The bottom part displays the result of
the discrete Fourier transform [Eq. (38)]: the amplitudes of the
Fourier coefficients can be used to identify quantitatively the
stages present at each position within the particle and thus to
follow the evolution of the system beyond the linear regime.

The particle starts from a homogeneous state with small
fluctuations (a). Very quickly, all the layers undergo spinodal
decomposition. As predicted by the linear stability analysis,

stage 2 grows the fastest, and a corresponding checkerboard
pattern starts to appear in the heat map, whereas the average
composition still remains homogeneous (b). The amplitude of
this pattern increases, until domains of high (close to c̃ = 1)
and low (close to c̃ = 0) composition clearly emerge and form
vertical columns (c). The average composition is now higher
in the center of the columns than in the frontier between two
columns. This is a clear indication of a nonlinear interaction
between different modes, and thus the linear stability analysis
and Eq. (15) do not apply anymore.

Since the simulation was started from a random perturba-
tion, the size of the islands (columns) is not everywhere the
same, and the pattern is slightly disordered. This subsequently
leads to coarsening events: some domains expand in size,
while others disappear (d). During this coarsening, stage 3
progressively appears, even though the global average filling
fraction stays constant (e). This is visible on the gray-scale
map, but also on the plot of the local Fourier coefficients.
One particular mechanism by which stage 3 appears in re-
gions previously occupied by stage 2 is the following: the
disappearance of one concentrated domain in a single layer
is followed by a sequence of elimination events in the other
layers which makes an entire “diagonal row” of concentrated
domains disappear. Subsequently, the domains located on both
sides of the eliminated row grow closer to each other, until
they locally reach a stage 3 pattern. Several such events can
be seen in the movie included in the Supplemental Material
[59], for example, in the center of the system at t ≈ 100 s. At
the end of the simulation, the entire system is in stage 3 (f).

The column structure is nicely represented by the Fourier
coefficients ĉm(x, t ) defined in Eq. (38). They are complex
numbers, with an amplitude and a phase; only the amplitude is
plotted in Fig. 6. In stage 2, two neighboring columns have the
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FIG. 6. Snapshots of a spinodal decomposition at different times (see also movie in the Supplemental Material [59]). The initial average
composition is c̄ = 0.3 and the system has Nz = 6 layers. For each subfigure: top, lithium content in each layer; bottom, coefficients of the
Fourier transform |ĉm(x, t )| [see Eq. (38)].

same amplitude, but a phase difference of π . In stage 3, two
neighboring columns can have a phase difference of ±2π/3,
which correspond to the “upward and downward staircases”
visible in Fig. 6; these two different states reflect the two de-
generate linear modes that contribute to stage 3. In the Fourier
representation, the boundary between two columns is thus a
“phase jump.” Since, in each layer, the composition variation
in space is controlled by the gradient energy coefficient, the
thickness of such a domain wall should be close to the one
of an interface between dilute and concentrated domains in a
single layer.

To follow quantitatively the global presence of the differ-
ent stages during the coarseing, the amplitude of the Fourier
coefficients ĉm(x, t ) can be averaged over the length of the
particle from x = 0 to x = L. The time evolution of these
averages, noted 〈|ĉm(x, t )|〉x∈[0,L], are presented in Fig. 7. This
figure clearly shows that stage 2 grows the fastest at early
times in accordance with the linear stability analysis. After a
few seconds, stage 3 appears and increases to finally dominate
after 45s, as expected from the result of the phase diagram for
an initial mean filling fraction of c̄ = 0.3.

Simulations with the multilayer Cahn-Hilliard framework
are therefore a powerful tool to analyze the dynamics of stage
formation and evolution, and to bridge the gap between the
early-time dynamics predicted by the linear stability analysis
and the final equilibrium state predicted by the phase diagram.

V. DISCUSSION

The most noteworthy result of the preceding analytical and
numerical studies is that, for the interaction energy parameters
listed in Table I, stage 2 always grows faster than stage 3,
even in the composition range where stage 3 is stable at
thermodynamic equilibrium. As already stated in Eq. (36),
stage 3 would be favored if the ratio �c/�b was large enough.

FIG. 7. Time evolution of the global stage fractions
〈|ĉm(x, t )|〉x∈[0,L] during the spinodal decomposition at T = 298 K,
with an initial composition of c̄ = 0.3.
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FIG. 8. Sequence of stages occurring with increasing filling fraction, for various ratio �c/�b. The ratio �c/�b increases from left to right.
The values of �b and �c are nondimensionalized using the prefactor kBT at 298 K. Above the arrow: free-energy curves of all the stages
(black, stage 1 or dilute; red, stage 2; green, stage 3 and 3/2) together with the convex envelope (cyan). Below the arrow: resulting scheme of
the staging sequence. Ratio �c/�b below 0.06, no stage 3; between 0.06 and 0.3, right sequence; between 0.3 and 0.47, occurrence of stage
3/2; between 0.47 and 0.55, no stage 2 and occurrence of stage 3/2; above 0.55, no stage 2.

However, in Ref. [41] it was found that to obtain the right
sequence of stages for increasing filling fraction (and, in par-
ticular, to avoid the occurrence of the nonphysical stage 3/2),
�c/�b has to lie within a certain range. We have not found
a closed-form analytic expression for this latter condition,
but we have numerically investigated the phase diagram for
a large range of �b and �c. As an example, we show in Fig. 8
the free-energy curves for all the stages together with their
convex envelopes and the corresponding stage sequence ob-
tained for a fixed ratio of �a/�b = 2.78, a fixed temperature
of 298 K, and various �c/�b ratio. Stage 3/2 appears before
the condition ω3 > ω2 is satisfied. We have not found any set
of values for which both the equilibrium sequence of stages
was correct and stage 3 grew the fastest after a quench. There-
fore, we must conclude that, in the framework of a free-energy
model of the form of Eqs. (3) and (4), the fast growth of stage
2 in the spinodal decomposition of a homogeneously filled
sample is a general phenomenon. This methodology could
easily be extended to other intra- and interlayer interactions
energies [24,36,38] to determine if this finding holds for an
even wider class of free-energy models.

Let us now discuss the consequences of our findings for the
situation, more relevant for comparisons to experiments, in
which an initially empty electrode is progressively charged.
The active material initially is in the dilute stage 1. Lithium
atoms are inserted into the material at the interface with the
electrolyte, and the distribution of atoms inside the material
proceeds by diffusion. There are two distinct characteristic
timescales [60,61]: the diffusion time τD ∼ L2/D, and the

processing timescale (charging time) τI ∼ Q/iA, where i is
the externally imposed charging current density, Q is the
total capacity of the active material, and A is the surface
area over which the current is applied. For slow charging,
such that τI � τD, diffusion is fast enough to distribute the
lithium atoms through the entire particle, and the concentra-
tion remains almost homogeneous. The global concentration
thus slowly increases until it reaches the limit where spinodal
decomposition can occur. As already discussed above, the first
mode that becomes unstable is stage 2. Therefore, the system
should undergo a sequence of states that is comparable to our
simulations of Fig. 6. It should be noted that the decompo-
sition time given by Eq. (35) depends on the concentration
and is infinite at the spinodal. Therefore, the decomposition
will become visible at a concentration that is larger than the
critical concentration for instability, and that depends on the
charging rate. Indeed, the instability will occur approximately
when the concentration is such that τdec(c̄) = τI .

In the opposite limit, where τI < τD, inhomogeneities in
concentration develop inside the active material. Since we
start from a dilute system in which the diffusion is well
described by Fick’s law, the vicinity of the electrolyte will
always be the point with the highest concentration, and will
therefore reach the threshold for instability first. Since the
composition threshold for the onset of spinodal decompo-
sition is the lowest for stage 2, and its growth rate always
remains the highest for compositions beyond the thresh-
old, the present theory predicts that stage 2 forms at the
surface of the electrode. This was indeed observed in the
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preliminary simulations of the charging process in Ref. [41].
Whether this surface layer of stage 2 persists or disappears
in the subsequent evolution is an important question, be-
cause the occurrence of staging at the surface will modify
the effective resistance for the entry of new atoms into the
material. To address this issue, interfacial intercalation kinet-
ics with its potential nonlinearities must also be taken into
account [62,63]. This issue will be addressed numerically in
a forthcoming publication through detailed simulations of the
charge-discharge dynamics.

Furthermore, these results imply that at high charging rates,
stage 3 should disappear completely. This has not been re-
ported experimentally so far, but could be confirmed using
high speed synchrotron x-ray diffraction [19,21,64]. It would
require to specifically follow the reflections characteristics of
the stage 3 ordering, i.e., the examination of reflections on
planes separated by about three times the graphite interlayer
distance d . This is possible at low charging rates [65], but
remains challenging at higher C rate, given their low intensity.

As already mentioned, we have used for our simulations a
value of the gradient energy coefficient κ that is much larger
than the one expected from a mean-field approximation. This
is an issue because κ appears in the expressions for the growth
rates and for the characteristic wavelengths, Eqs. (32) through
(34). The typical initial size of the domains is 2π/kmax; there-
fore, a measurement of the domain size at early times after a
spinodal decomposition could be an indirect way to determine
the order of magnitude of κ from experimental data. To our
knowledge, no such measurement is available as of yet for
lithium intercalated in graphite.

Another point linked to the value of κ is the domain wall
energy, which scales as the geometric mean of the gradient
energy coefficient and the barrier height of the double-well
potential in the free energy, �a. All of the interaction energies
have been obtained by comparison of the model prediction
to measurement of the equilibrium potential [41], and are
therefore physically realistic. As a consequence, the use of a
larger value of κ also implies that the energies of domain walls
between domains and columns are larger than the physically
correct value. We have not investigated the impact of this fact
on the coarsening dynamics. Anyway, our present simulations
of coarsening are limited to small systems (six layers), and to
two dimensions (one-dimensional galleries). It would be in-
teresting but computationally costly to perform simulations in
larger system and in three dimensions to assess the coarsening
dynamics more precisely.

VI. CONCLUSION

In this paper, the dynamics of spinodal decomposition
and domain coarsening in lithium-intercalated graphite af-
ter a quench (a sudden change in temperature) has been
investigated, both by an analytical linear stability analysis
and by numerical simulations of a multilayer Cahn-Hilliard
model. The multilayer framework is needed to capture the
well-documented phenomenon of staging, which is caused by
repulsive interlayer interactions between lithium atoms.

A normal-mode analysis of the linearized evolution equa-
tions has allowed us to follow separately the growth dynamics
of each stage, and to compute analytically the associated
growth rates. A stability spectrum that is typical for spin-
odal decomposition has been obtained for each stage, in
the form of a quartic polynomial in the wave number for
plane waves along the graphite planes. Beyond the linear
regime, the decomposition in normal modes, corresponding
to a discrete Fourier transform, remains useful to analyze the
further evolution of the stage distribution, which can only
be obtained by numerical simulations of the full evolution
equations.

Our analysis predicts that stage 2 is always the fastest to
grow after a quench, even for average compositions for which
stage 3 is the thermodynamically stable state. Stage 3 emerges
only at later times, during the nonlinear coarsening of stage
2, and progressively fills the entire system. While quench
experiments are difficult to perform, our findings also yield a
prediction for the kinetics of stage formation during the charg-
ing of a graphite particle: at the particle surface, stage 2 should
always appear first. In contrast, if the equilibrium sequence
of stages is followed, stage 3 (or higher) should appear first.
How this competition between stages at the surface depends
on the charge rate remains to be investigated in more detail.
Further work could also focus on the introduction, in the stage
stability analysis, of electrochemical reactions at the particle
surface [42,62,63]. This is necessary to understand if insertion
reactions can impact the stability of the different stages and
therefore modify the appearance of the different stages during
lithiation and delithiation processes.
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