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Here, we investigate the maximum power and efficiency of thermoelectric generators through devising a
set of protocols for the isothermal and adiabatic processes of thermoelectricity to build a Carnot-like thermo-
electric cycle, with the analysis based on fluctuation theorem. The Carnot efficiency can be readily obtained
for the quasistatic thermoelectric cycle with vanishing power. The maximum power-efficiency pair of the
finite-time thermoelectric cycle is derived, which is found to have the identical form to that of Brownian
motors characterized by the stochastic thermodynamics. However, it is of significant discrepancy compared
to the linear-irreversible and endoreversible-thermodynamics based formulations. The distinction with the
linear-irreversible-thermodynamics case could result from the difference in the definitions of Peltier and Seebeck
coefficients in the thermoelectric cycle. As for the endoreversible thermodynamics, we argue the applicability
of endoreversibility could be questionable for analyzing the Carnot-like thermoelectric cycle, due to the incom-
patibility of the endoreversible hypothesis that attributes the irreversibility to finite heat transfer with thermal
reservoirs, though the distinction in the mathematical expressions can vanish with the assumption that the ratio
of thermoelectric power factors at the high and low temperatures (γ ) is equal to the square root of the temperature
ratio, γ = √

TL/TH (this condition could significantly deviate from the practical case). Last, utilizing our models
as a concise tool to evaluate the maximum power-efficiency pairs of realistic thermoelectric material, we present
a case study on the n-type silicon.
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I. INTRODUCTION

Thermoelectricity has long been a highly active research
topic, which holds a great potential to create solid-state energy
converters capable of converting heat into electricity with-
out moving components [1–3]. Furthermore, a thermoelectric
generator (TEG) can also serve as very crucial paradigmatic
model for the research of irreversible thermodynamics, like
Onsager reciprocal relations (ORRs) [4] and the efficiency at
maximum power [5], etc.

Currently, the linear-irreversible thermodynamics has been
the major tool for analyzing TEGs and set the fundamen-
tal principles of thermoelectric research [2,6], which adopts
the linear phenomenological relations within the framework
of ORRs. As for the maximum power and the correspond-
ing efficiency of thermoelectricity, Table I gives the widely
recognized formulations based on the linear-irreversible ther-
modynamics: the maximum power, PMax_LIRR, is proportional
to the power factor (PF, denoted by the symbol PF), the square
of temperature difference (TH − TL)2, and a factor 1/4, while
the efficiency (denoted by ηLIRR) at max power is the half
Carnot efficiency (ηC).

The other theoretical tool should be endoreversible ther-
modynamics [7,8]. Its core assumption, that is, the en-
doreversibility, reads as follows: the irreversibility emerges
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merely owing to the finite heat exchange with heat reser-
voirs, while working substance is internally reversible and
thus able to convert heat to work under Carnot efficiency.
This methodology has been extensively employed to handle
various finite-time heat-engine cycles (mainly the fluid based
mechanical-work systems) [8], and has derived the Curzon-
Ahlborn (CA) efficiency (ηCA, presented in Table I) that is
widely deemed to be generic for varied types of heat engines
including TEGs [9,10]. The half Carnot efficiency, predicted
by the linear-irreversible thermodynamics, is regarded as the
lower-bound of the CA efficiency formulation through its
Taylor expansion with respect to ηC [10]. Much work has been
conducted for recovering the CA efficiency in the framework
of irreversible thermodynamics (linear and nonlinear) [5,9–
12]. As for thermoelectricity, Apertet recovered the CA effi-
ciency for a TEG in the limit of pure “external dissipation”
[5]; Kaur et al. [12] constructed a TEG under the endore-
versible assumption, by introducing the finite heat transfer
relations between the TEG and heat reservoirs, and found
that the use of Newton’s cooling law can yield the CA effi-
ciency. Additionally, as presented in Table I, the maximum
power expressions obtained by these two methodologies hold
a significant difference: the endoreversible one (PMax_CA) is
proportional to the square of the difference between the square
root of temperature (

√
TH − √

TL)
2

and an effective heat con-
ductance KT determined by the specifics of the system. The
maximum power of the endoreversible TEG by Kaur et al.
[12] is of identical temperature dependence, and its effective
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TABLE I. Expressions of the maximum power and the corresponding efficiency. TH : high temperature; TL: low temperature; PF = α2
S/Re:

power factor; αS: Seebeck coefficient; Re: electric resistance; ηC = 1 − TL/TH : Carnot efficiency; KT : an effective heat conductance dependent
on the system; �S: entropy change; β: a ratio between the dissipative couplings of cold and hot reservoirs; M: a coefficient dependent on the
system.

Max. power Efficiency at max. power Refs.

Linear irreversible PMax_LIRR = 1
4 PF(TH − TL )2 ηLIRR = 1

2 ηC Goupil et al. [6]
Benenti et al. [20]

Endoreversible PMax_CA = KT (
√

TH − √
TL )

2
ηCA = 1−√

TL/TH Hoffmann [8]
Kaur et al. [12]

Stochastic PMax_ST = 1
8 (�S)2βM(TH − TL )2 ηST = ηC

2−βηC
Schmiedl et al. [13]

Fu et al. [14]

heat conductance KT is merely dependent on the heat transfer
coefficient rather than any thermoelectric coefficients (i.e.,
Seebeck or Peltier).

Furthermore, another distinct formulation for the efficiency
at maximum power is derived for varied Brownian motors on
the basis of stochastic thermodynamics [13,14], ηST, as listed
in Table I. Esposito et al. [15] proved that for the finite-time
Carnot cycles not involving stochasticity, the lower and upper
bounds of ηST expression could be recovered under two limit-
ing conditions, and the CA efficiency was also obtained in the
case of symmetric dissipation. Particularly for thermoelectric-
ity, Esposito et al. investigated a quantum-dot Carnot engine
that undergoes the TEG-equivalent process using the master
equation for the stochastic dynamics, and reached similar
conclusions to their previous work [10]. Moreover, following
the methodology of phenomenological relations in irreversible
thermodynamics, Apertet et al. [5] derived ηST corresponding
to the case of pure “internal dissipation” of a TEG. As for
the maximum power based on the stochastic thermodynamics
(PMax_ST, listed in Table I), it holds the same temperature
dependence as PMax_LIRR, with distinct factors (1/8 in PMax_ST

and 1/4 in PMax_LIRR), while the exact relation between the
thermoelectric PF and the term (�S)2βM remains to be clari-
fied. Regarding the obvious discrepancy between PMax_ST and
PMax_CA, further investigation is also needed.

In the present work, we build a Carnot-like thermo-
electric cycle through devising a set of protocols for the
isothermal and adiabatic processes of thermoelectricity, which
can serve as a benchmark theoretical model to study the
thermoelectric conversion. Its maximum power and corre-
sponding efficiency in the case of finite-time operation are
analyzed based on the fluctuation theorem (FT) [16–19].
Entropy production plays a key role when investigating the
finite-time thermodynamic cycles [13,20]. Under some mild
assumptions essentially involving the microscale time re-
versal symmetry, the FT has proven to be a powerful and
generic theoretical tool to study the properties of the en-
tropy production for various systems that are driven arbitrarily
far from equilibrium states [16–19,21]. By contrast, some
relatively strong assumptions regarding the thermoelectric
transport process mechanisms, which may limit the generality,
are generally required when employing the other theoreti-
cal methods: the ORR-constrained linear phenomenological
relations for linear-irreversible thermodynamics [4,6], the for-
mulation of the finite heat exchange with heat reservoirs for

endoreversible thermodynamics [12], and the dynamic equa-
tions (e.g., the master equation) for stochastic thermodynam-
ics [10]. Furthermore, the discrepancy for the formulations of
maximum power and efficiency obtained from the different
methodologies is discussed for thermoelectricity. Last, as a
case study, the proposed models are applied to n-type silicon
for estimating its maximum power-efficiency pairs.

II. CARNOT-LIKE THERMOELECTRIC CYCLE

Figure 1 illustrates the temperature (T)–entropy (S) dia-
gram of the Carnot cycle. For a TEG where the targeted
thermoelectric system � is assumed to hold constant volume,
the thermoelectric cycle should involve four processes, as
follows.

A → B : Isothermal process at TH (high temperature). As
shown in Fig. 2, such process can be realized through keeping
the targeted system � in contact with a heat reservoir of
temperature TH constantly, and sequentially connecting and
disconnecting � to a series of electrochemical potential reser-
voirs μi=1,...N where μ1 = μA and μN = μB, during a time
interval τ , in analogy to Ref. [17]. The heat QAB is absorbed
due to the Peltier effect, and the work WAB is extracted, which
is calculated as

WAB = −
∫ τ

0
μ(t )dN (t ) = QAB − (UB − UA), (1)

where μ(t ) is the targeted system’s electrochemical potential
at the time t , and N (t ) is its charge number at the time t .

FIG. 1. Temperature (T)–entropy (S) diagram of the Carnot cy-
cle: TH is the high temperature, TL is the low temperature.
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FIG. 2. Isothermal process realization of a thermoelectric system
within a time interval τ : T is temperature.

When the time interval τ → ∞, this process can be regarded
as quasistatic.

B → C : Adiabatic process from TH to TL (the low tem-
perature). As presented in Fig. 3, the targeted system � is
sequentially connected and disconnected to a series of reser-
voirs {T, μ}i=1,...N with {T, μ}1 = {TB, μB} and {T, μ}N =
{TC, μC}, during a time interval τadia. There are actually two
means to keep the process ideally adiabatic, i.e., no heat
exchange between the targeted system � and the reservoirs:
this state transition happens instantaneously, τadia → 0, or the
thermal resistance (RT) between � and reservoirs is infinitely
large, RT → ∞. In any one of these two cases, the extracted
work is equal to the difference of internal energy between
states C and B,

WBC = −(UC − UB). (2)

C → D : Isothermal process at TL. This process is operated
following the identical protocol to A → B, with changing the
heat reservoir temperature to TL and setting the electrochem-
ical potential reservoirs as μ1 = μC and μN = μD. Here, we
assume the duration of C → D is the same as that of A → B.
The heat QCD is released due to the Peltier effect, and the work

WCD can also be calculated following Eq. (1),

WAB = QCD − (UD − UC ). (3)

D → A : Adiabatic process from TL to TH . It follows the
operation of B → C with replacing the reservoirs as {T, μ}1 =
{TD, μD} and {T, μ}N = {TA, μA}, during the time interval
τadia. Similarly, the work is given by WDA = −(UA − UD).

Therefore, employing the protocols depicted in Figs. 2 and
3, the thermoelectric cycle can be constructed as above, of
which total work is given by

W = WAB + WBC + WCD + WDA

= QAB + QCD. (4)

As these two isothermal processes are quasistatic with τ →
∞, Eq. (4) becomes

W = TH (SH − SL ) + TL(SL − SH ) = (TH − TL )�S (5)

with the Carnot efficiency

ηC = W

QAB
= 1 − TL

TH
, (6)

which is not surprising for a reversible thermoelectric cycle,
due to the equivalence among heat engines [22].

III. FINITE-TIME CARNOT-LIKE
THERMOELECTRIC CYCLE

When the thermoelectric cycle in Sec. II operates within a
finite time period, its efficiency will deviate from the Carnot
formulation, due to entropy production [10], though those four
state points are prescribed. A generally adopted theorem is to
add a term of irreversible work into the energy conservation
equation to take the irreversibility into account [10,13],

W + Wirr = (TH − TL )�S, (7)

where the irreversible work Wirr is proportional to the entropy
production supposed to be positive in general [13]. Neverthe-
less, it is noted that there is a possibility of negative entropy
production in some particular cases, like in small-scale sys-
tems [16,18]. Thus, instead of utilizing Eq. (7) directly, we
start with clarifying the irreversibility in the cycle based on
the methodology of the fluctuation theorem (FT) [16–19].

In the thermoelectric cycle above, how the adiabatic pro-
cesses are conducted and their irreversibility will not affect

FIG. 3. Adiabatic process realization of a thermoelectric system within a time interval τadia.
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the work output, once they are ideally adiabatic. Therefore,
the key issue should be the analysis of isothermal processes
A → B and C → D. As for an isothermal process of a ther-
moelectric system that is realized following the operation (or
protocol) illustrated in Fig. 2, we could have a formulation that
shares the generic form of Evans-Searles fluctuation theorem
[18],

p
(+�S̃irr

kB

)
p
(−�S̃irr

kB

) = e(+�S̃irr/kB ), (8)

where kB is the Boltzmann constant, �S̃irr is the entropy
production during the time interval, p() is the probability
function for entropy production, and the label “∼” notes the
entropy production is a process quantity that depends on how
the process is operated. In fact, the protocol in Fig. 2 is devised
in analogy to that presented in the paper by Jarzynski [17],
which discussed the problem in a canonical ensemble, while
the present problem is about a grand canonical ensemble. Due
to the similar architectures of the protocols, it could not be
nontrivial to derive Eq. (8) through replacing the canonical
ensemble distribution to the grand canonical ensemble one
following the identical methodology [23,24]. Therefore, the
preconditions for the validity of Eq. (8) read [17]

(i) Evolution of the full phase space is Hamiltonian;
(ii) Time reversal symmetry at microscale (no magnetic

field);
(iii) Weak coupling between the targeted system and the

reservoirs.
In terms of Eq. (8), we have

〈e−�S̃irr/kB〉 =
∫

p

(
+�S̃irr

kB

)
e−�S̃irr/kB d

�S̃irr

kB

=
∫

p

(
−�S̃irr

kB

)
d

�S̃irr

kB
= 1. (9)

Using Jensen’s inequality, it is easily obtained that

〈�S̃irr〉 � 0. (10)

in which “〈〉” refers to ensemble average. It is the second law
of thermodynamics in the statistical view [18].

Here, we assume the four state points of the thermoelectric
cycle are prescribed, which has been often adopted in both
existing theoretical and experimental researches [13,25]. This
assumption allows us to have a well-defined benchmark result
in the infinite-time operating case (i.e., the reversible one in
Sec. II) and facilitate the formulation derivation. Thus, for
the isothermal process A → B, the entropy balance equation
should hold,

SH − SL = �S = �S̃re_AB + �S̃irr_AB = Q̃AB

TH
+ �S̃irr_AB

=
〈

Q̃AB

TH

〉
+ 〈�S̃irr_AB〉. (11)

Combining Eqs. (9) and (11) yields〈
e( Q̃AB

kBTH
)〉 = e( �S

kB
)
. (12)

Following the same derivation, we have the equation of
identical form as Eq. (12) for the isothermal process C → D,〈

e( Q̃CD
kBTL

)〉 = e(− �S
kB

)
. (13)

Then, combination of Eqs. (12) and (13) leads to

〈eQ̃AB/kBTH 〉〈eQ̃CD/kBTL 〉 = 1. (14)

We can define the deviation of heat flow with respect to its
ensemble average as

δQ̃AB = Q̃AB − 〈Q̃AB〉,

δQ̃CD = Q̃CD − 〈Q̃CD〉. (15)

Thus, Eq. (14) can be transformed to

e〈Q̃AB〉/kBTH +〈Q̃CD〉/kBTL 〈eδQ̃AB/kBTH 〉〈eδQ̃CD/kBTL 〉 = 1. (16)

According to the energy conservation law for the cycle, we
have

〈W̃ 〉 = 〈Q̃AB〉 + 〈Q̃CD〉, (17)

in which 〈W̃ 〉 is the ensemble-average work. Substituting
Eq. (17) into Eq. (16), we have

〈W̃ 〉 = ηCA〈Q̃AB〉 − kBTLln{〈eδQ̃AB/kBTH 〉〈eδQ̃CD/kBTL 〉}. (18)

Using the entropy balance equations,

�S =
〈

Q̃AB

TH

〉
+ 〈�S̃irr_AB〉,

−�S =
〈

Q̃CD

TL

〉
+ 〈�S̃irr_CD〉, (19)

we have

〈eδQ̃AB/kBTH 〉 = e〈�S̃irr_AB〉/kB , (20)

〈eδQ̃CD/kBTL 〉 = e〈�S̃irr_CD〉/kB . (21)

Substituting Eqs. (20) and (21) into Eq. (18), we reach the
formulation involving the irreversible work for our thermo-
electric cycle,

〈W̃ 〉 = ηCA〈Q̃AB〉 − TL{〈�S̃irr_AB〉 + 〈�S̃irr_CD〉}, (22)

which holds the identical form to that of the widely adopted
one, except for the ensemble average. In this way, the condi-
tions for guaranteeing the validity of Eq. (22), which employs
entropy production to analyze the finite-time thermoelectric
cycle, can be clarified on the basis of FTs, and they should be
consistent with those for Eq. (8).

In order to discuss the power of such a thermoelectric
cycle, we need to specify how the entropy production of
isothermal processes varies with the operating time interval τ .
According to Ref. [26], the entropy production rate during a
process should be equal to the product of driven force and flow
rate, in spite of it being nonlinear or linear. Therefore, for the
isothermal process devised in Fig. 2, the entropy production
rate at the time t could be expressed as

σ̃ (t ) =
˜�μ�i

T

∂̃N

∂t
, (23)
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in which T is the temperature and ˜�μ�i is the electrochemical
potential difference between the targeted system � and the ith
reservoir connecting with it at t . We could have the ensemble
average of entropy production rate as

〈σ̃ 〉 =
〈

˜�μ�i

T

∂̃N

∂t

〉
=

〈
˜�μ�i

〉
T

〈
∂̃N

∂t

〉

+ cen_cov

(
˜�μ�i

T
,
∂̃N

∂t

)
, (24)

with the ensemble-average covariance cen_cov(). It should be
reasonable that the flow and its corresponding driven force is
positively correlated, and thus we have

cen_cov

(
˜�μ�i

T
,
∂̃N

∂t

)
� 0 → 〈σ̃ 〉 =

〈
˜�μ�i

T

∂̃N

∂t

〉

� 〈 ˜�μ�i〉
T

〈
∂̃N

∂t

〉
. (25)

We could thus estimate a lower bound for the ensemble
average of total entropy production for an isothermal process
with the duration τ ,

〈�S̃irr〉 =
∫ τ

0
〈σ̃ 〉dt � 1

T

∫ τ

0
〈 ˜�μ�i〉

〈
∂̃N

∂t

〉
dt . (26)

Taking the time average of total entropy production yields

[〈�S̃irr〉]τ = 〈�S̃irr〉
τ

� 1

T

1

τ

∫ τ

0
〈 ˜�μ�i〉

〈
∂̃N

∂t

〉
dt

= 1

T

[
〈 ˜�μ�i〉

〈
∂̃N

∂t

〉]
τ

(27)

in which the symbol “[]τ ” refers to the time average. Similarly,
we could have

[〈�S̃irr〉]τ � 1

T

[
〈 ˜�μ�i〉

〈
∂̃N

∂t

〉]
τ

= 1

T
[〈 ˜�μ�i〉]τ

[〈
∂̃N

∂t

〉]
τ

+ 1

T
cτ_cov

(
〈 ˜�μ�i〉,

˜〈∂N

∂t

〉)
, (28)

where “cτ_cov()” means the time average covariance. The
ensemble averages of the flow and its driven force are also
supposed to be positively correlated during the evolution,
which results in

[〈�S̃irr〉]τ � 1

T

[
〈 ˜�μ�i〉

〈
∂̃N

∂t

〉]
τ

� 1

T
[〈 ˜�μ�i〉]τ

[〈
∂̃N

∂t

〉]
τ

. (29)

Herein, an average effective electrical resistance Re is
introduced to characterize the charge transport impedance
between the targeted system and the reservoirs over the

isothermal process,

Re = [〈 ˜�μ�i〉]τ
q2

e

[〈
∂̃N
∂t

〉]
τ

, (30)

in which qe is the elementary charge. This average effective
electrical resistance Re is measurable and holds the com-
parable meaning with the conventional electrical resistance.
Assume that in the view of time and ensemble average the
charge transfer process is linear and thus Re is independent on

either [〈 ˜�μ�i〉]τ or [〈 ∂̃N
∂t 〉]

τ
. Then, Eq. (29) becomes

[〈�S̃irr〉]τ � q2
e

T
Re

[〈
∂̃N

∂t

〉]
τ

2

. (31)

Since the four state points of the thermoelectric cycle are
fixed, we could estimate the average charge flows for the
processes A → B and C → D as[〈

∂̃N

∂t

〉]
τAB

≈ NB − NA

τ
= �NAB

τ
,[〈

∂̃N

∂t

〉]
τ_AB

≈ ND − NC

τ
= �NCD

τ
. (32)

In this way, we could reach a least estimation of the entropy
production dependent on the duration τ for the two isothermal
processes through combining Eqs. (31) and (32),

〈�S̃irr_AB〉 � 1

τ

q2
e

TH
Re_AB�N2

AB ∝ τ−1,

〈�S̃irr_CD〉 � 1

τ

q2
e

TL
Re_CD�N2

CD ∝ τ−1, (33)

which have the τ−1 scaling relation that has been extensively
employed when analyzing the thermal engines of finite-time
thermodynamics [12,13,15,27]. Thus, the work of the finite-
time thermoelectric cycle could be estimated as

〈W̃ 〉 = ηC〈Q̃AB〉 − TLq2
e

{
Re_AB�N2

AB

TH
+ Re_CD�N2

CD

TL

}
τ−1,

(34)

with the heat flow 〈Q̃AB〉 as

〈Q̃AB〉 = TH�S−TH 〈�S̃irr_AB〉 = TH�S − q2
e Re_AB�N2

ABτ−1.

(35)

The power can be calculated readily from Eq. (34) by
dividing the cycle operation duration. With the assumption
that the processes B → C and D → A are ideally adiabatic,
we could neglect their duration τadia for simplicity without
altering the physical essence, and thus have

〈P̃〉 = 1
2

{
ηCTH�Sτ−1−q2

e

{
Re_AB�N2

AB + Re_CD�N2
CD

}
τ−2

}
.

(36)

Taking ∂〈P̃〉/∂ (τ−1) = 0, we can determine the maximum
power of the thermoelectric cycle, which reads

〈P̃〉Max = 1

8Re_ABq2
e�N2

AB

(�S)2

1 + γ
(TH − TL )2, (37)

with

τ−1
MP = 1

2Re_ABq2
e�N2

AB

�S

1 + γ
(TH − TL ). (38)

024130-5



YUCHAO HUA AND ZENG-YUAN GUO PHYSICAL REVIEW E 109, 024130 (2024)

The corresponding efficiency is given by

〈η〉MP = ηC

2 − ηC/{1 + γ } , (39)

with

γ = Re_CD�N2
CD

Re_AB�N2
AB

. (40)

When we define β = 1 + γ , Eq. (39) is quite consistent
with the efficiency formulation ηST derived from Brownian
motors as presented in Table I. This is reasonable due to
the equivalence of varied types of heat engines. The cor-
responding maximum power of thermoelectricity holds the
same explicit temperature dependence and the identical factor,
i.e., 1/8, as that derived from stochastic thermodynamics.

For further clarifying the physical essence of the coefficient
γ for thermoelectricity, some transformations are introduced
to make it more understandable and calculable for a specific
TEG. Referring to Ref. [4], a Peltier coefficient can be defined
in a reversible way for a thermoelectric system by constructing
the isothermal process, which is given by

� = T �S

qe�N
, (41)

in which �S and �N are the entropy change and the charge
number change of isothermal process at the temperature T.
Using the Kelvin relation presented in the same paper [4], a
Seebeck coefficient can be deduced as well,

αS_r = �S

qe�N
. (42)

Then, referring to Eq. (42), we could have

γ = Re_CD

Re_AB

(
�S/(qe�NAB)

�S/(qe�NCD)

)2

= α2
S_r(AB)/Re_AB

α2
S_r(CD)/Re_CD

= PF_r(AB)

PF_r(CD)
, (43)

where PF_r(AB) = α2
S_r(AB)/Re_AB and PF_r(CD) =

α2
S_r(CD)/Re_CD should have the comparable physical contents

to the thermoelectric power factor for the processes A → B
and C → D, respectively. Therefore, we could say the
coefficient γ is the ratio of such thermoelectric power factors
at the high and low temperatures. Moreover, the maximum
power of the thermoelectric cycle can be rewritten to a
compact expression,

〈P̃〉Max = 1

8(1 + γ )
PF_r(AB)(TH − TL )2. (44)

In practice, the difference of PF_r at the high and low tem-
perature is frequently assumed to be nonsignificant, resulting
in the nearly symmetric dispassion condition (γ ≈ 1), and
thus we have

〈η〉MP = ηC

2 − ηC/2
, (45)

〈P̃〉Max = 1

16
PF_r(AB)(TH − TL )2, (46)

which are distinct compared to the formulations based the
linear-irreversible and endoreversible thermodynamics at the
identical condition.

FIG. 4. (a) Schematic of the work evolution within single ther-
moelectric cycle, which corresponds to discontinuous power output.
(b) Schematic of the work evolution when combining two cycles,
which can have a continuous power output.

IV. DISCUSSION

A. Comparison to the linear-irreversible-thermodynamics
based formulations

The maximum power-efficiency pair of finite-time ther-
moelectric cycle can well agree with that derived from the
stochastic thermodynamics, but poses the discrepancy with
the linear-irreversible-thermodynamics based formulations
that have been widely adopted in the research of thermo-
electricity [6]. First, we should note that the steady-state
TEG generally serves as the targeted system in the linear-
irreversible-thermodynamic analysis, and its power output
is continuous; by contrast, the power output pattern should
be discontinuous for a thermodynamic cycle, as shown in
Fig. 4(a). In order to have continuous power output, we can
combine the thermoelectric cycle with another cycle of phase
lag, as given in Fig. 4(b), and thus the power is doubled, while
the efficiency remains unchanged:

〈P̃〉(Cont)
Max = 1

4

1

(1 + γ )
PF_r(AB)(TH − TL )2. (47)

Table II demonstrates the expressions of the efficiency at
max power and the continuous max power with the parame-
ter γ at the different limits: when the high-temperature-side
dissipation dominates, i.e., γ → 0, the continuous power
of thermoelectric cycle has the same form as the linear-
irreversible-thermodynamics case, but the corresponding
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TABLE II. Efficiency at max power and continuous max power with the parameter γ at the different limits.

Description Continuous max power Efficiency at max power

γ → 0 High-temperature-side dissipation dominates PF_r(AB)
4 (TH − TL )2 ηC

2−ηC

γ → ∞ Low-temperature-side dissipation dominates 0 ηC
2

γ = 1 Symmetric dispassion PF_r(AB)
8 (TH − TL )2 ηC

2−ηC/2

efficiency is not ηC/2; by contrast, when the low-temperature-
side dissipation is dominant, i.e., γ → ∞, the efficiency
at max power given by the linear-irreversible thermody-
namics can be recovered (that is, ηC/2), while the power
becomes 0. Note that these limiting values of γ could be
unrealistic for the practical TEGs, and thus such discussion
makes major sense in the view of mathematics. Actually, the
derivation in the linear-irreversible thermodynamics gener-
ally assumes the condition of symmetric dispassion (γ = 1),
where the thermoelectric cycle holds the different continuous
max power and efficiency compared to the linear-irreversible-
thermodynamics formulations.

In order to explain such incompatibility, we notice the
discrepancy of thermoelectric coefficients (i.e., Peltier and
Seebeck) in the thermoelectric cycle, compared to the linear-
irreversible thermodynamics analysis. Referring to Eq. (41),
the Peltier coefficient (�) here is derived from the reversible
heat flow, corresponding to the Seebeck coefficient (αS_r)
defined with respect to the entropy change �S that is the
difference of the state variable, entropy S, as given in Eq. (42);
by contrast, the Peltier coefficient (denoted by �irr) used in the
linear irreversible thermodynamics relates the heat flow 〈Q̃〉 to
the accumulated current [6],

�irr = 〈Q̃〉
qe�N

. (48)

Accordingly, in terms of the ORR, the Seebeck coefficient
(denoted by αS_irr) in the linear irreversible thermodynamics
is dependent on the entropy flow, 〈Q̃/T 〉 [6], which excludes
the entropy production in the entropy change �S,

αS_irr = 〈Q̃/T 〉
qe�N

. (49)

If we substitute the Peltier coefficient, �irr , into the work
expression of the finite-time thermoelectric cycle, Eq. (34),
we have

〈W̃ 〉 = ηC�irrqe�NAB − q2
e Re_AB�N2

AB{1 − ηC + γ }τ−1.

(50)

Following the widely employed assumption in the linear-
irreversible thermodynamics that the thermoelectric coeffi-
cients are constant, we can derive the maximum power-
efficiency pair accordingly,

〈P̃〉(Cont)
Max_irr = 1

4

1

1 − ηC + γ
PF_irr(AB)(TH − TL )2, (51)

〈η〉MP_irr = ηC

2
. (52)

Then, at the symmetric dispassion condition, γ = 1, the
maximum power-efficiency pair of the thermoelectric cycle

with �irr and αS_irr reaches

〈P̃〉(Cont)
Max_irr = 1

4

1

2 − ηC
PF_irr(AB)(TH − TL )2

� 1

4
PF_irr(AB)(TH − TL )2, (53)

〈η〉MP_irr = ηC

2
,

which is in the identical form of the linear-irreversible-
thermodynamics formulations given in Table I. Actually, it
requires further clarification on which definition of thermo-
electric coefficients is more proper for accessing the efficiency
of TEGs.

B. Comparison to the endoreversible-thermodynamics
based formulations

Here, we argue the applicability using the endoreversible
thermodynamics to analyze the Carnot-like thermoelectric
cycle. The hypothesis of endoreversibility, which merely
considers the irreversibility emerging due to the finite heat ex-
change with heat reservoirs [8], is fundamentally distinct with
the thermoelectric cycle here where the irreversibility arises
from the internal processes [5]. Moreover, the heat input and
output in the thermoelectric cycle here are achieved through
the Peltier effect rather than to the finite heat exchange, which
does not give a place for using the endoreversible assumption.

In fact, if only considering the mathematical expressions,
the difference of the maximum power-efficiency pair between
the thermoelectric cycle and the endoreversible thermody-
namics could be eliminated with assuming

γ =
√

TL/TH = PF_r(AB)

PF_r(CD)
, (54)

which leads to

〈P̃〉Max = 1

8
PF_r(AB)THηCA(

√
TH − √

TL )
2
, (55)

〈η〉MP = ηC

2 − ηC/{1 + γ } = ηC

1 + √
TL/TH

= 1 −
√

TL/TH .

(56)

Nevertheless, such coincidence might not be that physi-
cally rational. In addition to the argument above, the ratio of
thermoelectric power factors at the high and low temperatures
generally approximates 1.0, γ ≈ 1, in practice, which makes
it kind of hard to give a solid explanation about the physical
or practical essence of γ = √

TL/TH .

C. Implementation of the present formulations for realistic
thermoelectric material

Our discussions above are conducted in a rather theoretic
view of thermodynamics, while this section presents how to
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effectively implement our models, i.e., Eqs. (39) and (47),
to estimate the maximum power-efficiency pairs of realistic
thermoelectric materials based on the finite-time Carnot-like
thermoelectric cycle.

To do so, we need to first identify those two parameters (the
power factor PF_r and the coefficient γ ) embedded in Eqs. (39)
and (47) for a specific material. As clarified above, the See-
beck coefficient in the present formulations holds the different
physical essences compared with conventionally used one.
In terms of our previous work [4] that built the reversible
quasistatic process for Seebeck phenomenon, this reversible
Seebeck coefficient can be expressed as

αS_r = 1

qe

(
dN

dT

∣∣∣∣
μ

)/(
dN

dμ

∣∣∣∣
T

)
, (57)

with

N =
∫

fFDD(εk )dεk =
∫

2

eεk−μ/kBT + 1
D(εk )dεk, (58)

and the Fermi-Dirac distribution,

fFD = 1

eεk−μ/kBT + 1
, (59)

in which εk is the carrier energy and D(εk ) is the density of
states (DOS). Thus, we have

αS_r = 1

qeT

∫ fFD[1 − fFD][εk − μ]D(εk )dεk

∫ fFD[1 − fFD]D(εk )dεk
. (60)

Compared to the generally used Seebeck coefficient model
that is derived from the Boltzmann transport equation [28],
the terms of group velocity and relaxation time, which closely
relates to the irreversible transport mechanisms, are dropped
in this reversible formula, Eq. (60). This is reasonable, since
the reversible Seebeck coefficient is defined based on the qua-
sistatic process [4] that eliminates the irreversibility. Actually,
Peterson and Shastry [29] proposed a similar expression to
Eq. (60) through the slow-limit simplification of the Kubo for-
mula, and the authors named it a Kelvin formula and regarded
it as an approximate expression for the exact Seebeck coeffi-
cient, which means it might lose some accuracy. Nevertheless,
based on our analysis, this reversible Seebeck coefficient,
which is very concise, holds its own physical content and
can be utilized to estimate the maximum power efficiency
based on the finite-time thermodynamic cycle. As for the elec-
trical resistivity term in the PF expression, the conventional
resistivity could be adopted to characterize the irreversibility
during the charge transport processes. Naturally, when such
reversible thermoelectric power factor (PF_r) is determined,
the coefficient γ , i.e., the ratio of thermoelectric power factors
at the high and low temperatures, could be readily calculated.

As a case study, our models are applied to the n-type silicon
[28,30,31]. The energy band of Si is characterized by the
parabolic model with the effective mass [32],

εk = h̄2k2

2me_DOS
+ EC. (61)

FIG. 5. (a) Seebeck coefficients of n-doped silicon at the varied
doping concentrations (nd ) calculated by the reversible formulation,
with comparison to the experimental data [28,30]. (b) Reversible
power factor (PF_r) of highly doped silicon vs temperature.

Setting the minimum energy in the conduction band EC =
0, the DOS is given by

D(εk ) = 1

2π2

(
2me_DOS

h̄2

)3/2√
εk. (62)

The Fermi level is calculated following Ref. [33], which is
dependent on both the temperature and the doping concentra-
tion. Figure 5(a) compares the Seebeck coefficient values for
the n-doped silicon calculated by the reversible formulation,
Eq. (60), and measured by the experiments [28,30], respec-
tively. It is found that the reversible Seebeck coefficients are
very close to the experimental ones for the highly doped case
(the doping concentration nd = 6.0 e19 cm−3), where the dif-
fusion component dominates [28]. By contrast, the reversible
Seebeck coefficient values of the lightly doped sample (the
doping concentration nd = 2.6 e15 cm−3) can significantly
deviate the experimental data. This is because the measured
Seebeck coefficients of the lightly doped silicon generally
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FIG. 6. Continuous maximum power and corresponding effi-
ciency estimated by the present model using the revisable power
factor for n-doped silicon samples, with the cold source tempera-
ture equal to 300 K and the varied doping concentrations: (a) the
coefficient γ and the efficiencies at maximum power vs heat source
temperature; (b) continuous maximum power per leg length vs heat
source temperature.

involves a big portion of the phonon-drag term [30] which
is attributed to the momentum exchange between the carriers
and the nonequilibrium phonon system. This irreversible fac-
tor is not included in the present model. In fact, such limit
could not significantly affect the utilization of our model in
practice, which can serve as an effective and concise alter-
native for performance evaluation, since the thermoelectric
materials for the practical applications are frequently medium
or highly doped [34]. Therefore, here we focus on the highly
doped silicon (nd � 1.0 e19 cm−3), of which resistivity could

be estimated using the mobility [31]

ρe = 1

qenek1
T 3/2, (63)

where ne is the free-electron density (derived along with the
Fermi level calculation) and k1 = 15e5 K3/2cm2/V/s [31].
Then, the reversible power factors (PF_r) can be calculated,
and Fig. 5(b) shows that PF_r decreases with increasing tem-
perature and decreasing doping level.

Furthermore, we calculated the continuous maximum
power-efficiency pair and the relevant parameters via the
present model using the reversible Seebeck coefficient, with
the cold source temperature fixed at 300 K. In Fig. 6(a),
the coefficient γ decreases with increasing temperature and
decreasing doping concentration. The efficiency at maximum
power increases with the heat source temperature and keeps
under the Carnot efficiency curve, while the efficiency vari-
ation due to the doping concentration is minor. Figure 6(b)
gives the continuous maximum power per leg length, and it
can be enhanced with both increasing heat source temperature
and doping level.

V. CONCLUSIONS

The present work constructs the Carnot-like thermoelec-
tric cycle by designing a set of protocols for the isothermal
and adiabatic processes of thermoelectricity, which has the
Carnot efficiency and zero power in the quasistatic case. The
maximum power-efficiency pair of finite-time thermoelectric
cycle is derived on the basis of FT, which is identical to that
obtained from the stochastic thermodynamics, but poses the
discrepancy with the linear-irreversible-thermodynamics and
the endoreversible-thermodynamics based ones.

As compared to the linear-irreversible-thermodynamics
case, their incompatibility should be attributed to the differ-
ence in the definitions of Peltier and Seebeck coefficients:
the thermoelectric coefficients in the thermoelectric cycle are
derived based on the reversible heat flow, while those in the
linear irreversible thermodynamics are relevant to the heat
flow. Moreover, as for the endoreversible thermodynamics,
the applicability of endoreversibility could be questionable
for analyzing the thermoelectric cycle here, due to the incom-
patibility of endoreversible hypothesis that merely considers
the irreversibility from the finite heat transfer between the
thermal reservoirs, though the distinction of the mathematical
expressions can vanish with assuming γ = √

TL/TH that could
not be applicable for a practical TEG.

Last, we present how to utilize our models, Eqs. (39) and
(47), as an effective and concise tool to estimate the maximum
power-efficiency pairs of realistic thermoelectric materials via
taking the n-type silicon as the case study.

ACKNOWLEDGMENT

This work was financially supported by Région Pays de la
Loire France within the NExT2Talents program TOP-OPTIM
Project No. 998UMR6607 EOTP NEXINTERTALENTHUA.

024130-9



YUCHAO HUA AND ZENG-YUAN GUO PHYSICAL REVIEW E 109, 024130 (2024)

[1] L. E. Bell, Cooling, heating, generating power, and recover-
ing waste heat with thermoelectric systems, Science 321, 1457
(2008).

[2] Z. Liu, B. Tian, Y. Li, Z. Guo, Z. Zhang, Z. Luo, L. Zhao,
Q. Lin, C. Lee, and Z. Jiang, Evolution of thermoelectric gen-
erators: From application to hybridization, Small 19, 2304599
(2023).

[3] B. David, J. Ramousse, and L. Luo, Optimization of ther-
moelectric heat pumps by operating condition management
and heat exchanger design, Energy Convers. Manag. 60, 125
(2012).

[4] Y. C. Hua, T. W. Xue, and Z. Y. Guo, Reversible recipro-
cal relation of thermoelectricity, Phys. Rev. E 103, 012107
(2021).

[5] Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Irreversibil-
ities and efficiency at maximum power of heat engines: The
illustrative case of a thermoelectric generator, Phys. Rev. E 85,
031116 (2012).

[6] C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G. J. Snyder,
Thermodynamics of thermoelectric phenomena and applica-
tions, Entropy 13, 1481 (2011).

[7] I. I. Novikov, The efficiency of atomic power stations (a re-
view), J. Nucl. Energy 7, 125 (1958).

[8] K. H. Hoffmann, An introduction to endoreversible thermody-
namics, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat.
Natur. 86, 1 (2008).

[9] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[10] M. Esposito, R. Kawai, K. Lindenberg, and C. Van Den Broeck,
Quantum-dot Carnot engine at maximum power, Phys. Rev. E
81, 041106 (2010).

[11] C. Van Den Broeck, Thermodynamic efficiency at maximum
power, Phys. Rev. Lett. 95, 190602 (2005).

[12] J. Kaur, R. S. Johal, and M. Feidt, Thermoelectric generator in
endoreversible approximation: The effect of heat-transfer law
under finite physical dimensions constraint, Phys. Rev. E 105,
034122 (2022).

[13] T. Schmiedl and U. Seifert, Efficiency at maximum power: An
analytically solvable model for stochastic heat engines, Epl 81,
20003 (2008).

[14] R. Fu and Q. Wang, Stochastic control of thermodynamic heat
engines, Annu. Rev. Control 56, 100894 (2023).

[15] M. Esposito, R. Kawai, K. Lindenberg, and C. Van Den Broeck,
Efficiency at maximum power of low-Dissipation carnot en-
gines, Phys. Rev. Lett. 105, 150603 (2010).

[16] G. E. Crooks, Entropy production fluctuation theorem and the
nonequilibrium work relation, Phys. Rev. E 60, 2721 (1999).

[17] C. Jarzynski, Hamiltonian derivation of a detailed fluctuation
theorem, J. Stat. Phys. 98, 77 (2000).

[18] B. Palmieri and D. Ronis, Jarzynski equality: Connections to
thermodynamics and the second law, Phys. Rev. E 75, 011133
(2007).

[19] C. Jarzynski, Nonequilibrium equality for free energy differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[20] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Fundamen-
tal aspects of steady-state conversion of heat to work at the
nanoscale, Phys. Rep. 694, 1 (2017).

[21] N. Merhav and Y. Kafri, Statistical properties of entropy
production derived from fluctuation theorems, J. Stat. Mech.
Theory Exp. (2010) P12022.

[22] T. W. Xue and Z. Y. Guo, Thermoelectric cycle and the second
law of thermodynamics, Entropy 25, 155 (2023).

[23] M. Campisi, P. Talkner, and P. Hänggi, Fluctuation theorem for
arbitrary open quantum systems, Phys. Rev. Lett. 102, 210401
(2009).

[24] D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, The fluc-
tuation theorem for currents in open quantum systems, New J.
Phys. 11, 043014 (2009).

[25] V. Blickle and C. Bechinger, Realization of a micrometre-sized
stochastic heat engine, Nat. Phys. 8, 143 (2012).

[26] E. Solano-Carrillo and A. J. Millis, Theory of entropy produc-
tion in quantum many-body systems, Phys. Rev. B 93, 224305
(2016).

[27] Y. H. Ma, R. X. Zhai, J. Chen, C. P. Sun, and H. Dong, Experi-
mental test of the 1 /τ -scaling entropy generation in finite-time
thermodynamics, Phys. Rev. Lett. 125, 210601 (2020).

[28] J. Sadhu et al., Quenched phonon drag in silicon nanowires
reveals significant effect in the bulk at room temperature, Nano
Lett. 15, 3159 (2015).

[29] M. R. Peterson and B. S. Shastry, Kelvin formula for ther-
mopower, Phys. Rev. B 82, 195105 (2010).

[30] T. H. Geballe and G. W. Hull, Seebeck effect in silicon, Phys.
Rev. 98, 940 (1955).

[31] A. Stranz, J. Kähler, A. Waag, and E. Peiner, Thermoelectric
properties of high-doped silicon from room temperature to 900
K, J. Electron. Mater. 42, 2381 (2013).

[32] G. D. Mahan, L. Lindsay, and D. A. Broido, The Seebeck coef-
ficient and phonon drag in silicon, J. Appl. Phys. 116, 245102
(2014).

[33] B. V. Zegbroeck, Principles of Semiconductor Devices (Online
book, 2011).

[34] D. Narducci and F. Giulio, Recent advances on thermoelectric
silicon for low-temperature applications, Materials 15, 1214
(2022).

024130-10

https://doi.org/10.1126/science.1158899
https://doi.org/10.1002/smll.202304599
https://doi.org/10.1016/j.enconman.2012.02.007
https://doi.org/10.1103/PhysRevE.103.012107
https://doi.org/10.1103/PhysRevE.85.031116
https://doi.org/10.3390/e13081481
https://doi.org/10.1016/0891-3919(58)90244-4
https://doi.org/10.1478/C1S0801011
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.81.041106
https://doi.org/10.1103/PhysRevLett.95.190602
https://doi.org/10.1103/PhysRevE.105.034122
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1016/j.arcontrol.2023.04.005
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1023/A:1018670721277
https://doi.org/10.1103/PhysRevE.75.011133
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1088/1742-5468/2010/12/P12022
https://doi.org/10.3390/e25010155
https://doi.org/10.1103/PhysRevLett.102.210401
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1038/nphys2163
https://doi.org/10.1103/PhysRevB.93.224305
https://doi.org/10.1103/PhysRevLett.125.210601
https://doi.org/10.1021/acs.nanolett.5b00267
https://doi.org/10.1103/PhysRevB.82.195105
https://doi.org/10.1103/PhysRev.98.940
https://doi.org/10.1007/s11664-013-2508-0
https://doi.org/10.1063/1.4904925
https://doi.org/10.3390/ma15031214

