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We study an exclusion process on a ring comprising a free defect particle in a bath of normal particles. The
model is one of the few integrable cases in which the bath particles are partially asymmetric. The presence of
the free defect creates localized or shock phases according to parameter values. We use a functional approach
to Bethe equations resulting from a nested Bethe ansatz to calculate exactly the mean currents and diffusion
constants. The results agree very well with Monte Carlo simulations and reveal the main modes of fluctuation in

the different phases of the steady state.
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I. INTRODUCTION

Models of interacting driven diffusive particles are a nat-
ural effective description for many systems found in nature,
particularly in biology. Cases to which such models have been
applied include the motion of RNA polymerase during DNA
translation [1] and ribosome dynamics in mRNA translation
[2], traffic flow on a busy street [3,4], and driven colloids in
a narrow channel [5-7]. Moreover, these models have been
shown to have links to many other problems in statistical
physics, including disordered polymers in random media [8],
surface growth models [9] (notably, some of the models are
known to lie within the KPZ universality class [10]), diffu-
sion in strongly anisotropic materials [11], equations in fluid
dynamics, such as the Burgers equation [12], and certain com-
binatorial problems [13].

In both the mathematical and physics literature, there has
been focus on one-dimensional systems, for which there are
powerful exact methods. In particular, the asymmetric simple
exclusion process (ASEP) has become the prototype of driven
diffusive systems. The simplicity of the ASEP has allowed for
many exact results for its stochastic dynamics to be derived.
See, for instance, [14—18] for reviews.

A good understanding of fluctuations in such minimal
models is important for several reasons. As the systems to
which these models are applied to, such as traffic on a high-
way, typically contain many fewer particles than conventional
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equilibrium systems, fluctuations may be important to account
for finite-size effects.

In particular, analyzing the system at a microscopic level
allows one to derive the properties of fluctuations without
postulating their form, as would need to be done if start-
ing from a hydrodynamic picture. This type of microscopic
analysis is especially relevant as these models are far from
equilibrium, which means that standard tools for describing
fluctuations, such as Onsager-Machlup theory, are not appli-
cable. Conversely, one can use exact results from microscopic
dynamics to see whether general results can be derived for
nonequilibrium systems from first principles.

The two main approaches that have emerged in the litera-
ture for calculating current fluctuations in ASEPs exactly are
matrix product states and the Bethe ansatz. The matrix product
approach was initially used to describe the spatial structure
and mean current in the steady state [19]. It has been extended
to fluctuations in some cases [20,21], but this generalization
has proved to be quite difficult.

On the other hand, the Bethe ansatz approach allows for
direct calculations of the full current statistics. To be precise,
it is used to calculate the scaled cumulant-generating function
of particle displacement, which can be done to all orders in
some simple cases [22,23].

In this paper we investigate a partially asymmetric simple
exclusion process (PASEP) with a defect particle that has
priority in the dynamics. Recently, the steady state of this
model was solved using a matrix product ansatz, and the
mean current at long times was calculated [24]. Moreover, it
has also recently been shown that it can be solved using a
coordinate Bethe ansatz [25]. Building on these results, we
use a functional Bethe ansatz to rederive the mean current
and calculate exactly the current fluctuations around the mean,
which can be related to the diffusion constant. We emphasize
that to the best of our knowledge this is the first time the
Bethe ansatz has been used to calculate current statistics in
a partially asymmetric process with a phase transition. As
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such, the calculations presented here involve a combination
of the techniques developed for the homogeneous partially
asymmetric case and totally asymmetric case with a defect.

The importance of the Bethe ansatz to the ASEP was
first appreciated when it was realized that its transition rate
matrix (Markov operator) has a very similar structure to
that of a quantum spin chain Hamiltonian [26,27]. Indeed,
both of them are naturally expressed as sums of tensor prod-
ucts of Pauli matrices. Consequently, the well-known Bethe
ansatz techniques from the quantum spin chain case could
be carried over to study the spectral properties of the asym-
metric exclusion process [27-30]. Furthermore, by using a
nested Bethe ansatz, Bethe equations have been derived for a
PASEP with particles of different sizes [31] and multispecies
hierarchical PASEPs [32,33]. However, to our knowledge, the
calculation of current statistics beyond the mean in these latter
models remains an open problem.

A major technical advancement was a modification of the
time evolution problem that allowed current statistics to be
calculated easily [22]. It was shown that a deformation of
the transition rate matrix that corresponds to conditioning on
a large current gives the time evolution of the total particle
displacement. As this satisfies a large deviation principle in
the long-time limit, the cumulant-generating function of the
current in the steady state could thus be calculated using the
Bethe ansatz.

This method was used to calculate the large deviation func-
tions of the current in the TASEP [22], the TASEP with a
defect particle [34], and the PASEP [35]. For the PASEP, it
proved to be useful to reformulate the problem as a functional
Bethe ansatz [23,35,36]. This simplified calculations to the
extent that allowed the cumulants to all orders to be formally
expressed in terms of combinatorial objects [23]. The case
considered in this paper is an extension of these results to the
PASEP with a defect particle, which requires a generalization
of the methods for those earlier cases.

The remainder of this paper is structured as follows. In
Sec. II we define the model, review the known results obtained
using matrix product states and the coordinate Bethe ansatz
for this model, and state the new results for the diffusion
constant. In Sec. III we reformulate the Bethe equations in a
functional form, which allows the cumulants of the current
to be calculated directly. We perform these calculations in
Secs. IV and V. In Sec. IV we show that the Bethe ansatz
solution reproduces biased diffusion statistics for the defect
particle, as expected. In Sec. V we calculate the cumulants of
the hopping of normal particles to second order. In Sec. VI
we make some final remarks. We fill in the algebraic detail of
some of the lengthier calculations in the Appendixes.

II. SUMMARY OF RESULTS
A. Model definition

We consider a ring with L + 1 sites, M normal particles,
and one defect particle. The normal particles hop to the right
and left with rates p, g, respectively, and the defect particle
hops to the right and left with rates ap, g/«, respectively. The
defect also overtakes normal particles to its right and left with
rates ap, q/c.

We can summarize the dynamics as follows, where we
denote empty sites, the defect, and normal particles as 0, 1, 2,
respectively:

oap )4 ap
10 = 01; 20=02; 12 <= 21. @))
q/a q q/a

Note that the defect (denoted by 1) does not distinguish
between normal particles and empty sites and can therefore
be seen as having priority in the dynamics. Because of this,
one may think of the defect as a “first-class” particle, whereas
the normal particles may be thought of as “second-class.”

It is convenient to introduce the normal particle density and
asymmetry parameters,

p=M/L, x=q/p. )

We will take x < 1 in this paper (but o can have any positive
value).

B. Large deviation theory

In investigating the long-time current statistics, the central
objects are the random variables Yi(¢), Y>(¢), Y12(¢), which
count the number of processes of type 10 — 01, 20 — 02,
12 — 21, respectively, minus the reverse processes, up to
time £.

In the long-time limit, + — oo, the joint moment-
generating function of these variables satisfies a large
deviation principle,

(eV] Y (f)+V2Y2(I)+V|2Y12(I)> ~ e)»()/l V2Vt , 3)

where y; are the conjugate variables of Y;(r) and X is the rate
function.

The rate function A thus directly gives the long-time limit
of the scaled cumulants of the hop-counting variables,

. (Yi@®)"). _ 9"2
m ———- =

—>00 t

= . @)

3]/1»" 71=0,52=0,y12=0

Using this general formulation, one could in principle com-
pute the statistics of any combination of Y1, >, Y}5. In practice,
this makes the calculations very cumbersome. Therefore, in
this work we shall focus on two important cases: (1) the
net displacement of the defect, which corresponds to y, = 0,
y1 = y12 # 0, and (2) the hopping statistics of the normal
particles, which corresponds to y; =y =0, y» # 0 [37].
Thus we will use the notation

Vi = a;iy, (5)

where y is the single formal parameter conjugate to the rele-
vant variable, and q; are constants, which we can setto a, = 0,
a; = app = 1 to track the defect, or ay = a2 =0,a, =1 to
track the normal particles.

Then, for instance, the long-time limit of mean current and
diffusion constant of normal particles is obtained by setting
a; = app =0, a; = 1 and evaluating

Ya(t EN
7 = tim (B@) _ 9 ’ (6a)
t—00 t 8)/ =0
Var[Y, (¢t 3%
A= fim VRO _ 0 (6b)
1—00 t 8y2 =0
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FIG. 1. Schematic representation of steady-state density profiles
in the reference frame of the defect. Position is given as y = k/L.
The reference frame is defined such that the defect is always located
at k = 0 and the normal particles diffuse on sites k =1, ..., L. The
two localized phases, which have structure only near the defect, are
labeled L, /z. The shock phase is labeled S.

C. Review of previous results
1. Phase diagram

In [24] the steady state of this model was solved using a
matrix product ansatz. It was shown that in the limit L — oo
with p fixed, the system exhibits three phases, which have
distinct expressions for the density profiles and current. The
phase diagram consists of two localized phases (L), in which
the defect only has local effects on the normal particles, and
a shock phase (S), in which the defect disrupts the normal
particle current, creating two macroscopic regions with dif-
ferent bulk densities p;, 0. These do not depend on the mean
density, p, but are instead given purely in terms of the system
parameters, « and x,

N _l—a
pl_l—x’ _l—x_l,
The steady-state density profiles in the reference frame of the

defect are shown schematically in Fig. 1.
The phases are delimited by the transition lines

P2 7

P = P2, ®)

with the shock phase lying in the region p, < p < p; and the
localized phases outside it. The phase diagram is shown in
Fig. 2.

P = pP1,

2. Current

The current of normal particles in these phases was also
calculated exactly in [24] using the matrix product ansatz. In
the limit L — oo, with p held fixed, it is given to leading order
in L by

Je ~ Lp(1 —x)p(1 = p), (9a)

LY
Js ~ Lp(,o(oz —x/a)+ M)
a(l —x)

In the localized phases, the current is essentially the same
as in a homogeneous PASEP. In the shock phase, the defect

(9b)
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FIG. 2. Phase diagram for x = 0.01 (top left), x = 0.2 (top right),
x = 0.8 (bottom left), and x = 0.99 (bottom right). The two localized
phases are labeled £; z, and the shock phase is labeled S.

throttles the current. Observe that the currents in the shock
phase and localized phases are equal at the points of phase
transition (i.e., there is no discontinuity). However, the current
in the shock phase depends linearly on density, whereas in the
localized phases, it is a concave function of density. Thus the
defect evidently makes the current smaller than that of a pure
system.

The current in the shock phase can be further understood
as follows. Let k be the mean position of the shock front in the
reference frame of the defect. Defining u = k/L, total particle
number conservation means

p =0 —=u)pr+ups. (10)

Substituting (10) in (9b), we can write the current in the shock
phase as

Js = Lp(pr — po)la(l — u) + (x/a)ul. 1D

This suggests the following interpretation. The current of
normal particles is controlled by the defect. The defect sees
a normal particle density p; behind itself and p, in front of
itself. As the defect hops forward, with rate ap, it creates
a small region of density p, behind itself. This “hole” has
to travel backwards L(1 — u) sites to restore the steady-state
profile. Thus the defect hopping forward generates a net cur-
rent of normal particles in the forward direction of magnitude
apL(1 — w)(p; — pa).

Similarly, as the defect hops backwards, with rate px/«, it
creates a small region of density p; in front of itself. This has
to travel forwards Lu sites to restore the steady-state profile,
giving a net current of (g/a)Lu(p; — p2).

These two effects combine to give (11).

D. Diffusion constant

In the present work, we use a functional Bethe ansatz
approach to calculate exactly the diffusion constant of normal
particles, as defined in (6b). The method to obtain an exact
expression is outlined in Sec. VD.
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(a) Jo} FIG. 4. Comparison of asymptotic and finite-size curves of dif-
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o

FIG. 3. Plots of diffusion constant for normal particles against
mean density. The system parameters used were (a) L =40, o =
0.1, x = 0.01, (phase transitions at p =~ 0.1, p ~ 0.9) and (b) L =
60, « = 0.5, x = 0.1 (phase transitions at p ~ 0.1, p &~ 0.5). Ex-
cellent agreement is seen between Monte Carlo simulations and exact
finite-size results. The asymptotic results are in good agreement deep
in each phase, but there is some disagreement due to finite-size
effects near the phase transitions.

Asymptotics to leading order in inverse system size are also
extracted in Sec. V D, giving the results

op that travel backwards, and high density waves at rate
px /o that travel forwards. This creates fluctuations, of magni-
tude L(po; — 02)(1 — u) and L(p; — p2)u, respectively, whose
squares have to be added weighted by their rate of creation to
obtain the total variance (13).

III. FUNCTIONAL BETHE ANSATZ CALCULATION
OF THE LARGE DEVIATIONS OF THE CURRENT

A. Bethe ansatz solution

In [25] it was shown that the rate function, as defined in (3),
can be calculated for the model (1) using a coordinate Bethe
ansatz. In summary, this is done by considering the transition
rate matrix encoding the dynamics (1) and applying to it a

Ap ~ LDPp(1 — x)ﬁ[p(l — )P, (12a)  deformation which counts the processes 10 — 01, 20 — 02,
2 and 12 — 21. The rate function (3) can be identified with
As ~ L?pla(p — p2)* + (x/a)(p — p1)*].  (12b) the eigenvalue of the deformed transition rate matrix with the

The comparison of both exact finite-size and asymptotic
results with Monte Carlo simulations is given in Fig. 3.
The estimates from Monte Carlo simulations are in excellent
agreement with the exact finite-size results. The agreement
between finite-size and asymptotic expressions is good deep
in each phase, but near the phase transitions there is some
discrepancy due to strong finite-size effects. On increasing
the system size, the convergence of the finite-size results to
the asymptotic values can be seen, albeit slowly near the
phase transitions. This is shown in Fig. 4.

This result reveals the main sources of fluctuations in the
two phases. In the localized phases, the diffusion constant is
the same as in a homogeneous PASEP with bulk density p

largest real part. This eigenvalue is then found by using an
eigenvector of the Bethe ansatz form,

M
Yo, x1, - ) = (@) e Zm S A [ 2%, (14)

o i=0

where xo denotes the position of the defect and x1, . . ., xjs the
positions of the normal particles; o denotes permutations of
{0,1,...,M}; A, are amplitudes; and z; are complex numbers
called Bethe roots. Using this ansatz, the rate function can be
written in terms of the Bethe roots,

M
% = —IMA+x)+a+x/al+) (5" +xz). (5
i=0
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The Bethe roots are to be found by solving the Bethe equa-
tions,

_ 1 — B — Zi +B)CZ,'
g = (Mg 3
1 —Bx —z; + Bx*z;
M
1 —xzize — (1 +x)z;
[k d+0z (16)
o 1 = xzize — (I + 0)z
fori =0,..., M, where
£ = eV(aH-Laz—alz)’ (17)

and B is a constant. We remark that the structure of these
equations is similar to the homogeneous PASEP case [35], but
with an additional constant, B, which is also a feature in the
case of a TASEP with a defect [34].

In addition to the Bethe equations, we need to enforce the
conditions

M

ae? @M [Tz = 1, (18)
i=0

A—>0 as y—0. (19)

The condition (18) comes from the translational invariance of
the steady state. This means that applying the translation x; —
xi+1fori=0,1,..., M to the eigenvector (14) should not
change it, which is equivalent to (18). We shall henceforth
refer to this as the periodicity condition.

The condition (19) comes from the fact that A is the eigen-
value of the deformed transition rate matrix with the largest
real part. Hence, in the undeformed limit, y — 0, it should
converge to the 0 eigenvalue of the transition rate matrix.

Finally, the constant B can be fixed by multiplying (16) for
all i. Then together with (18), we get

M 1—B—z+Bxz
0 1 — Bx — z; + Bx2z;

=l

_ a*(LJrl)e*V[(L*M)(al*az)+(M+1)a|z]' (20)

1. Ground state solution

It is instructive at this point to consider the ground state,
y — 0. In this case the Bethe roots, z;, all converge to 1,
except one root (we may choose it to be zo without loss of
generality), which converges to a different finite value. From
(25) and the condition (19), it is evident that

20— =al. 1)

We note that in the TASEP with a defect particle whose
hopping rate in units of the normal particles’ hopping rate is
o, the phenomenon of all Bethe roots converging to 1, except
for one, which converges to ! has also been observed [34].

2. Change of variable

The equations take a more felicitous form if we consider
the following transformation of the Bethe roots:
1 -z

yi=—t. (22)
l — XZ;

Such transformations have been used before in Bethe ansatz
solutions for the homogeneous PASEP [23,35] and the asym-
metric XXZ spin chain [29]. We will refer to y; as the Bethe
roots from here on. The Bethe equations (16) become

L=y \"' v —
g(l—)cyi) 1_[ -

ko Vi T Xk

B —yi
Bx —yi

; (23)

the B-fixing equation (20) becomes

Y B

I1 - T @D =M@ —a) M+ Da] (o4
=g P T

and the periodicity condition (18) becomes

M

qe? (@ tMa) 1—[ 11 L (25)
_xyl

Furthermore, the rate function (15) can be expressed as

A
M) = 1)1 = xja)
+( )Z : (26)
—x .
1 — i 1 — XYi
The ground state correspondstoy; — O fori=1,...,M
and
oa—1
Yoy = , (279)
o—x
L+1 M
0 _ 0% —X
B— B =y, LT — M1’ (27b)

where the first equation comes from (21) and (22) and the
latter equation comes from plugging (27a) into (24).

The structure of the Bethe equations (23) is similar to the
homogeneous PASEP case, which has been studied previously
[23,35]. The approach that has proved to be most fruitful is
to transform the equations into a set of functional equations,
which can be solved directly to extract the behavior of func-
tions of the roots, like A, without explicitly calculating the
roots.

Inspired by this approach, we now reformulate (23) as a
functional equation for a single-variable function. Then, we
further manipulate this equation in a procedure known as
going “beyond the equator,” which ultimately allows direct
calculation of A.

B. One-variable function formulation

We first define the single-variable polynomial,

M M
S(T) = xh(T) [ [&T = y0) + R [ [(T = xyi), (28)
k=0 k=0

where
WT)= (Bx — T)(1 — T)-!. (29)

Then from (23), it follows that all Bethe roots y; are roots
of S(T) [i.e., S(y;) = 0]. However, the degree of S(T) is
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L + M + 3, whereas there are only M + 1 Bethe roots. This
suggests that we should also consider the polynomial

M
o) =[] —yo. (30)
k=0
Then as the Bethe roots y; are roots of both S(7') and Q(T),
and the degree of S(T') is higher, we conclude that S(7") must
be divisible by Q(T') as a polynomial. This means that there
exists some polynomial R(7") of degree L + 2, for which

Q(T)R(T) = En(T)Q(T) + x"h(xT)Q(T /x).  (31)
This is a functional equation for Q. As Q contains the same in-
formation as the Bethe roots y;, in this functional formulation,

this equation plays the same role as the Bethe equation (23).
Using Q also allows us to rewrite the B-fixing equation (24)

as
o(B) — a—(L+l)e—V[(L—M)(aI—a2)+(M+1)a12] (32)
O(Bx) ’
and the periodicity condition (25) as
otey(“‘JrM“Z)—Q(l) =1 (33)
QG T

Moreover, the rate function (26), can be written in terms
of Q as

M) —(a — D1 = x/a)

% /(v—1
o Ok )). (34)

o)  xO(x1)
Now Egs. (31)-(33) are self-consistent and can be used

to solve for Q(T) (and therefore A) without reference to the
Bethe roots y;.

+ (1 —x)(

C. Bethe equation beyond the equator

We now proceed to change (31) into the so-called “beyond
the equator” form [23,38], which ultimately allows us to write
an equation involving only one unknown function.

1. Bethe equation
The Bethe equation beyond the equator is given by
2CK(T) = P(T /x)Q(T) — xME~'P(T)Q(T /x),  (35)

where P is a polynomial of degree L — M + 1 and C is a
constant defined as

1—xMg=1y,
TEQ(O)' (36)

The derivation of (35) is given in Appendix A.

C=-

2. Ground state solution

We now consider again the ground state case, ¥ = 0. Re-
calling the remark about the Bethe roots in Sec. IIT A, we can
write the following form of the ground state solution:

00Ty = T™(T —yY), (37a)
POTY =T -y, (37b)
c9 =o. (37¢)

The form of Q@ (37a) follows from the location of the
Bethe roots. Using this result in (36), we obtain (37c). Putting
this back into (35), the form of P(¥ (37b) can be inferred. It
can be verified that with (27a)—(27b), this solution satisfies
equations (32), (33), and (35) and the condition that (34)
vanishes.

Crucially, we note that (37c) implies that C = O(y). This
will be important for the perturbation theory, as it turns out
that it is more convenient to build an expansion in C, rather
than y.

We remark that P is a polynomial of order 1, even though
P is of order L — M + 1. This is because the coefficients
of higher powers of 7' are of order y in the perturbative
expansion. Indeed, the ground state is a special case be-
cause C» =0, so the degrees of P, Q© are not strictly
fixed. However, for the general case, C # 0, so we must have
deg P 4 deg Q = deg h.

D. One function reformulation of Bethe equation

At this point, the Bethe equation (35) still involves two un-
known functions, P and Q. We follow the approach from [23]
to formulate the problem in terms of a single function, w. The
Bethe equation then becomes a self-consistent equation for w,
which can be solved to calculate w order by order in C.

1. Bethe equation

After some algebraic manipulations, which are outlined in
Appendix B, (35) can be written as an equation in terms of
only one function, w, which reads

w(T) = arcsinh(Ch(T )e XD, (38)
Here
(Bx — T)(1 — T)t!
TM(T — yo)(T /x — yo)

where yy is the (yet undetermined) exact value of the Bethe
root that does not converge to 0, and X is an operator on power
seriesin T, u(T) = Z;i o u, T*, that acts as

WT) = (39

oo
1+ xM
Xl(Ty= Y —qul™, (40)
k=—o00 X
with the convention
1 4 x/°
T = 41)

for an arbitrary constant w. To simplify some calculations, in
this paper we make the choice © = —1, though this does not
affect any physical results.

We remark that (38) has the same form as the functional
Bethe equation derived for the pure PASEP [23]. However,
there the analog of & had the simpler form (1 — T')L/T™.
In the present case, & has additional poles at yp, xyo and
contains two undetermined constants: yy and B. As we shall
see, the additional poles imply the existence of phase tran-
sitions. The equations to fix the constants yg, B are given in
the next section, (44) and (45a), leading to a closed system of
equations for w(T), B, yo, and C.
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2. Additional equations

We now rewrite the remaining equations (32), (33), and
(34) in terms of the function w. In doing this, it is helpful
to define another operator P that acts on a power series u(7")
as follows:

o0

Plul(T)=— Y sgn(kuyT", (42)

k=—o00
where sgn is the signum function, which we have defined with
sgn(0) = 1. 43)

Thus P reverses the sign of the terms with non-negative pow-
ersof T.

Then, after some algebra, which is given in Appendix C,
we can express the B-fixing equation (32) as

B —yp Bx — yo
Plw](Bx) + In o —In )
BO — BOx —
=y[(L —M)(@a — ar) + (M + Dap], (44)
and the periodicity condition (33) as
s
ae’ — 1
Yo=— , (45a)
aed —x
where we have introduced the shorthand
8§ =Plw]l(l) + y(a; + May). (45b)

To complete these equations, we need to introduce an
additional equation to fix the constant C. As C is a global
constant that multiplies h, this condition can be interpreted
as a normalization condition. This is given by

{T%w(T) = {y(ar + Lar — ar), (46)

where the notation {T¥} indicates that we take the coefficient
of T* in the power series expansion of the expression that
follows. The derivation of this is also given in Appendix C.

Now (38) and (44)—(46) form a complete set of equations,
which can be used to solve for w(T), B, yo, and C. In practice,
other than for some exceptionally simple cases, one needs to
proceed perturbatively.

Last, to complete the formulation in terms of w(7'), we can
use the operator P to express the rate function as

M) _ g P
p d

_ = s .
T - e ") ae® —x/a)

(47)

IV. HOPPING STATISTICS OF DEFECT PARTICLE

We now proceed to explicitly calculate the cumulants of the
currents at long times. We first consider the net displacement
of the defect (a; = aj; =1, a; = 0). As the defect particle
simply performs biased diffusion, we should recover Skellam
statistics (i.e., the difference of two Poisson random vari-
ables). This result is obvious even without using the Bethe
ansatz, but it serves as a verification of the validity of the
calculation.

Setting a; =ap=1, a=0, we

from (46)

immediately get

(T} w(T) = 0. (48)

Applying this to (38) and noting that {T°}A(T) does not
vanish, it is evident that this is consistent only if C = 0, which
means w(7T) = 0 at all orders.

Then from (45b) we obtain

s =y, (49)
using which (47) yields the exact result

My)/p=(1—e")ae" —x/a). (50)

This is precisely the cumulant-generating function of a Skel-
lam distribution with parameters o, x/«, as expected. The
cumulants are given by

(1) + Yio (DT, _ {a —x/a, kodd

lim .
k even

t—00 t

o +x/a, D

V. HOPPING STATISTICS OF NORMAL PARTICLES

Now we examine the hopping statistics of normal particles.
This is obtained with the choice a; =a;;, =0, a, = 1. We
will see the different behavior of the localized and shock
phases reflected in the asymptotic limit L — oo with p =
M/L held fixed.

Unlike the simpler case of Sec. IV, here w(T') # 0, and we
need to make use of the Bethe equation (38). We will do this
perturbatively.

A. Perturbative expansion

To solve the system (38) together with (44)—(46), it turns
out to be convenient to expand everything (including y) in
powers of C and then eliminate C order by order. This kind of
parametric expansion has been used in Bethe ansatz solutions
for other exclusion processes [22,23,34]. From (37c) we recall
that C = O(y), so this expansion is justified. We use the
notation Z® to denote the kth-order term in the expansion
of some variable Z in powers of C.

To obtain derivatives of A with respect to y, we expand
both in powers of C,

A=20C+1PCr 4.
y=y0C+yOc? 4 ...

(52a)
(52b)

Inverting (52b) gives to second order in y,

v vP Y
c= o To(ym) + 9

Substituting this into (52a), we can express the derivatives
of A with respect to y in terms of the coefficients in the C
expansion, A%, ®_ For the first two derivatives, we get

A

J = W, (54)
A2 ]y(Z)
A= 2()/(—1))2. (55)
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Our task now reduces to expanding all quantities in powers
of C. For example, expanding (38) yields

w(T) = e X" IDCROT) + C2(R M (T)
— M X[ DUTHI+0C*),  (56)

which we match with the expansion w = w® 4+ Cw® +
C?w® 4 ... This yields

wO(T) =0, (57a)
w(T) = RO, (57b)
w®(T) = ") = ROT) X [RONT). (57¢)
Note that 2 is known by using (39),
), _ _ L+1
HOT) = BOx —T)1-=T) 58)

(T =y ) (T/x = 39")

where yéo) is given by (27a) and B is given by (27b). The
calculation of w® requires knowledge of 2" and therefore
of y{" and BV, From Egs. (44) and (45a), we see that we
need the expansions of y and § with respect to C.

Expanding (46) (which in the present case reduces to y =
[2/L){T°}w(T)] immediately gives

y©@ =0, (59a)
2

yD = Z{TO}w“m, (59b)
2

y® = Z{TO}w<2>(T). (59¢)

Similarly, expanding (45b) and using (59b), (59¢) gives

5O — 0, (60a)
8 = PlwD](1) + 2p(T " w (1), (60b)
8@ = PLw®1(1) + 2p{T*}w (1), (60c)
and therefore (45a) gives
a—1
y(()m =, (61a)
o —X
M _ ol =x)
= ——75". 61b
o o« 27 (61b)

The first-order expansion for B can now be obtained from
(44) as follows:

1 _ () 1, D
Plw B + 2 Y0 B X%
BO — " BOx

=—(L—-My". (62)
Knowing y®, 61, y(()l), and BY, we have all the informa-
tion to compute 2" and therefore w®. However, we do not
provide an explicit expression for B, as it will turn out that
this term does not contribute to the asymptotic behavior of the
current and the diffusion constant.

Finally, using (47) we get the expansion of the rate function
) to second order,

2@ =0, (63a)
dPlwVT)
M /p =1 —x)————
dT _—
+ (o — x/a)8D, (63b)
dP[w®(T)
2) — _ - - -~ 7
A2 /p=(1-x) a7 .
+ (o —x/a)s® + %(3“))2. (63¢)

This will allow us to calculate the mean current and diffu-
sion constant of the normal particles.

B. Integral expressions

In order to evaluate expressions explicitly, we rewrite some
key quantities in terms of complex contour integrals. This is
also very helpful for extracting asymptotics. In the following,
I" is a small circle around the origin and a factor dT /(27i) is
implied:

(TO)w(T) = 7§ wif) (64a)
- T
X[w](T) = w(T) + 27§ w (64b)
I
00 k
KT, T =y = [T +(T/T)] - 1,
k=1
(64c¢)
[ w(T)
Plw](Bx) = 2£ Bx——T’ (644)
_ w(T)
Plw](1) = 27§F 17 (64e)
dPWIT)| . w(T)
—dT . = 2£ —(1 — T)z' (641)

Equations (64a) and (64b) are simple applications of the
residue theorem. Equations (64d), (64e), and (64f) are derived
in Appendix D.

C. Current

For the current, given by (54), we require A (63b) and
y 1 (59b). Both of these quantities are expressed in terms of
w®, which from (57b) and (58) is given by

(BOx — T)(1 — T)EH!

(1) = :
S I ) )

(65)

Using these equations, and the integral expressions (64),
we obtain

L p@—x/a)+F. (66)
Lp
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where
F = Z;,}uf FOORO(T)T, (67)
r
T)= T 1 T 68
S( )—(Ol—x/a)l_T—( —x)m7 (68)
hO(T
ZLm =£ T( ). (69)

The normalization Z; j can be computed explicitly as fol-
lows. We first use the definition of A®, (58). Then we
expand the numerator using the binomial theorem. Crucially,
we observe that the terms in the expansion with powers
larger than M do not contribute to the integral as they
have no pole at 7 = 0. The remaining terms can be eval-
uated using the residues of the poles outside the contour
(at T = y(()) and T :xyf)o)). Note that due to the trunca-
tion of the binomial expansion at T, we do not have
to worry about poles at infinity. After some simplification,

J

this gives

M
L+ 1\ oft! —xk k—M—1
_ k 0)
ZLM—Z(—)( % )Wx(yo ) . o)
k=0

where we have used the definition of B®, (27b). The numer-
ator in F' can be computed similarly.

Putting this into (66), we obtain an exact expression for the
current in finite-size systems. This gives an alternative expres-
sion for the mean current, which was previously calculated in
[24] using a matrix product ansatz.

There, the current was defined as the flux of normal parti-
cles across a given bond, whereas in this paper it was defined
as the motion of all particles everywhere in the system (6a).
Hence, to compare the two expressions, we have multiplied
the former by L. The expression from the matrix product
approach, Jypa, and the one obtained in the present work,
Jga, read

Jyea ()@ — et 4 (@ = D Y0 X0 (1) ()
Lp = pla —x/a) — ZL Zl (L—l )(l)al‘_[x’" ’ 7D
1=0 22m=0 \p1—m) \in
J M_—l K _ Ly _ (1 = x)(~! L+1 _ k41301, (0 \k+1
DA = pla = x/a) + Lo O (e )L/a)f")k = fiff)l(“ T, (72)
p Zk:O( ) ( k )(0[ X )(y() )

where y(()o) is defined by (27a). These expressions can be
checked to agree numerically. In particular, one can use a
symbolic programming language like Mathematica with ratio-
nal numbers or integers for all parameters, as this gives exact
values, without any machine error. This has been performed
for various system sizes and parameter choices, and the two
results have been found to agree, though a rigorous, analytic
proof of identical equality is lacking.

Asymptotic expressions for J and phase diagram

The result given so far, (72), is exact and can be evaluated
numerically for finite system sizes. To make sense of it phys-
ically, it is beneficial to extract the asymptotic behavior in the
limit L — oo, with p held fixed.

The key quantity is Z; y, as defined in (69). We can write
it as

Ziym = %A(T)ewm, (73)
r
where
BOx —T)(1 =T)
A(T) = , 74
R 7 )
d(T)=In(1 —T)—pInT. (75)

This integral has a saddle point at the solution of the equa-
tion ¢’(T) = 0. This is found to be

T=T=——"—. (76)

We can always deform the contour of integration to pass
through the saddle point. In doing this, we may need to pass

(

through the poles at 7 = y(()o) and T = xy(()o), in which case the
contributions of their residues must be subtracted.

The original contour is a small circle around 7 = 0. Hence,
the poles must be subtracted if 0 > y(()o) > Tpand 0 > xy(()o) >
Ty respectively. Rearranging these inequalities, we see that we
have three cases.

No poles. When a > 1 or p < p,, both poles are outside
the contour, so the integral is dominated by the saddle point.

Two poles. When @ < 1 and p > py, both poles are inside
the contour. However, it can be verified that the contributions
from their residues cancel exactly. Therefore the integral is
still dominated by the saddle point.

One pole. When @ < 1 and p; > p > py, the pole at xy(()o)
is inside the contour, but the pole at y(()o) is outside the contour.
In this case the integral is dominated by the residue from the
pole at xy(()o).

In summary, for p, < p < p; (i.e., in the shock phase), the
integral is dominated by the pole at T = xy(()o), and otherwise
(in the localized phases) it is dominated by the saddle point.
This implies the phase diagram presented in Sec. II C. Using
these results, we get to leading order

S (To), L
f)), s

where f is defined in (68). Plugging this into (66), we get
expressions that agree with (9a)-(9b).

F~ ) (77

D. Diffusion constant

For the diffusion constant, given by (55) we require
(59¢) and (63c). Using these expressions and the integral
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expressions (64a), (64e), and (64f), we can write the diffusion
constant as follows:

A 5 w(T) R
= =ZL,M[f[f(T)—F] }+<a+x/a)c,
r

L?p T
(78)
where
G=Zy f gRO(T)/T, (79)
r
T
gr)y=p+——, (80)

1-T

and Z; y is defined in (69).

We note that w® appears in (78). The function w®, as
determined by (57c), contains 2D, which is obtained by ex-
panding (39) to first order in C,

71
?<>(T):: a(1-x)6a) 1 . 1 i
ROT)  (@—x?" | T—y" T/x—y)

By

+ S0 7 81)

We see that this expression contains the constants (), B,
Using (85a), (64a), and (64¢), §") can be expressed as

sV =27, yG, (82)

and B is given implicitly by (62). Hence, the explicit finite-
size expression for A is much more complicated than that for
J, and we do not give it here. Instead, we proceed immediately
to the asymptotic behavior.

1. Asymptotic expressions for A

The asymptotic analysis of A requires us to extract the
large L behavior of A", X [A®] [which enter via w® (57¢)],
and G.

J

Ar 3 ([ FHROT) [RO(T)]? hO(T) FROT)P
LTpL’M_f%T 7€T_5€T7§T ’

The asymptotic analysis is much less straightforward than
it is in the calculations of the current. However, guided by
known results in related systems (for instance, [20,21,34,39])
as well as Monte Carlo simulations, one expects that A has the
scaling L? in the shock phase and L3/? in the localized phases.
This helps us to determine which terms will contribute to the
asymptotic behavior.

The integrals still have no-, one-, and two-pole regimes.
However, if one looks at certain terms (such as G) in isola-
tion, the residues from the two poles do not cancel exactly,
and some superdominant scaling seems to emerge. These su-
perdominant terms ultimately cancel out when all the terms
comprising A are considered together. Although we do not
have a rigorous analytic proof of this cancellation mechanism,
our results are supported by extensive numerical analysis, as
well as agreement with the exact finite-size results.

Asymptotics of G. Recall that the definition of G (79) con-
tains g (80). Importantly, we have g(7p) = 0, which implies
that G does not contribute at leading order in the localized
phases, when the integrals are dominated by the saddle point.
In the shock phase, G is dominated by the residue of the pole
atT = xy(()o), therefore we have

G~ g(xy))) = o — pa. (83)

Asymptotics of X[h©(T)].. Splitting X[A®(T)] in two
parts, like (64b), we eventually see that the integral involving
the kernel K never contributes at leading order. Hence, to
leading order

X[AOUT) ~ hOT). (84)

Finally, 2", as given in (81), contains a term proportional
to B!V, However, we have verified that this term does not
contribute in any phase.

Thus, in the localized phase, we can write w®(T) ~
—[R©(T)]?, whereas in the shock phase we have w®(T') &~
RO(T) — [RO(T)]?. Ultimately, the contributing terms to the
diffusion constant in each phase are

(85a)

Localized phase. In the localized phase, the integrals are
to be evaluated at the saddle point. In the numerator, the first
correction to the saddle point has to be computed to get the
leading order contribution. This calculation, although quite
cumbersome, is not as difficult as might first appear, as many
of the terms present in the general saddle point correction
formula cancel out due to the similarity of the two terms
being subtracted. The details of this calculation are given in
Appendix E. Ultimately, we obtain

Ar ~ l T Y /¢_W
L2p 4y L|¢”|<Tf A ¢”)

., (86)
T=Ty

A T (1—x) &0
N ygr[f(T)—F]<(2(O[_;)C2 T

(©)
© " fz“”(T)) " T(T)} + (@ +x/0)G.
0

(85b)

(

with f as defined in (68) and ¢ as defined in (75). Simplifying
this, we obtain the expression in (12a).
Shock phase.. The integrals are dominated by the residues

of the pole at T :xyé)o). Recall that in this phase, F =~

f(xy(()o)). For the first term inside the integral in (85b),
we have

— JOANA)! ©)
?gfm f(f:f ) RO () Res hO(T)
r T/x—y, T r=x® T
(87)
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The second term inside the integral in (85b) can be evalu-
ated after some manipulation as

FT) = fy$) (T = xy§)RO(T)H?

r T- xy(()o) T

0 0 KO\
~ Xy, )f/(xy(() )) TRes .

o0 T

(88)

Combining these results and (83), we get

As

] _
2p ~ f/(xy(()o)) (2—02);(_ x));) (p—p2)+ x)’(()o))

+ (@ + x/a)(p — p2)*. (89)

Simplifying this, we obtain the expression in (12b).

VI. CONCLUSION

We have used the Bethe ansatz to calculate the first two
scaled cumulants of the particle hopping count in a PASEP
with a defect particle that has priority in the dynamics. The
first scaled cumulant (mean current) (9a)—(9b) agrees with
the known result obtained using a matrix product ansatz [24].
The second scaled cumulant (diffusion constant) (12a)—(12b)
is a novel result, which is shown to agree with Monte Carlo
simulations (see Fig. 3).

The asymptotics of the scaled cumulants in the limit L —
oo with p held fixed were also calculated using asymptotic
analysis of the underlying integral expressions. The phase
transitions were shown to correspond to a transition of the
integrals being dominated by a saddle point (in the localized
phases) and a pole (in the shock phases).

The asymptotic results indicate that in the localized phases,
the system essentially does not feel the defect, with the current
statistics being the same as those in a pure system. This makes
sense intuitively, as the effects of the defect are localized, so
its presence is not expected to be manifested at a macroscopic
level.

In the shock phase, we have argued that the current is
controlled by the defect, which creates density waves in the
shock profile. These are small high-density packets in the low-
density region and low-density packets in the high-density
region. The results derived using the Bethe ansatz are consis-
tent with this picture, and it would be of interest to investigate
whether this holds for higher order statistics.

An interesting aspect of the result for the second-order
cumulants is that the scaling is different in the two phases.
In the localized phase, we have A ~ L3/2, whereas in the
shock phase, A ~ L?. Hence there is a jump discontinuity
in A in the thermodynamic limit at the phase transitions,
whereas the current, J, is continuous, with its first derivative
being discontinuous at the phase transitions. We remark that
a similar feature occurs in the open boundary TASEP, where
a discontinuity of A appears when crossing the shock line in
the phase diagram [40].

In the shock phase the current fluctuations, given by
AYZ ~ [ remain comparable to the mean current. This is
consistent with the picture we presented in Sec. IIC of the
motion of the defect causing density fluctuations that must

travel around the system and thus create current fluctuations
of order L. As the motion of the defect is independent of the
system size, the relative fluctuations do not decrease in the
limit of large L.
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APPENDIX A: DERIVATION OF BETHE EQUATION
BEYOND THE EQUATOR

To reformulate the Bethe equation in the “beyond the
equator” form, we begin by examining the degrees of the poly-
nomials in the Bethe equation (31). We have degh = degR =
L 42 and degQ = M + 1. Then by the rules of polynomial
division, we can write

ua) v

h(T)

oo/s o oy VT A
where U, V are polynomials of degree at most M and W is
a polynomial of degree L — 2M. In doing this, we assume
that L —2M > 0, though the solution will be general due to
particle-hole symmetry.

Then dividing (31) by OQ(T)Q(xT)Q(T /x), we get

R(T) U(T) V(T)
) () Ly
0GTHO(T/%) E(Q(T/X)+Q(T)+ ( ))
" UxT) V(xT) )
— 4+ ——4+W&T)).
+x <Q(T) +Q(xT)+ xT)
(A2)

Generally, Q(T') will not share any roots with Q(xT) or
Q(T /x). Therefore the only term that has poles at the zeros
of Q(T) is [EV(T) + xMU (xT)]/Q(T). As the degree of the
numerator is at most M, the only way the equation can be
satisfied is if this term vanishes identically,

EV(T)+xMUGT) = 0. (A3)

Using this to eliminate V in (A1), we get
nT) _um ;ﬁ U(xT)
omQ(T/x)  OT/x) & Q)
Now we can always find a polynomial W such that

W(T) =xMe~"W(T) — W(T /x). (A5)

+W(T). (A4)

Indeed, this corresponds to simply rescaling the coefficients
of T in W(T) by (xM&~' —x7%). Then we multiply (A4)
by 2C, where C is an arbitrary constant and the factor of 2
is introduced to simplify expressions later. This allows us to
write the Bethe equation beyond the equator (35),

2CW(T) = P(T/x)Q(T) — xM&'P(T)Q(T /x),  (A6)
where

P(T) =2C[U(T) — W(T)HQ(T)]. (A7)
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Although in general C is an arbitrary constant, we can make
particular choice to simplify later calculations. Specifically,
we fix C such that we have the identity

P(0) = —y0.

Evaluating (A6) at T = 0, we see that this can be achieved
with the following choice of C:

1— Mgy,
TEQ(O)'

(A8)

C=-— (A9)

APPENDIX B: DERIVATION OF ONE FUNCTION
VERSION OF BETHE EQUATION

To derive the one function version of the Bethe equation, it
is first helpful to rewrite the polynomials Q, P. Starting with
0, observe that due to the definition of Q, (30), the coefficient
of TY+! will be exactly 1 at all orders. Then also keeping in
mind the ground state expression (37a), we can write Q in the
form

O(T) = TY[1 + g(T)I(T — yo), (BI)

where ¢(T) is a polynomial in negative powers of T of de-
gree M — 1, with g(T) = O(y) and y is the Bethe root that
converges to yoO .

For P, considering the ground state expression (37b), we
observe that it has one root, which we call ¥, which converges
to yéo) as y — 0, with the other roots diverging [since the
coefficients of higher powers of T are O(y)]. Then we can
write P in the form

P(T) = (T )T — o), (B2)

where 7 (7T) is a polynomial (in positive powers of T') of
degree L + M and n(T) = 1+ O(y). It is useful to rewrite
this as

P(T) = (T — yo)u(T)

T — o
. B3
7 (B3)

Then we note that since yg, yo — y(()o) as y — 0, we have
(T —30)/(T —yp) =14 O(y). Moreover, this term is ana-
Iytic at T = 0. Therefore, we can write

P(T) = (T — yo)l1 + p(T)], (B4

where  p(T) = 2(T)(T = 50)/(T —yo) — 1= 0(y) and
p(T) is an analytic function at 7 = 0. Moreover, from (A8),
we see that p(0) = 0. Hence in a power series expansion
around T = 0, p will have only strictly positive powers.

Then dividing the Bethe equation (35) by TM(T —
Yo)(T /x — yo), we get

2CI(T) = (1 + p(T /x)[1 + q(T)]
— &'+ p(DIL +q(T/x)],  (BS)
where A(T) is defined as
(Bx — T)(1 — T):+!

M) = T )T /x = y0) (B6)

Now let w and @ be functions such that
M) = 1 4 p(T /)1 + q(T)], (B7a)
e "D = £+ (DI +¢(T/x)).  (BTb)

Then (B5) can be written as
w(T) = arcsinh(Ch(T)e™ ™). (B8)
Solving (B7a) and (B7b) for w, i gives

w(T) = 3[In[1 + ¢(T)] — In[1 + (T /x)]

— In[1 4 p(T)] + In{1 + p(T/x)] + In &},  (BYa)
W(T) = H{In[1 + g(T)] + In[1 + (T /x)]
+ In[1+ p(T)] + In[1 + p(T/x)] — In&}.  (BYb)

Importantly, recall that ¢ is a polynomial in negative pow-
ers of its argument and p can be expanded in a power series
around 7 = 0 with only positive powers. We can use this
to establish a relation between w and @ by introducing a
linear operator X that operates on formal power series, u(T) =
Y re o uT*, as follows:

> 1+ r
XulT)= ) T T (B10a)
k=—00
with the convention
1+ xlOl
T o = (B10b)

where w is an arbitrary constant. This operator was intro-
duced in [36].

Observe, that if u is a power series with only negative
powers and v is a power series with only positive powers, we
have

X[ul(T) — X[u)(T/x) = u(T) + u(T /x),
X[I(T) = X[v(T /x) = —v(T) — v(T /x).

(B11a)
(B11b)
Then expanding the logs in (B9a) in powers of g, p [which

is equivalent to expanding in powers of y, as g, p = O(y)],
and applying X, we see that

1 on ()
X[wlT) =3 S ttgryr - g por
n=1

n

—[p(D]" + [p(T/x)]"} + %lné (B12)

n

1 &, (—)
= 52_;( ) {lg(T1" + [g(T /x)]"

+ [p(T)H)]" + [p(T /x)]"} + %111& (B13)
1+p

=1I)(T)+Tln§. (B14)

Now for convenience we may set u = —1, to obtain the sim-
ple relation

X[wl(T) = w(T). (B15)

Though we stress that the choice of u does not affect the
physical results. Plugging (B15) into (B8) gives (38).
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APPENDIX C: DERIVATION OF EQUATIONS IN Sec. III D2

We first note that the operator P, as defined in (42), applied
to w, (B9a), gives

Plwl(T) = 3{In[1 + ¢(T)] — In[1 + g(T /x)]
+In[1 4+ p(T)] —In[1 4+ p(T/x)] —In&}. (C1)

Fixing B.. Evaluating (B5) at T = Bx, taking into account
that h(Bx) = 0, gives after taking the logarithm,

In[1 + ¢(Bx)] — In[1 + ¢(B)] — In[1 + p(Bx)]
+1In[1 + p(B)] — In& = 0. (C2)

Multiplying this by 1/2 and adding to (C1), also evaluated at
T = Bx, gives

Plw](Bx) = In[1 + q(Bx)] — In[1 + ¢(B)]. (C3)
Now (32) can be written using (B1) as

In[1 4 ¢(B)] — In[1 + ¢(Bx)]

+In By n Bx = yo
BO —yi BOx —yi
= —yl(L —=M)(a) — az) + (M + Daz], (C4)
where we have used the identity
©) _ O
B Yo _ o EADM (CS5)

BOx —y{

which is readily derived from (27b). Substituting (C3) gives
(44).

Periodicity condition.. We proceed similarly. Evaluating
(BS) at T = 1, taking into account that (1) = 0, gives after
taking the logarithm

In[1 + g(1)] — In[1 + g(x~")] — In[1 + p(1)]
+In[1 4 p(x~H] —In& = 0. (C6)

Multiplying by 1/2 and adding to (C1) evaluated at T = 1
gives

Plwl(l) =In[1+g(1)] —In[1 +g(x™H].  (C7)
Now we can rewrite (33) as

In[1 4+ g(D] —In[1 4+ g(x~H] + In(1 — yo) — In(1 — xy0)
=—Ilna — yla; — May]. (C8)

Substituting (C7) and solving for yy gives (45a) and (45b).

Normalization.. Consider expanding (B9a) in powers of y .
Recalling that g is a polynomial in negative powers of T and p
has no constant term, it becomes evident that the only constant
contribution is from (1/2)1In&. This gives (46).

Rate function.. Taking the derivative of (B5), evaluating at
T =1 and combining with (B5) evaluated at 7 = 1 (without
taking the derivative) allows us to derive

d gL+ pT/)|
dT = [+ q(T /ol + p(Dl 7,

0. (C9)

Multiplying by 1/2 and adding to the derivative of (B5) eval-
uvated at T = 1 gives

dP[w](T) _4a N 1+4(T) (C10)
ar |-y dT  1+q(T/x) |,
Now (34) can be written as
M) _ —(a@ =D —x/a)

d 14q(T)

T e I
d T — o

+ (1 —x)ﬁlnm . (Cll)

Using (45a) and (45b), the last term can be simplified to
(1 —x)%yo

(1 = yo)(1 = xyo)

Substituting this and (C10), we recover (47).

=ae’ — 1 —x+ (x/a)e?. (C12)

APPENDIX D: PROOF OF INTEGRAL FORMULAS

Here we prove the integral formulas presented in Sec. VB,
specifically (64d), (64e), and (64f). We first make a comment
on the operator P. The output of the operator given by the
definition (42) is well-defined everywhere if the argument of
the operator has a finite Laurent series expansion. For rational
functions, such as 2?), we can modify the definition slightly
to avoid issues with convergence. Note that from (B9a), we
see that at each order in perturbation theory w(7') is a rational
function, as it is given by a finite sum of p(7T) and ¢(T"), which
are both rational functions.

Consider an arbitrary rational function a(7') with a pole of
order n at T = 0 and a finite number of other poles at some
other locations T = g;, for i = 1,...,m. Using the partial
fraction decomposition for rational functions, we can write
a(T) as

by (T) b3(T)
[T5 (T —a) T
where by, b,, b3 are (finite) polynomials in 7', with deg b3 < n.
Note that the first two terms are both analytic at 7 = 0. Then
we define the action of the operator P on a(T') as

by(T) b3(T)
[TZ (T —a) ™ -
It is easy to check that this alternative definition agrees with
(42) within the latter’s radius of convergence.

Now we wish to evaluate a(T') at some location T, where

a(T,) = 0. This condition, together with (D1) and (D2), im-
plies that

a(T) =by(T) +

; (D1)

Plal(T) = =b\(T) — (D2)

Plal(T,) = 2%.

*

(D3)

At the same time, consider an integral of the type used in
Sec. V B, namely, 9§r a(T)/(T, — T), where I is a small circle
around the origin. Out of the terms in the expansion (D1), only
the last one has a pole at T = 0, so the other two vanish. Then
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the integral of the last term can be evaluated using the sum
of the residues of the poles outside the contour. As b3(T) is
a finite polynomial with deg b3 < n, the only pole outside the
contour is the simple pole at 7 = T,. Thus we obtain overall

jg a(T) _ b3(T)
rT.—T  Tr

1
= EP[a](T*)- (D4)

Then (64d) and (64e) are direct applications of this with
T, = Bx and T, = 1, respectively. The required identities,
w(Bx) = 0 and w(l) = 0, can be verified using (35) and the
definition (B7a).

The identity (64f) can be proved by a straightforward
extension of this argument. Then we also need the identity
w’(1) = 0, which can also be verified using (35) and (B7a).

Strictly speaking, our proof only shows that the integral
formulas hold up to any order in perturbation theory, as for
any finite k, w®) is always a rational function with a finite
number of poles. However, this is sufficient for our purposes.

APPENDIX E: ASYMPTOTICS OF A
IN THE LOCALIZED PHASES

First, we rewrite the expression (85a) in a form that is
conducive to saddle point expansion. The diffusion constant
becomes

5 () () re)
) o)}

where we have suppressed the arguments of A(T'), ¢(T), f(T)
for compactness, and these functions are defined in (74), (75),
and (68), respectively.

The terms in the numerator evidently cancel each other
at first order in the saddle point. Hence, we use the general
formula for the first correction to the saddle point (see any

standard textbook, for instance, [41], chapter 6). For instance,
we have (remembering the suppressed factor of 2r)

17) Ael? 1 A"
AP ~ ——— |1+ - ——
r V2w L|@"| L\ 2A¢"
N ¢//// N A/¢/// B 5(¢///)2
B@'P " 24" 244"
The overall factor of —1 arises because the saddle point Tj is
on the negative real axis and the original contour around the
origin is anticlockwise, therefore the steepest descent contour
goes from +ioco + Ty to —ico + Tj.
Applying this, we get
Ar _ Aet? N\ AT feiLe
L*p 2 L|g”|

. (E2)

T=T;

X COIT. s
23/271L2|(]5”| =1,

(E3)

where the correction term (corr.) includes all the contributions
from the first correction to the saddle point of all terms in the
numerator.

Note that in the two terms in the numerator, the only
difference is in the placement of the factors in front of the
exponential. Hence the terms in the general correction formula
that involve only ¢ and its derivatives will cancel between the
two terms. This leaves us with

1 [2<_(Af) L @ane +A__/i>

corr. =

Ag” Af Af¢" A AgY
ATY | (APTYQ" (AT fY) (A2Tf)’¢”/]
AT A2T ¢ AT f AT fo" |
(E4)
After some algebra, this simplifies to
1 2f "
corr. = W(Tf —f +f/W> . (E5)

Putting this into (E3) and simplifying gives (86).
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