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We specialize techniques from topological data analysis to the problem of characterizing the topological
complexity (as defined in the body of the paper) of a multiclass data set. As a by-product, a topological classifier
is defined that uses an open subcovering of the data set. This subcovering can be used to construct a simplicial
complex whose topological features (e.g., Betti numbers) provide information about the classification problem.
We use these topological constructs to study the impact of topological complexity on learning in feedforward
deep neural networks (DNNs). We hypothesize that topological complexity is negatively correlated with the
ability of a fully connected feedforward deep neural network to learn to classify data correctly. We evaluate our
topological classification algorithm on multiple constructed and open-source data sets. We also validate our hy-
pothesis regarding the relationship between topological complexity and learning in DNN’s on multiple data sets.
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I. INTRODUCTION

The use of deep learning methods in particular and artificial
intelligence in general has become ubiquitous in science (see
Refs. [1–20] for a small example set). Recent work has shown
that DNN’s can generalize fundamental physical principles
like symmetry [11]. Yet we still lack a fundamental under-
standing of when these techniques can be successfully applied
[21–24] and in some sense the no free lunch theorems [21,22]
imply it is impossible to know a priori whether a data set is
amenable to an off-the-shelf deep learning approach. Despite
the fact that deep learning methods seem to frequently work,
we may simply be observing a positive result bias [25]. A
recent article by Das Sarma proposes that knowledge of when
artificial intelligence and machine learning (AI and ML) tech-
niques will fail will be crucial to their continued application
in physics [26].

In this paper, we develop an approach for building topo-
logical information on multiclass data. This leads to the
creation of a topologically inspired algorithm for classifying
data, which is fully interpretable. We compare results from
this algorithm to well-known off-the-shelf classifiers, includ-
ing deep learning classifiers. As a consequence, we. develop
numerical tools to study the hypothesis that deep learning
methods are susceptible to failure on classification problems
when the underlying topology of the data is complex. We
define (topological) complexity in terms of the topological
information provided by the data itself. Thus, we propose a
hypothesis based on data topology to explain why certain data
sets are amenable to deep learning methods and to test when
a classification problem may be amenable to deep learning.

We validate our approach using multiple publicly available
data sets as well as mathematically constructed data sets,
helping to validate our underlying hypothesis. This paper
focuses on classification [27] problems. We do not consider
more general approximation problems [28] that can be solved

with DNN’s. Extending results from this work to more general
approximation problems is left for future work. This work is
part of a larger effort by mathematicians to understand neural
networks using topological methods [29,30].

This work is complementary to the work by Naitzat, Zhit-
nikov, and Lim [31] who study the impact of neural network
layers on the topological structure of data in classification
problems. Their approach uses persistent homology, whereas
we draw inspiration from computational topology but define
a specific topological structure that respects class informa-
tion. Results in this paper are also related to work on the
performance of deep learning as interpreted using differential
topology and manifold learning. This is studied extensively by
Buchanan, Gilboa, and Wright [32] and Cohen et al. [33].

The remainder of this paper is organized as follows: In
Secs. II and III we discuss the computational topology algo-
rithms used in this paper. We provide detailed experimental
results on topological classification for multiple data sets in
Sec. IV. We study the problem of learning in Math Dice Jr. and
show that training failures are correlated with the topological
complexity of the underlying data set in Sec. VI. We then
validate the hypotheses set forth in Sec. VI using a secondary
data set in Sec. V. Conclusions are presented in Sec. VII.

II. TOPOLOGICAL FEATURES FOR
OF MULTICLASS DATA

Consider a multiclass data set (X1, . . . , XN ), where Xi ⊆
Rn for i = 1, . . . , N . Here the classes range from 1 to N . A
classifier is a mapping C : Rn → {1, . . . , N} that (correctly)
assigns an arbitrary point x to one of the classes, assuming
that the N classes fully partition Rn. The problem of “learn-
ing” such a classifier has been exhaustively studied (see, e.g.,
Ref. [34]). We now consider this problem from a topologi-
cal perspective and develop a method for extracting relevant
topological features. Our approach is inspired by topological
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data analysis [35,36], which provides methods for extracting
topological information about a topological space T on which
a data set X ⊆ Rn resides.

Consider a set T ⊆ Rn as a topological space with a met-
ric d (·, ·). We will be using the metric topology by default.
Assume this space is partitioned into subspaces T1, . . . , TN so
that

T =
⋃

i

Ti.

We assume that each data set Xi consists of points drawn from
the subspace Ti. A point x is on the boundary of Ti and T j if
for all ε the ball of radius ε centered at x denoted Bε (x) has
nonempty intersection with both Ti and T j . We hypothesize
that “complex” boundaries imply a harder classifier learning
problem and now proceed to formalize what we mean by
this intuitive statement. We make use of constructs from both
point-set and algebraic topology. See Refs. [37,38] for com-
plete details on these subjects.

For the remainder of this paper, we assume that
a covering of Ti is a collection of points and radii,
Ci = {(ci1 , ri1 ), . . . , (cini ,rini

)}, so that for all x ∈ Ti there
is a j ∈ {i1, . . . , ini} such that x ∈ Bri j

(ci j ), though this
can be generalized to arbitrary sets rather than balls. By a
subcovering of Ci, we mean a subset of the covering that also
acts as a covering of Ti.

We can use the data to construct an approximate covering
that respects class boundaries by solving the following (sim-
ple) optimization problems,

∀xi j ∈ Xi

{
min ri j

s.t . d (xi j , y) � ri j ∀y ∈ ⋃
j �=i Xj

.

This finds the distance to the closest data point with class
different from the class of the point xi j . Then an approximate
covering for Ti is given by

Ci = {(
xi1 , ri1

)
, . . . ,

(
xini

, rini

)}
.

When Xi is large, this may not be a computationally efficient
cover because of its size. To find a smaller subcover, define
a directed graph �G(Ci ) with vertex set Xi and edge E [ �G(Ci )]
defined so that(

xi j , xik

) ∈ E [ �G(Ci )] ⇐⇒ d
(
xi j , xik

)
< ri j .

That is, an edge points from point xi j to xik if the ball centered
at xi j covers xik . To construct the subcover, we build a minimal
dominating set [39] for �G(Ci ). That is, a set of vertices so
that every vertex in �G(Ci ) is either in this set or covered by
(adjacent to) an element in this set. It is known that finding
such a set is NP-hard [39]; however, a minimal dominating
set can be approximated using the greedy algorithm shown in
Algorithm 1.

Algorithm 1. Approximate minimal subcover.

1: Set Gnow = �G(Ci ).
2: While Gnow has at least one vertex do
3: Add the vertex v∗ with the largest out-degree in Gnow

and its corresponding radius to the dominating set C∗
i .

4: Remove v∗ and its neighbors from Gnow.
5: end while

The resulting covering C∗
i approximates a minimum sub-

cover of Ci. This is the algorithm implemented in our
experiments. Consequently, the covers used in this paper are
not guaranteed to be minimal but will recover the topological
properties of the manifold, since minimizing cover size only
improves computation time of other topological properties.
We also note that Algorithm 1 can be replaced with a version
that uses only radius information and is useful when con-
structing the graph �G(Ci ) is computationally intractable (see
Appendix).

One of the main problems of algebraic topology is the clas-
sification of spaces in terms of the number of holes or voids
present in the space [37]. Homology theory provides an ap-
proach to computing these properties by transforming an arbi-
trary space into a topologically equivalent simplicial complex
[37]. A simplicial complex can be understood in the context
of a hypergraph on a set of vertices. A hypergraph H = (V, E )
is a set of vertices V along with a set of hyperedges E , where
if e ∈ E , then e ⊆ V . Hyperedges, unlike ordinary edges, can
have any cardinality up to the number of vertices in the hy-
pergraph. A hypergraph is a simplicial complex if its edge set
has the property that it is closed under the operation of taking
subsets. That is, if e is a hyperedge, then any subset f ⊂ e is
also a hyperedge. Let H be a simplicial complex. The skeleton
(or 1-skeleton) of H is the graph constructed from the vertex
set of H and the cardinality two edges of H ; i.e., the usual
graph-theoretic edges made of pairs of vertices. Complete
details are given in Ref. [37]. Once a simplicial complex is
constructed for a topological space, numerical linear algebra
can be used to construct a Betti sequence �β = (β0, β1, . . . ),
which provides relevant topological information. Each entry
in the sequence is a non-negative integer that counts the num-
ber of holes (voids) of a given dimension present in the space.
In particular, β0 counts the number of components, β1 counts
the number of holes (insides of circles), β2 counts the number
of voids (insides of hollow spheres), etc.

To construct a simplicial complex Hi representing Xi (and
hence Ti), we define a graph Gi = (C∗

i , Ei ) using the points in
C∗

i as the vertices. The graph Gi will serve as the 1-skeleton of
Hi. From the topological data analysis perspective, the points
in C∗

i are “witness points.” Given a data set X ⊆ Rn, a witness
set is a (small) set W ⊂ X that can be used to construct a
simplicial complex that correctly represents the topological
features in the data set X , i.e., the topological features of the
space T in which the data set X resides.

The edge set of Gi is given by the edge rule,{
xi j , xik

} ∈ Ei ⇐⇒ Bri j

(
xi j

) ∩ Brik

(
xik

) �= ∅. (1)

That is, a simple edge is present if and only if the balls
centered at the points xi j and xik in the subcover intersect.
The graph Gi is the 1-skeleton of the Čech complex Č(C∗

i ),
in which a hyperedge is present if and only if the balls of the
vertices occurring in the hyperedge have nonempty intersec-
tion. For the purposes of this paper, we will not use the Čech
complex, but we define Hi to be the clique complex Cl(C∗

i ),
where {xik1

, . . . , xikm
} ∈ Cl(C∗

i ) if and only if {xik1
, . . . , xikm

} is
a clique (or subgraph of a clique) in Gi. Here a clique in a
graph is a complete subgraph that is itself not contained in a
larger complete subgraph [40]. We make this choice for Hi for
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computational expediency. In general, the clique complex will
have fewer topological features (necessarily) than the Čech
complex and will differ primarily in small-scale topological
features. As such, the clique complex seems to represent fea-
tures at a scale relevant to the classification problem. It follows
by the nerve lemma [41] that the topological features of the
various spaces Ti (i = 1, . . . , N) should be preserved at the
scale of the classes if the cover is sufficiently dense.

III. CLASSIFICATION WITH THE TOPOLOGICAL COVER

Given the multiclass data set (X1, . . . , XN ), let
(B1, . . . ,BN ) be the collections of balls generated by the
covers, C∗

1 , . . . ,C∗
N built using the approach described in the

previous section. That is,

Bi =
⋃

j

Bri j

(
xi j

)
,

is the set of balls covering the set Xi and determined from
the minimum cover creation process. The set Bi acts as an
approximation to the topological space on which the data in
Xi lie.

Suppose x is an unclassified point. We can classify x by
testing whether x ∈ Bi for each i ∈ {1, . . . , N}. If there is
exactly one i for which this is true, then this is the class
assigned to x. If x ∈ Bi is true for no i, then we compute the
distance,

d (x,Bi ) = min
j

d
[
x, Bri j

(
xi j

)]
,

where d[x, Bri j
(xi j )] is the point-to-set distance from x to the

ball Bri j
(xi j ) that is induced from the natural metric. We then

assign x as

C(x) = arg min
i

d (x,Bi ).

If x ∈ Bi is true for multiple i, then we use a nearest-neighbors
approach, computing,

d̃ (x,Bi ) = min
j

d
[
x, xi j

]
.

Here we use the centers of the balls covering Xi, rather than
the balls themselves, since the point is already covered by at
least one ball. We then assign the class to x as

C(x) = arg min
i

d̃ (x,Bi ).

The entire process is summarized in Algorithm 2.

IV. RESULTS ON TOPOLOGICAL CLASSIFICATION

We illustrate the topological covering and classification
algorithms on several different data sets. We compare the
topological classification results to deep neural network clas-
sifiers and random forests (where appropriate), which are de
facto standards for classification. In our experiments, we used
standard feedforward neural networks with a ramp (ReLU)
activation function between the layers and a softmax (Boltz-
mann distribution) as the final output layer. We describe neural
network structures using a tuple of layer sizes. By way of
example, the neural network structure (8,4,2) has a linear layer
of dimension 8 with ramp activation followed by a linear layer

Algorithm 2. Topological classification.

1: Compute the set

I (x) = {i ∈ {1, . . . , N} : x ∈ Bi}.
2: if |I (x)| = 1 then
3: Assign C(x) the unique element of I (x).
4: end if
5: if |I (x)| = 0 then
6: C(x) = arg mini d (x,Bi ).
7: end if
8: if |I (x)| > 1 then
9: C(x) = arg mini d̃ (x,Bi ).
10: end if

of dimension 4 followed by a ramp followed by a linear layer
of dimension 2 followed by a two-class softmax classifier.
All neural networks were implemented in Mathematica 13

FIG. 1. Top: An illustration of a data set and two manifolds
with a highly nonlinear boundary. Bottom: The simplicial complex
generated for Class 1.
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FIG. 2. The size of the cover increases monotonically as the
complexity of the boundary between the two classes increases.

using the built-in neural network tools. All neural network and
random forest training used the default (automatic) settings in
Mathematica.

A. Complex boundaries in two dimensions

Consider the data set (X1, X2) with Xi ⊂ R2 (i = 1, 2) with
the classes given by

C(x) = 1 ⇐⇒ sin(2πkx1) � x2.

For larger k, this data set has the property that the class bound-
ary becomes highly nonlinear. This is illustrated in Fig. 1
(top). We also illustrate the constructed simplicial complex
for Class 1 in Fig. 1 (bottom) using the approach described
in the previous sections. We used the standard Euclidean met-
ric in the algorithm. Notice the simplicial structure properly
reflects the nature of the boundary.

As k increases, the boundary becomes more complex, and
so also the proportion of data points in Class 1 (or Class 0)
that must be used in the cover increases. This is illustrated
in Fig. 2, where we also see a natural asymptote seems to
occur, consistent with the limiting behavior of the geometry.
This suggests that the size of the cover(s) of the classes (with
respect to the size classes) can be used as a natural metric on
the complexity of the boundary and thus the difficulty of the
learning problem.

We set k = 3 and repeated the following experiment 20
times. We generated a random sample of 5000 training points
and 5000 test points. We trained a deep neural network with
structure (200,200,2) as well as a random forest and built the
topological covering. The mean accuracy with maximum and
minimum over all replications are shown in Table I. The data
suggest that these three methods are largely comparable. We

TABLE I. Mean accuracy and 100% order statistics confidence
intervals for the sine wave boundary classification test with k = 3.

Method Mean acc. Min-Max acc.

Topological classifier 0.75662 (0.7468, 0.7648)
Neural network 0.75464 (0.7292, 0.778)
Random forest 0.75883 (0.7508, 0.7742)

TABLE II. Mean accuracy and 100% order statistics confidence
intervals for the sine wave boundary classification test with k = 8.

Method Mean acc. Min-Max acc.

Topological classifier 0.73852 (0.727, 0.7514)
Neural network 0.72631 (0.7012, 0.7494)
Random forest 0.74688 (0.7354, 0.7588)

suspect the relatively low accuracy from all three methods is
a function of the data density near the nonlinear boundary. It
is well known that data density can affect the ability of algo-
rithms in topological data analysis to recover the topological
characteristics of manifolds [42]. We can already see this in
Fig. 1 (bottom), where the 1-skeleton of the simplicial has
become disconnected. Whether and how this is affecting the
random forest or neural network learning may be an area of
future work. The impact of data topology on neural network
learning is discussed throughout the remainder of this paper.

We repeated the experiment with k = 8 to see what the
effect on the learning process was. The results are shown in
Table II. Again, we see the methods are largely comparable
to each other in terms of accuracy, but the results suggest that
as the boundary becomes more complex (as measured by the
proportion of the data points that must be used as a cover),
the ability of any method to learn the separator may decrease.
This will be explored further with additional data sets.

B. Waveform generator

We used the waveform generator (version 1) test set avail-
able from the UCI Machine Learning Repository [43]. The
data consist of a 40-dimensional feature vector with one of
three class values 0, 1, or 2. The training set size consisted of
5000 samples and separate C/C++ source code is available
to generate additional test samples. We used the source code
to generate 1000 test samples.

We built topological coverings and simplicial complexes
for the three classes of data using the standard Euclidean met-
ric. The topology suggests the boundary between the classes
is complex. As in Fig. 2, we use the proportion of the classes
used to make the covering as a proxy for topological com-
plexity. We refer to this as covering proportion. The covering
proportions of the classes are given in Table III. We can de-
termine that all three simplicial complexes are connected (i.e.,
β0 = 1 for all simplexes). However, because the covers are
comparatively large, it is difficult to generate a general Betti
sequence for the simplicial complexes. The fact that so much
of the data are used to build the minimal covering suggests a
complex boundary structure. Even without the explicit Betti
sequences, we can explore the nature of the boundary by

TABLE III. The cover sizes of the three classes in the waveform
generator data.

Class Size Cover size Cover prop. Connected

Class 0 1692 1072 0.63 True
Class 1 1653 1016 0.61 True
Class 2 1655 1079 0.652 True
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FIG. 3. Top: The visualization of the joint simplicial complex of
all topological covers and the histograms of the radii of the covering
sets. Bottom: Visualization of the TSNE dimensional reduction. Blue
is Class 0, red is Class 1, and green is Class 2.

generating a joint simplicial complex for all classes using the
covers and visualizing the result using a graph visualization
algorithm. We define a graph (skeleton) G = (V , E ) that com-
bines all covers using the edge relation,

{i j, kl} ∈ E ⇐⇒ Bri j

(
xi j

) ∩ Brkl

(
xkl

)
,

where i and k are indexed over class and j and l are indexed
over the cover elements of the respective classes. This graph
has as subgraphs the graphs Gi = (C∗

i , Ei ) but also includes
edges between the covers. We show the joint simplicial com-
plex in Fig. 3 (top) using a spring-electrical layout in which
vertices are treated as charged objects connected by edges
treated as springs [44]. This layout option is provided natively
in Mathematica. Note that edges in the skeleton are removed
from the visualization for clarity. Each point in Fig. 3 is the
center of a ball in the topological covers and as such a witness
point. Since these points are designed to cover their respective
manifolds, we see that not all of them are necessarily close
to a class boundary. This is illustrated by the histograms of
the radii of the covering elements in the top right. By way of
comparison, we show the TSNE [45] projection of the points
in the cover. The projection of the simplex seems to provide
substantially more information, showing that the topological
spaces form a kind of nested structure with the possibility that
there are high-dimensional voids where the topological spaces
pass through each other.

We tested the topological classification algorithm against
a deep neural network classifier with structure (500,100,3), a
shallow neural network classifier with structure (3000,3) and a

TABLE IV. Accuracy table for waveform classification data set.
Uncertainties are computed automatically by Mathematica and cor-
respond to one standard deviation.

Classifier Accuracy

Topological 92.5 ± 0.8%
Deep neural network 88.2 ± 1.0%
Shallow neural network 91.3 ± 0.9%
Random forest 96.3 ± 0.6%

random forest, using the 1000 test samples we generated. The
accuracy results are shown in Table IV. Confusion matrices
for the four classifiers are shown in Fig. 4. Intriguingly, the
random forest classifier outperforms the topological classifier,
which in turn outperforms the deep neural network classifiers
but is statistically identical to the shallow neural network
classifier. It is possible that increasing the width of the shallow
neural network would improve the score of the neural net-
work. We hypothesize that the complexity of the boundary
between the classes, as illustrated by the topological analysis,
is causing a challenge in the learning process of the deep
neural network. We explore this further with additional data
sets.

C. MNIST

We built a topological model of the MNIST data set [46]
to illustrate additional features of the topological approach.
We used the ImageDistance metric in Mathematica as the
metric. We compare the classification results from the topo-

FIG. 4. Confusion matrices for the waveform data set. Top left:
Topological classifier. Top right: Random forest classifier. Bottom
left: Deep neural network classifier. Bottom right: Shallow neural
network classifier.
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TABLE V. The basic topological information from MNIST sug-
gests that the manifolds on which digits 0 and 1 reside are the easiest
to separate, while digit 8 may be the hardest.

Digit Connected Cover prop.

0 True 0.053
1 True 0.023
2 True 0.137
3 True 0.172
4 True 0.17
5 True 0.176
6 True 0.067
7 True 0.11
8 True 0.232
9 True 0.195

logical classifier, a random forest model, and LeNet [47], an
early convolutional neural network (CNN) trained specifically
on MNIST.

Basic topological information on MNIST is shown in Ta-
ble V. The computed simplicial complexes for the classes of
data are large, with skeletons containing between 157 and
1358 vertices and between 10 334 and 893 250 edges. This
makes it impossible to compute exact topological information
for all classes, beyond the fact that all inferred manifolds
are path connected, as shown in Table V. The raw data
could be analyzed using standard techniques from topologi-
cal data analysis, e.g., persistent homology with a secondary
witness complex [48], but this would eliminate the possibil-
ity of extracting class-level features relevant to the decision
boundaries. While developing techniques for handling the
potentially large inferred simplicial complexes resulting from
our approach is left to future work, we can use the simplex
skeletons to generate a visual representation of the manifolds.
This is shown in Fig. 5. This visualization was generated using
a spring-electrical layout (from Mathematica) as described in
the previous section. However, to increase the clarity of the
visualization, we randomly removed half of the edges linking
different classes in the skeleton (graph) of the joint simplicial
complex prior to visualization. The topological covering pro-
portions are smallest for digits 0 and 1, suggesting they are the
simplest digits, topologically speaking, while digits 8 and 9

FIG. 5. A visualization of the MNIST data using the simplicial
complex models of the manifolds.

FIG. 6. The images with the smallest radii are those that are
closest to the boundary between classes and represent archetypal
points of confusion.

require the most information to generate the cover, suggesting
these digits may be more difficult to separate, most likely due
to the similarity between 5 and 8 and possibly 7 and 9 (see
Fig. 5).

The radii of the balls in the covering can be used to gener-
ate additional information. By selecting the covering images
with the smallest radii (in the 1st percentile), we can identify
those images that are close to the boundary and thus caus-
ing confusion. These are shown in Fig. 6. Likewise, cover
elements with large radii (in the 99th percentile) represent
points far from decision boundaries and are archetypal class
elements. This is shown in Fig. 7.

A classifier accuracy comparison is shown in Table VI, us-
ing the standard MNIST test set of 10 000 samples. As we can
see, LeNet outperforms both the topological approach and the
random forest, which are both statistically indistinguishable.
We hypothesize that this is because the CNN is better able to
approximate the manifolds of the data sets and thus the nonlin-

FIG. 7. The images with the largest radii are those that are far-
thest from the boundary between classes and represent archetypal
class elements.
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TABLE VI. Accuracy table for MNIST data set. Uncertainties
are computed automatically by Mathematica and correspond to one
standard deviation.

Classifier Accuracy

Topological 95.27 ± 0.21%
LeNet network 98.48 ± 0.12%
Random forest 95.6 ± 0.21%

ear boundaries. The confusion matrices for these experiments
are shown in Fig. 8. Investigation of the relationship between
topological structure and CNN’s is reserved for future work.

D. HEPMASS

To test the scalability of the cover generation and topo-
logical classification approach, we used the open source
HEPMASS dataset [49], which is composed of 10.5M Monte
Carlo simulations of high-energy particle collisions. The data
are divided into 7M simulations where the signal particle has
mass equal to a nominal 1000 with the remaining examples
having variable mass. We used the 7M samples with fixed
mass 1000. The data resides in a 27-dimensional Euclidean
space. The two classes correspond to a relevant particle being
present or absent. Unlike the previous sections, topological
coverings were generated using a C++ implementation. (See
data availability statement for source code access.)

Independent testing suggests the data are amenable to clas-
sification by DNN [50]. To explain this, we constructed the
two simplicial complexes H0 and H1 using open balls for
the topological covering. Because the data set is large (by the
standards of most topological data analysis algorithms), we
cannot compute a complete set of topological features. Graph-
theoretic analysis suggests that the two topological spaces T1

and T0 are largely connected. The space T1 consists of a gi-
ant component with a second small disconnected component,
which maps to an isolated vertex in the simplicial complex H1.
The topological space T0 is path connected. Information on
the topological structure is shown in Table VII. The proportion
of the data used to create the covering is large compared,
with 84% of the Class 1 data used as witness points to form
the cover. This suggests a boundary with complex nonlinear
structure. Unfortunately, the data set is too large to compute
exact Betti numbers, but we can visualize the data by using
iGraph’s implementation of large graph layout [51].

To speed up computation, 150 000 balls from the topologi-
cal coverings defining S0 and S1 were chosen at random. This
effectively produced a smaller witness complex [48] contain-
ing 300 000 points. We refer to this as the witness cover. The
resulting witness complex skeletons are visualized in Fig. 9.

TABLE VII. High-level topological features of the HEPMASS
data set. Here 0-dimensional simplexes are isolated vertices in H1

or H0.

Class Sample size Cover prop. β0

Class 1 3 500 879 0.84 2 (1 dimension 0)
Class 0 3 499 129 0.58 1

FIG. 8. Confusion matrices for the MNIST data set. Top:
Topological classifier. Middle: Neural network classifier. Bottom:
Random forest classifier.

The visualization suggests that the data are nonlinearly sepa-
rable, with a complex separating manifold between them. In
some sense, this is a high-dimensional analog of the boundary
illustrated in Sec. IV A.
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FIG. 9. A visualization of a witness simplicial complex gen-
erated from the HEPMASS particle physics data set [49] shows
that this data should be easily separable by a simple nonlinear
manifold. A DNN will project the high-dimensional data into a
lower-dimensional representation with a simple separation, much
like this energy-minimizing visualization does.

We used 20 random samples of the HEPMASS testing
data set, each of size 20 000 and applied the topological
classification algorithm. Results of this experiment are shown
in Table VIII. The data suggest that the cover accurately
respects the topological structure of T1 and T0 including the
boundary, with only 0.33% of test samples confused between
the two covers. However, testing samples frequently fall out-
side the specific boundaries of the cover, which would require
generalization from a neural network classifier. This may be
a result of our use of a witness cover. Based on these re-
sults, we expect to see high-quality separation from a DNN.
To test this hypothesis, we used a DNN with architecture
(128,64,32,2) ending in a softmax classifier and tested on 20
replications of 20 000 test points chosen at random. Results
are shown in Table IX and are consistent with Ref. [50]. The

TABLE VIII. Results show mean total accuracy of 88% with
similar true positive and F1 scores. Interestingly, 55% of the test data
(on average) was outside the cover, meaning substantial generaliza-
tion was required. Only 0.3% of the test data fell close enough to the
boundary to lie in both covers.

Measures Mean (Min, Max)

Total accuracy 0.881 (0.879, 0.885)
True positive 0.897 (0.893,0.901)
False positive 0.134 (0.13,0.139)
F1 score 0.883 (0.861,0.887)
Out of cover prop. 0.547 (0.54,0.553)
Confused cover prop. 0.00326 (0.00275,0.00383)

TABLE IX. Results show mean total accuracy of 88% with sim-
ilar true positive and F1 scores. The false-positive rate is slightly
lower than the false-positive rate of the topology-based classifier.

Measures Mean (Min, Max)

Total accuracy 0.89 (0.888, 0.8886)
True positive 0.89 (0.878, 0.891)
False positive 0.12 (0.116, 0.129)
F1 score 0.88 (0.88,0.887)

neural network outperforms the topology-based classification
method but only by 1% on average. We attribute this to (i)
improved ability to model the separating boundary and (ii)
better generalization. However, the topological simplicity of
the underlying data clearly explains a substantial portion of
the DNN’s success.

E. Undersea acoustic data set

We performed a similar analysis on open-source data
provided by the Scripps Institute [52] consisting of Fourier
transforms of undersea acoustic data. There were ≈1.5M
samples from Lagenorhynchus obliquidens. Class 1 was com-
posed of Type A clicks and Class 0 was composed of Type
B clicks. This data set is fully described and analyzed using
a DNN in Ref. [52], where it is shown empirically the data
are amenable to classification by DNN. Topological analysis
indicates that the classes lie on path connected manifolds
residing in 181-dimensional Euclidean space. There are no
disconnected elements, though again the derived simplicial
complexes are too large (edge dense) to allow for complete
topological investigation. A summary of the gross topological
properties of S0 and S1 is given in Table X.

As before, we created a visualization of the joint simplex,
shown in Fig. 10. Interestingly, this visualization suggests the
data are more complex than the corresponding HEPMASS
data. Further topological analysis is required to prove this is
true.

To test the goodness of a covering generated by a subset
of this data, we removed 20 000 samples from each class and
rebuilt a topological covering with the remaining data. The
data suggest that 96% accuracy can be achieved using the
topological classifier, with only 4.5% of test samples confused
between the two classes. In this test, 19% of the test data was
outside the cover. Complete results are shown in Table XI.
A DNN with architecture (1024, 128, 64, 32, 2) ending in a
softmax classifier was also trained on the data. The total
accuracy using this DNN was also 96%, with a slightly lower

TABLE X. High level topological features of the Scripps data
set. Both S1 and S0 have one component (β0 = 1), implying the
underling manifolds on which Type A and Type B clicks reside are
path connected.

Class Sample size Cover prop. β0

Class 1 798 116 0.40 1
Class 0 679 894 0.55 1
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TABLE XI. Results show a total accuracy of 96% with 96% true
positive and F1 score 0.96. Interestingly, 19% of the test data (on
average) were outside the cover, meaning some generalization was
required. Only 4.5% of the test data fell close enough to the boundary
to lie in both covers.

Measures Value

Total accuracy 0.96
True positive 0.96
False positive 0.042
F1 score 0.96
Out of cover prop. 0.19
Confused cover prop. 0.045

TABLE XII. Results show a total accuracy of 96% with similar
true positive and F1 scores. The false-positive rate is lower than the
topology-based classifier, suggesting better generalization.

Measures Value

Total accuracy 0.96
True positive 0.96
False positive 0.036
F1 score 0.96

TABLE XIII. The sizes of the layers in the neural networks used
to build a classifier from the tiled data set.

Number of holes DNN size (k)

1 250
2 500
3 750
4 1000
6 1500
8 2000
9 2250
12 3000
16 4000

false-positive rate than the topological approach but not con-
siderably so. This suggests the DNN may be slightly better
at generalizing the complex boundary structure than the open
false-positive rate than the topological approach but not con-
siderably so. This suggests the DNN may be slightly better
at generalizing the complex boundary structure than the open
sets forming the covering of the topology. The full test results
are in Table XII. As before, we hypothesize that the topolog-
ical simplicity of the underlying data explains a substantial

FIG. 10. Visualization of the witness simplicial complex of the
two click classes of L. obliquidens.

portion of the DNN’s success. We attempt to investigate this
hypothesis further in the next sections.

V. TOPOLOGICAL IMPLICATIONS FOR LEARNING
NEURAL NETWORKS: TILE MODEL

To test the impact of topological complexity on learning,
we constructed a custom two-dimensional data set. This was
accomplished by tessellating the two class data set shown in
Fig. 11. In Fig. 11, Class 1 is shown in red and lies on (the
union of) several annuli, while Class 0 (shown in red) is the
complement of Class 1 in the plane. By way of example, an
n × m tessellation would have nm holes and nm components
in the manifold on which Class 1 lies and nm holes and 2nm
components in the manifold on which Class 0 lies. Thus, the
exact Betti numbers for the data follow from the construction.

As before, we evaluated the topological classification algo-
rithm, a random forest and feedforward neural networks. All
neural networks had structure (k, k, k, 2), where k increased
with the topological complexity of the data set. Table XIII
shows the neural network sizes as a function of the number
of holes in the data.

We built test data sets by generating 1000 random points
in the base tile and tessellating these points in the same way
the corresponding training data set was generated. Results for
all three classifiers as a function of the number of holes in
Class 1 are shown in Fig. 12. In this data set, as topological
complexity increases, as measured by the number of holes
in Class 1 (or Class 0), we see that neural network learning
suffers. It is interesting to note that the random forest approach
does not suffer a similar learning failure. The topological clas-
sification algorithm works well, consistently outperforming
the random forest method. This work supports our hypothesis
that the topological complexity of the data has an impact on
DNN learning. In the next section, we further validate this
hypothesis and show that this behavior is repeatable for a data
set derived from a children’s game, Math Dice Jr.

VI. TOPOLOGICAL IMPLICATIONS FOR LEARNING
A CHILDREN’S GAME

We now analyze a data set arising from a children’s game
that is amenable to complete topological analysis. That is, we

FIG. 11. A single tile is tessellated to construct a two-class data
set in which both classes have a controllable number of holes.
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FIG. 12. The classification accuracy on tiled data sets as a func-
tion of the number of holes in Class 1. This shows that as topological
complexity increases, learning suffers.

can compute all Betti numbers and use them to evaluate the
impact of complex topological structures on learning.

The game Math Dice Jr. is a fundamentally simple game.
Three ordinary dice and two six-sided dice containing only
the numbers 1, 2, and 3 are rolled along with a dodecahedron.
The objective is to use only addition and subtraction on the
values shown on the six-sided die to arrive at the value on the
dodecahedral die. For arbitrary numbers of dice, this problem
can be shown to be equivalent to the NP-hard subset sum
problem. In the experiments below, we consider Math Dice
with two to five six-sided dice (or three to six dice overall).
In all cases except the six-dice case, we assume the six-sided
dice are ordinary (having numbers 1–6). In the six-dice case,
we model the Math Dice Jr. game. With n dice, each dice roll
can be represented as a point x ∈ Rn. For our analysis, we
define x ∈ X1 if and only if all n − 1 six-sided dice can be
used to recover the value on the nth die. This divides the rolls
into two classes, (X0, X1).

All Math Dice Jr. games with n dice can be solved using a
simple integer programming problem,

max
n−1∑
i=1

xi + yi

s.t . xi + yi � 1 ∀i

n−1∑
i=1

di(xi − yi ) = dn

0 � xi, yi � 1 ∀i

xi, yi ∈ Z ∀i.

Here a die value di (for die i) is added if xi = 1 and subtracted
if yi = 1. We are maximizing the number of dice used, which
is given by (x1 + y1) + · · · (xn−1 + yn−1) because the first con-
straint xi + yi � 1 along with the third and fourth constraints
ensure that exactly one of xi or yi is 1 but both may be zero
(if a die is not used). The second constraint ensures that the
resulting sum equals the value shown on the nth die (the

TABLE XIV. The proportion of the data used in covers for Class
0 and Class 1 in Math Dice Jr. for varying numbers of dice.

No. dice Cover 1 prop. Cover 0 prop.

3 1 0.355
4 1 0.615
5 1 0.853
6 1 0.957

dodecahedron). Using this formulation, the 23,328 distinct
Math Dice Jr. rolls (with six dice) can be classified in 19.05 s.

Using the proposed topological covering algorithm, we
can construct simplicial complexes for topological spaces on
which the two classes of data lie [53]. In the case when
n = 3, we can visualize the resulting structures. Figure 13
(left) shows that when n = 3, the topological space containing
X1 has a depression in which elements of X0 lie. This causes a
void to emerge in the homology of H0 (the simplicial complex
corresponding to Class 0). Likewise, the balls defining the
open covering of T0 protrude through T1 as shown in Fig. 13
(right) creating holes. We note that every point in this case
(and all cases that follow), every element of X1 must be used to
create the topological cover. This leads to the Betti sequence
shown in row 1 of Table XV. Here we interpret βi for i � 1
as the number of i-dimensional holes (voids) in the simplicial
complex. The number of connected components is β0.

We can compute the proportion of the data used in creating
the cover to see the boundary between the two manifolds
increases in complexity as the number of dice increase. This
is shown in Table XIV. We note that Class 1 requires all data
points to be used in the cover (as is clear from Fig. 13). As the
number of dice increases, the number of data points needed
to form a covering of Class 0 also increases. This suggests
that the structure of the boundary between the manifolds is
becoming more complex as the number of dice increase. Be-
cause so much of the data set is used to form the topological
cover, we did not test the topological classification algorithm
on this data set. Instead, we will use the derived topological

FIG. 13. Left: The 1-skeleton S1 and covering for the manifold
M1 on which dice rolls in Math Dice Jr. with three dice can yield the
value on the dodecahedral dice. Right: The open cover of both M0

and M1 showing the two manifolds wrap around and intersect each
other. Red is Class 1. Blue is Class 0.
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TABLE XV. The Betti numbers counting the numbers of com-
ponents, holes, and voids in the manifold M1 as estimated by the
homology of Cl(S1) shows more complex structure as n increases.

Betti numbers

No. dice β0 β1 β2 β3 β4 β5

3 1 12 0 0 0 0
4 1 0 357 69 0 0
5 1 0 725 4,522 12 0
6 1 0 411 72,093 250 75

properties to explore the relationship between learning and
topology in various feedforward neural networks.

We can quantify the complexity of the boundary explicitly
using the Betti numbers of the simplicial complex modeling
Class 1. That is, we compute homology for H1 = Cl(C∗

1 ) for
n = 3, . . . , 6. Betti numbers are shown in subsequent rows of
Table XV. Define the total number of topological features as

T =
∞∑

i=0

βi.

As the number of dice increases, the data suggest that the total
number of topological features increases exponentially (see
Fig. 14). We conjecture that as the number of dice increases,
the structure of the boundary between T0 and T1 becomes
more complex, as evidenced by the exponentially increasing
number of topological features in T1 as measured by the
homology of H1 as well as the proportion of the data needed
to construct a covering of the two data sets. We illustrate the
complexity of the boundary for the five dice case by construct-
ing a joint skeleton as before. The image (Fig. 15), in which
edges are suppressed for clarity, shows the two classes of data
are thoroughly mixed as compared to (e.g.) Fig. 9, which is
easily separable.

An increasingly complex boundary suggests that a more
complex (i.e., deeper and/or wider) neural network structure is
required to learn such a boundary in order to classify a sample.
Table XVI shows evidence to support this hypothesis. Accu-
racy results are computed over 20 random train-test splits. We

FIG. 14. The number of topological features in T1 increases ex-
ponentially as a function of the number of dice in Math Dice Jr.
suggesting a complex boundary is forming between T0 and T1.

FIG. 15. Projection of witness vertices of five-dice Math Dice Jr.
embedded into R2.

evaluated both flat and funnel architectures in the DNN’s. In
this experiment, the neural network complexity (as measured
in number of edges) grows superexponentially (as compared
to the exponential growth in topological features). The most
complex DNN used for the six-dice case has over 109 con-
nections. However, this network is incapable of separating X1

from X0.
To further understand why a large DNN fails on Math

Dice Jr. with six dice, we analyze the behavior of DNN’s
that can learn Math Dice Jr. with five dice to determine how
each layer in the network changed the topological structure
of the data. Formally, we think of layer i as a function fi :

TABLE XVI. (Top) Learning results for various funnel design
DNN’s on the Math Dice Jr. problem. (Bottom) Learning results for
various flat DNN’s on the Math Dice Jr. problem. In both cases, even
when the complexity of the neural network structure required grows
superexponentially, a five-layer DNN with over 109 connections
cannot learn the boundary structure between C1 and C0 in six-dice
Math Dice Jr.

Dice DNN struct. Mean acc. (Min, Max)

Funnel design
3 (16,4,2) 0.912 (0.787,1.)
3 (8,4,2) 0.881 (0.787,1.)
4 (32,4,2) 0.954 (0.922,0.988)
4 (16,4,2) 0.816 (0.922,0.988)
5 (128,16,2) 0.828 (0.798,0.867)
5 (256,16,2) 0.832 (0.798,0.867)
6 (1024,256,64,16,16,2) 0.553 (0.529,0.592)
6 (2048,256,64,16,16,2) 0.547 (0.529,0.592)

Flat design
3 (16,16,2) 1. (1.,1.)
3 (8,8,2) 0.942 (1.,1.)
4 (32,32,2) 0.989 (0.979,1.)
4 (16,16,2) 0.865 (0.979,1.)
5 (128,128,2) 0.935 (0.882,0.961)
5 (256,256,2) 0.934 (0.882,0.961)
6 (256,256,256,2) 0.531 (0.538,0.786)
6 (1024,1024,1024,2) 0.656 (0.538,0.786)
6 (2048,2048,2048,2) 0.536 (0.522,0.55)
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FIG. 16. The topological complexity of the transformed data
decreases exponentially with each layer, ultimately making classi-
fication trivial.

Rni−1 → Rni . If we exclude the final classification step, then
the neural network is simply a function f : RN → R2 such
that f = fL ◦ · · · f1. If f is a homeomorphism, then f cannot
change the homology of the underlying manifolds. However,
since we are interested in homological features up to the level
of resolution of (e.g.) Class 0 within Class 1, we expect to
see a topological simplification taking place at each level. The
data in Table XVII support this hypothesis. The data were
generated using the complete five-dice Math Dice Jr. data set
and training a neural network with structure (256,16,2). The
classifier layer was then removed and the original five-dice
data set was transformed (by fL−1 ◦ · · · f1). Homological in-
formation on the clique complex for this lower-dimensional
data set was then computed. This process was repeated for
hidden layers two and one. We repeated this in 20 replications
(to average out effects from stochastic gradient descent). Ta-
ble XVII shows mean Betti numbers (indicating topological
structure) for these 20 runs. As shown in Fig. 16, the number
of topological features in the data decreases exponentially in
each layer. Note that this is similar to the results identified
by Naitzat, Zhitnikov, and Lim [31] in their independent
study. This supports the hypothesis that each layer is sim-
plifying the boundary structure between the two classes of
data. We compare this to the topological complexity of the
data output by the last layer of a neural network with struc-
ture (2048,256,64,16,2) acting on six-dice Math Dice Jr. data,
which we know from Table XVI cannot successfully identify

TABLE XVII. The topological complexity of the boundary be-
tween M0 and M1 is further simplified and refined at each layer of
a neural network that successfully classifies Math Dice Jr.

Betti numbers

Layer β̄0 β̄1 β̄2 β̄3 β̄4 β̄5

0 (Input) 1 0 725 4,522 12 0
1 1 0 0 570. 303. 0.
2 20.2 12.3 0.9 0.1 0 0
3 9.45 2.4 0 0 0 0

FIG. 17. A custom feed forward neural network architecture that
will correctly classify all rolls in six-dice Math Dice Jr. This archi-
tecture can be easily generalized to arbitrary Math Dice Jr. games.

the boundary structure between T0 and T1. In an example run,
the data produced by the final layer is disconnected into sev-
eral thousand components, showing that the neural network
has mapped the two classes onto each other, explaining the
confusion and low accuracy in the last row of Table XVI.
We leave a general investigation of why the flat and funnel
architectures failed and how this relates to the topological
complexity as future research.

By the universal approximation theorem [54,55] there is
a feedforward neural network with sigmoid activations func-
tions that can separate X0 and X1 in the six-dice Math Dice
Jr. case. However, finding the simplest such neural network
structure is clearly nontrivial, consistent with the no free lunch
theorem [21,22]. Nevertheless, we can use geometric infor-
mation to construct a neural network architecture that for this
problem.

Let W = {−1, 1}5 ⊂ R5. Let R ⊂ R6 be the set of possi-
ble rolls in six-dice Math Dice Jr. For w ∈ W and x ∈ R, let

ϕ(x; w) =
5∑

i=1

wixi − x6.

Let

δ̃(x) =
{

1 x = 0

0 otherwise.

Choose an order so that W = {w1, . . . , w32}. Then the func-
tion F : R6 → R32 defined by

Fi(x) = δ̃[ϕ(x; wi )]

maps each roll to a vertex on the unit hypercube R32. For
a roll x, all five hexahedral dice can be used to obtain the
number on the dodecahedral die if and only if there is an i so
that Fi(x) = 0 (the vector of all zeros). Any linear separator
that separates the vertex 0 from the other vertices of the unit
hypercube in R32 will correctly classify this point. This is the
explicit mapping in Cover’s theorem [56].

For simplicity, let σ : {0, 1}32 → {0, 1} so that

μ(y) = max
i

yi.

Then the function that classifies any roll x ∈ R is given by

C(x) = μ[F(x)] = μ{δ̃[ϕ(x; wi )]}.
This can be encoded in the feedforward neural network archi-
tecture shown in Fig. 17. It is straightforward to generalize this
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FIG. 18. Left: Confusion matrix for the prespecified feedforward
neural network with weights given by W . Right: Confusion matrix
for the neural network with structure shown in Fig. 17 but with
weights trained using stochastic gradient descent.

architecture for an arbitrary Math Dice Jr. game by scaling W .
Note that this scales exponentially, as is to be expected since
Math Dice Jr. is NP-hard for arbitrary numbers of dice.

We can formally analyze the topological structure of the
data produced by the layers of this neural network. We note
that using the mapping F(x) to transform the data into 32-
dimensional points creates a 1-skeleton that is the complete
graph on the 49 open spheres that can be used to cover F(R).
Thus, all voids are closed by this mapping and the data fully
separates into two manifolds that are contractible to a single
point.

For six-dice Math Dice Jr., the function δ̂ can be approxi-
mated using,

δ̃(x) ≈ 1 − tanh (10|x|),
since we are using integer data. Using this, a neural network
was constructed with perfect accuracy. We then did an ex-
periment, where we removed the weights specified in W and
allowed them to be trained using stochastic gradient descent
on a random 80-20 train-test split. The resulting accuracy was
58.5 ± 0.7%. This is similar to the result shown in Table XVI
and shows the challenge in learning to play Math Dice Jr. with
six dice, even when the structure of a successful feedforward
neural network is known. Confusion matrices for the two
cases are shown in Fig. 18.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we developed a novel approach to topolog-
ical data analysis on multiclass data that allows us to build
simplicial complex representations of the data sets that faith-
fully represent the features of the data at the scale of the
classes. This allowed us to develop a topological classifier
that is competitive with random forest and DNN classifiers.
This was validated on multiple publicly available data sets.
The topological information that can be extracted from this
approach also provides additional insights into data structure.
Additional analysis on data generated from the game Math
Dice Jr. and a custom two-dimensional data set with special
topological features supports a hypothesis that topological
complexity in the boundary between classes can lead to learn-
ing failure in DNN’s using stochastic gradient descent. This

suggests further research into this hypothesis is warranted,
as it may provide insights into scenarios where AI and ML
solutions will fail in complex physics problems [26]. We also
note that while the approach discussed in this paper performs
well on the chosen data sets, the topological approach does
not scale (in time) as well as DNN methods. In particular, it
took well over 24 hours to generate a topological cover for the
HEPMASS data set, while it took only minutes to train the
DNN that successfully classified the data set. On smaller data
sets, the computation time was much more comparable. As a
consequence, we advocate this analysis method only in cases
where deep inspection of the topological structure of the data
is warranted.

The results presented in this paper suggest several future
directions of research. Additional experimentation with data
sets with topologically complex boundaries and the resulting
learning problems in DNN’s seems worthy of investigation. In
particular, exploring the impact on the loss function and the
process of stochastic gradient descent in these scenarios may
yield insight into the nature of learning failure. Additionally,
an investigation into the impact the choice of metric has on
this approach would provide additional insight. For example,
for data sets that contain both categorical and continuous data,
the ability to design custom metrics and apply the proposed
topological analysis might yield insights about the structure of
the data itself. Finally, finding novel approaches to computing
Betti numbers for large simplicial complexes may provide
additional insights into scenarios where DNN’s function well.

Mathematica notebooks for analyzing all data sets, ex-
cluding HEPMASS and the Scripps Institute acoustic data,
are available as Supplemental Material [57]. For the C++
code used in analyzing the large-scale data, please contact
the authors. Example code is also available on the Wolfram
Community site [58].

APPENDIX: ALTERNATE COVERING ALGORITHM

When it is computationally difficult to construct �G(Ci ),
the following algorithm can be used to construct a smaller
subcover C∗

i instead.
This algorithm is a variant of the canopy clustering algo-

rithm [59] but with class information defining the distances to
be used.

Algorithm 3. Approximate minimal subcover 2.

1: Sort the elements of Ci by order of decreasing radius.
2: for all (xi j , ri j ) ∈ Ci do
3: if there does not exist (xik , rik ) ∈ C∗

i that covers
(xi j , ri j ) then

4: Add (xi j , ri j ) to C∗
i .

5: en if
6: end for
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