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Performance enhancement of quantum Brayton engine via Bose-Einstein condensation
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Bose-Einstein condensation is a quintessential characteristic of Bose systems. We investigate the finite-time
performance of an endoreversible quantum Brayton heat engine operating with an ideal Bose gas with a finite
number of particles confined in a d-dimensional harmonic trap. The working medium of these engines may
work in the condensation, noncondensation, and near-critical point regimes, respectively. We demonstrate that
the existence of the phase transition during the cycle leads to enhanced engine performance by increasing power
output and efficiencies corresponding to maximum power and maximum efficient power. We also show that the
quantum engine working across the Bose-Einstein condensation in N-particle Bose gas outperforms an ensemble
of independent single-particle heat engines. The difference in the machine performance can be explained in terms
of the behavior of specific heat at constant pressure near the critical point regime.
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I. INTRODUCTION

Cyclic quantum heat engines [1–12], as quantum me-
chanical versions of the classical heat engines, can be
classified into various paradigmatic models, including Carnot
cycle [3,13,14], Otto cycle [5–7,10,12,15–18], Brayton cycle
[19–21], and Stirling cycle [1,22,23]. These engine cycles are
usually composed of different thermodynamic strokes such as
adiabatic, isothermal, isochoric, and isobaric strokes. Unlike
in the classical engines where the working medium is com-
posed of classical systems, in the quantum heat engines the
quantum systems are employed as the working substance. The
effects induced by many particles and the quantumness in the
working substance, such as the divergence of energy fluctua-
tions at the phase transition [24–27], many-body localization
[28–30], and nonclassical correlations [31–33] between parti-
cles, were observed to be advantageous for the quantum heat
engines.

If the machine performance, usually associated with the
efficiency and power output, is required to be improved, one
route towards this improvement is to increase the specific heat
of the working substance [17]. The crucial question naturally
arising here is how the phase transition affects the machine
performance [29,34]; the singular behaviors of the specific
heat [35–37] associated with the phase transition account for a
marked difference in work and heat. Recently reported cases
of improved performances in quantum Otto engines [17,24]
near the phase transition can, in fact, be interpreted in terms
of increased specific heat.

Cooling down a gas of bosonic atoms to a very low tem-
perature, at which the particles’ separation is comparable to
a thermal de Broglie wavelength, creates Bose-Einstein con-
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densation [38,39] of purely quantum origin, with emphasis
on the finite number of the trapped bosons [40–42]. One
can focus on the Bose-Einstein condensation by considering
the noninteracting Bose gas [40,41,43,44]. In the quantum
domain, this state of matter should be substantially affect-
ing the performance measures, including power output and
efficiency, as suggested by recent works on quantum Otto
engines [24] operating with an ideal Bose gas confined in a
three-dimensional harmonic trap. Since quantum heat engines
are captured by both the operation mode and quantum nature
inherent in the working substance, various engine models
based on different working systems in finite time have been
investigated [3,22,45,46]. In addition to quantum Otto engines
in which the system Hamiltonian is kept constant to realize
heat exchange, a quantum Brayton engine may be another
interesting engine model where the external control parameter
is tuned during a cooling or heating process. Furthermore,
unlike in quantum Otto refrigerators where heat exchange is
associated with specific heat at constant volume, in quantum
heat engines the heat is related to the specific heat at constant
pressure. The two specific heats are different from each other,
particularly in the phase-transition regime [47–49].

According to the second law of thermodynamics, all heat
engines working between a hot and a cold reservoir of con-
stant temperatures Th and Tl (< Th) must not be more efficient
than a Carnot engine with the efficiency ηC = 1 − Tl/Th. The
Carnot engine produces vanishing power and is of no practical
application. The heat engines should speed up to operate at
finite power, and thus both power output P and efficiency η are
two important performance measures for the heat engines in
finite time. The machine performance were always considered
within the context of finite-time thermodynamics, beginning
with the seminar work by Curzon and Ahlborn (CA) [50].
The efficiency at maximum power for many heat engines
was found to follow some kind of universal bounds, such as
the universality up to the second order of ηC (in the linear
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response regime), ηC + η2
C/8, shared by the CA efficiency

[51–57]. However, the efficiency at maximum power may not
satisfy such bounds for some heat engines. A typical example
is that the machine efficiency may approach Carnot value at
finite power near the phase-transition point [17] and even at
maximum power in a case with shortcut to adiabaticity [58].
In addition to the power output, the efficient power, which is
defined as � ≡ Pη [59–61], can be used as an optimization
criterion by paying attention to both power and efficiency.

In this paper, we explore quantum Brayton engines work-
ing with an ideal Bose with a finite number of particles
confined in a d-dimensional harmonic trap, within the frame-
work of endoreversible thermodynamics. We consider the
machine performance in three different regimes of operation:
(i) a full condensation regime, (ii) a noncondensation regime,
and (iii) a near-critical point regime. When working in the
condensation regime, the engine produces relatively small
work as compared to the machine operating in both noncon-
densation and near-critical point regimes. We show that the
cycle operation at the near-critical point regime has several
advantages that range from greater power output to improv-
ing efficiency. In such a case, the efficiency at maximum
power for the engine working across the regime significantly
surpasses the CA efficiency. We find that the thermal ma-
chine driving across the Bose-Einstein condensation in an
N-particle Bose system outperforms an ensemble of indepen-
dent single-particle engines. We also show that the efficiency
under maximal efficient power can be significantly improved
by the phase transition, recovering the known classical results
under the high-temperature limit. We demonstrate that these
results can be well explained in terms of specific heat at
constant pressure.

II. QUANTUM BRAYTON HEAT ENGINE

A. Thermodynamics for an ideal Bose gas with a finite
number of particles

We consider an ideal Bose gas with a finite number of
particles confined in a d-dimensional harmonic trap. The ge-
ometric mean of the oscillator frequencies can be written in
terms of the frequency of the ith axis ωi: � = (

∏d
i=1 ωi )1/d .

Within the grand-canonical-ensemble treatment, particle num-
ber N , internal energy U , and “harmonic pressure” P [62]
for the ideal Bose gas with temperature T can be obtained
as (h̄ ≡ kB ≡ 1) [63]

N = N0 +
(

T

�

)d

gd (z) + λ�(d − 1)

(
T

�

)d−1

gd−1(z), (1)

U = T d

(
T

�

)d

gd+1(z) + λ�(d )T

(
T

�

)d−1

gd (z), (2)

P = T d+1gd+1(z) + λ
�(d )

d
�T d gd (z), (3)

where N0 = z/(1 − z) is the ground-state occupa-
tion number, z = exp[(μ − ε0)/T ] is the fugacity,
gv (z) = ∑∞

l=1 zl/lv is the Bose-Einstein function, and
λ = [1/2�(d − 1)][

∑d
i=1 ωi/(

∏d
i=1 ωi )1/d ] is the coefficient

related to the individual oscillator frequency, with gamma
function �(x) = (x − 1)!. Here, μ and ε0 denote the
chemical potential and ground-state energy, respectively.

By introducing the dimensionless parameters φi associated
with the form of the trapping potential, we set the frequency of
the ith (i = 1, 2, . . . , d ) axis ωi as ωi = φiω

0, with ω0 being
related to the potential size, and we have � = ω0(

∏d
i=1 φi )1/d

and λ = [1/2�(d − 1)][
∑d

i=1 φi/(
∏d

i=1 φi )1/d ]. Note that
given dimension d , the coefficient λ is dependent on the set
of the parameters {φi} only. For example, in the special case
when the trapping potential is isotropic, the arithmetic and
geometric means of {φi} are thus equal to each other, leading
to the constant coefficient λ = d/[2�(d − 1)]. At constant
pressure, Bose-Einstein condensation occurs when the system
temperature T is lower than the critical temperature T P

c ,
which reads

T P
c =

[P
X

]1/(d+1)

, (4)

where we have used X = ζ (d + 1) + �(d )
d λ

ζ (d )1+1/d

N1/d × [1 −
�(d−1)λζ (d−1)
dζ (d )1−1/d N1/d ]−1, with ζ (d ) ≡ gd (z = 1) being the Rieman-

nian zeta function [43]. The thermodynamic limit where N →
∞ leads to X = ζ (d + 1). The detailed deviation of Eqs. (1)–
(4) can be found in Appendix A. Note that for a d-dimensional
system with particle number N , X is kept constant due to fixed
λ.

Additionally, in Appendix B, we show that the equation of
state [64] for the ideal trapped Bose gas can be given by

PV = NT F (z), (5)

where V is the so-called “harmonic volume” [62] satisfying
V = �−d , and the correction factor is

F (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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X /t d

gd (z)+ d
d−1

gd−1 (z)
gd (z) [X /t d −gd+1(z)]

, t > 1

ζ (d+1)+Xt

ζ (d )+ dζ (d−1)
(d−1)ζ (d ) Xt

(
�(d )λζ (d )

Xt d

)d−1

×
[

�(d )λζ (d )2

Xt Nd + λζ (d−1)
N

]
, t � 1.

(6)

Here we have used t = T/T P
c to denote the reduced tempera-

ture [43] and introduced Xt ≡ X /t d+1 − ζ (d + 1). In contrast
to X and λ, the system volume V = 1/[(ω0)d

∏d
i=1 φi] can

be changed by tuning ω0 when the dimension and form of
trapping potential are given, implying that the system volume
V could be changed during an isobaric or adiabatic process
with constant λ and X .

With consideration of Eqs. (2) and (3), the enthalpy H can
be obtained as

H = U + PV = (1 + d )PV . (7)

The heat capacity of the system at constant pressure can be
determined according to

CP =
(

∂H
∂T

)
N,P

. (8)

B. Expressions for efficiency and power

The Brayton engine cycle works between the hot reservoir
of temperature Th and cold reservoir of temperature Tl , as
sketched in Fig. 1. During the adiabatic compression (expan-
sion) 1 → 2 (3 → 4), the system is isolated from the two heat
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FIG. 1. Pressure vs volume diagram for the endoreversible Bray-
ton cycle. The system is in contact with the hot (cold) reservoir of
constant temperature Th(Tl ) during the isobaric expansion 2 → 3
(isobaric compression 4 → 1). At points 3 and 1, the system tem-
peratures T3 and T1 deviate from the reservoir temperatures Th and Tl

due to finite-time operation, but they reach the reservoir temperatures
Th and Tl , respectively, if these two isobaric strokes are reversible. In
the isobaric processes 2 → 3 and 4 → 1, the pressures are kept as
constants, Ph and Pl , respectively.

reservoirs and no heat is exchanged between the system and
its surroundings. In the isobaric expansion (compression) 2 →
3 (4 → 1) proceeding in a time period τh (τl ) with constant
pressure Ph(Pl ), the system is weakly coupled to the hot
(cold) reservoir. We assume that this machine cycle consisting
of two isobaric and two adiabatic processes is endoreversible,
and the total time required for completing the adiabatic strokes
is proportional to the total time spent on the two isobaric
strokes. That is, the total cycle period can be given by τcyc =
β(τh + τl ). Because of finite-time operation, the system tem-
peratures at the respective ends of isobaric compression and
expansion, T1 and T3, deviate from the temperatures of the
cold and hot reservoirs, Tl and Th.

During the isobaric process, the infinitesimal heat ex-
change between the system and the heat reservoir is given
as δQ = CPdT , where CP was defined by Eq. (8). When we
introduce the reduced temperature t = T/T P

c , where T P
c was

defined by Eq. (4), we show in Appendix C that the reduced
temperature t is kept constant during an adiabatic process.
Thus, for the adiabatic compression and expansion, we have
t1 = t2 and t3 = t4, where t1,4 = T1,4/T Pl

c and t2,3 = T2,3/T Ph
c .

The heats exchanged during the two isobaric strokes can be
determined by using δQ = CPdT to arrive at

Qh = T3

t3

∫ t3

t1

CPdt, Ql = T1

t1

∫ t3

t1

CPdt . (9)

In deriving Eq. (9), we have used the conditions of t1 = t2 and
t3 = t4 holding in the adiabatic compression and expansion.
With consideration of Eqs. (7)–(9), the heat input to the sys-
tem along the hot isobaric process and the heat output from

the system along the cold isobaric process read

Qh = (d + 1)Ph(V3 − V2), Ql = (d + 1)Pl (V4 − V1). (10)

As there is no heat exchange during the two adiabatic
strokes, the total work output per cycle is given as W = Qh −
Ql . By introducing the adiabatic exponent γ = (d + 1)/d , we
can prove that the relation VP

1
γ = const during the adiabatic

compression or expansion (see, also, Appendix C). It follows
that using Eq. (5) and the condition VP

1
γ = const during an

adiabatic stroke, the work output per cycle is given by

W = N (1 + d )

(
1

r
− 1

)
[rT3F (z3) − T1F (z1)], (11)

where we have introduced the compression ratio r ≡
(Pl/Ph)1−1/γ and Fz (z = z1, z3) was given by Eq. (6). The
thermodynamic efficiency [65,66], η = W/Qh, can be derived
by using Eqs. (11) and (10), yielding

η = 1 − r. (12)

This efficiency for the quantum Brayton engine takes the same
expression as that for the classical counterpart [19,67]. With
consideration of Eq. (4), the ratio r defined in Eq. (11) can
be reexpressed as r = T Pl

c /T Ph
c . The ratio r can be rewritten

as r = thTl/(tlTh), if the reduced temperatures tl,h = Tl,h/T Pl,h
c

are introduced. Thus, the efficiency (12) also takes the form of
η = 1 − thTl/(tlTh).

We assume that the system temperature at time τ during
the isobaric process satisfies Fourier’s law [68,69],

Ṫ (τ ) = −κv[T (τ ) − Tv], (13)

where the dot on top denotes the instantaneous rate of change
of temperature T (τ ) with respect to time τ , and κv denotes
the thermal conductivity between the system and the heat
reservoir of temperature Tv , with v = l, h. Using Eq. (13), we
have

T3 − Th = (T2 − Th) exp(−κhτh), (14)

T1 − Tl = (T4 − Tl ) exp(−κlτl ). (15)

These two equations, together with the relation TP
1
γ
−1 =

const during the two adiabatic strokes, give rise to

τl = 1

κl
ln

(
rT3 − Tl

T1 − Tl

)
, τh = 1

κh
ln

(
T1/r − Th

T3 − Th

)
(16)

or

τl = 1

κl
ln

(
t3 − tl
t1 − tl

)
, τh = 1

κh
ln

(
t1Tl − rtlTh

t3Tl − rtlTh

)
. (17)

In terms of t1 and t3, the work output given as Eq. (11) can be
reexpressed as W = N (1 + d ) Tl

tl
( 1

r − 1)[t3F (z3) − t1F (z1)].
Using Eq. (17), it follows that the power output, P = W/τcyc,
can be obtained as

P = N (1 + d )(1 − r)κhκlTl [t3F (z3) − t1F (z1)]

βrtl
[
ln( t3−tl

t1−tl
)κh + ln( t1Tl −rtl Th

t3Tl −rtl Th
)κl

] . (18)
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FIG. 2. Contour plots of work per particle W/N as a function of
reduced temperatures th and tl for a d-dimensional ideal Bose gas
with a finite particle number N in the quasistatic limit. In (a) and
(b), d = 3, but N = 200 in (a) and N = 2000 in (b). In (c) and (d),
d = 2, but N = 200 in (c) and N = 2000 in (d). The other parameters
are Tl = 1 and Th = 5.

C. Work and power output in the three different
working regimes

No Bose-Einstein condensation can occur during an adi-
abatic process of constant fugacity (see Appendix C for
details). The heat engine in each cycle may operate in the
three regimes: a full condensation regime, a complete out-of-
condensation regime, and a near-critical point regime with the
cycle proceeding across the Bose-Einstein condensation that
occurs along an isobaric process.

In the quasistatic limit where time periods τl and τh are
quite long, the system temperatures at the ends of two isobaric
strokes are close to the respective temperatures of the two heat
reservoirs, T3 → Th and T1 → Tl . In a quasistatic cycle, using
Eq. (9), the total work output can be expressed as

W =
(

Th

th
− Tl

tl

) ∫ th

tl

CPdt, (19)

with th ≡ Th/T Ph
c . Without loss of generality, in the following

we will present a numerical analysis of the machine perfor-
mance with focus on the case when the trapping potential is
isotropic. The condition of th � tl must be satisfied in order
for the machine to be operated as a heat engine producing
positive work, as shown in Figs. 2(a)–2(d), where d = 2, 3
[70]. The working medium of the thermal machine may be
in three different regimes: a complete condensation regime
where th,l < 1, a near-critical point regime where tl < 1 and
th � 1, and a complete noncondensation case with th,l > 1.
The machine working either in the condensed phase when
th,l < 1 or in the noncondensed phase with th,l > 1 produces
smaller work output than that in the working regime close
to the critical point. That is, the largest values of work per
particle are observed in the working regime near the transi-
tion point, demonstrating phase-transition supremacy of the

thermal machine. We also see from Figs. 2(a) and 2(b)
[Figs. 2(c) and 2(d)] that given dimensional d , the work per
particle increases with increasing particle number N . Compar-
ison between Figs. 2(a) and 2(c) [Figs. 2(b) and 2(d)] shows
that given particle number N , higher-dimensional working
systems show better performance, producing larger work per
particle.

Given the reduced temperature tl , the work output per par-
ticle as a function of th for d = 3 and N = 200, 2000, 20 000
(for N = 200 and d = 2, 3) is shown in the upper (lower)
panel of Figs. 3(a)–3(c). While the full condensation (non-
condensation) regime is plotted in Fig. 3(a) [3(b)], the
near-critical point regime is shown in Fig. 3(c). In contrast to
the Otto engine cycle [24], the work per particle is particularly
small in the complete condensation regime due to very small
heat exchanged between the system and its surroundings, as
can be seen in Fig. 3(a). This makes the Brayton engine cycle,
operating in the condensation phase, a very marginal machine
that will not be discussed in the following. By contrast, the
exhibition of a phase transition between the condensation and
noncondensation phases during a machine cycle significantly
enhances the work output, as shown in Fig. 3(c). For the
heat engine working either in the Bose-Einstein condensation
phase or in the noncondensation regime, the work output per
particle, W/N , decreases as particle number N increases [cf.
Figs. 3(a) and 3(b)]. However, the work output per particle,
W/N , for the machine operating across the Bose-Einstein con-
densation is increasing with increasing particle number N [see
Fig. 3(c)]. Therefore, the quantum engine working across the
phase transition in the many-particle Bose system is superior
to an ensemble of independent single-particle machines. As
is well known, the wave functions of neighboring particles
in a Bose gas begin to overlap if the temperature is lowered.
When the temperature is sufficiently low, the particles are cou-
pled to each other and coalesce into a single quantum entity
with a common wave function, leading to the formation of
Bose-Einstein condensation. Therefore, the heat engine with
Bose-Einstein condensation under consideration, as an array
of individual heat engines under the condition of an appropri-
ate interparticle coupling, produces superior work output to
that of an ensemble of independent single-particle engines.

This distinction among these figures can be explained by
the behavior of the specific heat at constant pressure as-
sociated with heat injection during an isobaric stroke. In
Appendix D, we analyze the specific heat of the Bose gas
with a finite number of particles confined in a d-dimensional
harmonic trap; we show that the specific heat shows a
cusp (which becomes divergent in the thermodynamic limit
[71,72]) at the critical point is much larger than that both in
the condensation phase and in the noncondensation regime.
In physical terms, at the critical point, the majority of the
heat injection is not responsible for heating up, but rather for
creating the phase transition, thereby implying that a finite
heat would be exchanged only with an infinitesimal change
in temperature. For increasing temperature �T , compared to
the system with higher specific heat, the system with lower
heat capacity absorbs less energy per unit particle. Due to the
singularity of the specific heat at the critical point, the work
output in the near-critical point regime is larger compared
to that in the condensation and noncondensation regimes.
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FIG. 3. The work per particle as function of th for the Brayton heat engine operating in three different regimes: (a) complete condensation
regime with tl = 0.2, (b) out-of-condensation regime with tl = 1.1, and (c) near-critical point regime with tl = 0.5. While the upper panels of
these figures are plotted for d = 3 and N = 200, 2000, 20 000, the lower panels are shown for N = 200 and d = 2, 3. The other parameters
are Tl = 1 and Th = 5.

Therefore, when passing the transition point, the machine
produces the maximal work output [see Fig. 3(c)].

Unlike in the regime away from the critical point, the
work per particle can be enhanced by increasing the particle
number when the machine drives across the critical point.
This follows from the fact that while in both full condensate
and noncondensate regimes the specific heat per particle at
constant pressure is decreasing with increasing particle, in
the regime near the transition point, the specific heat per
particle is increasing with increasing particle number. For a
given particle number, as the dimensionality increases, the
specific heat at the critical point becomes sharper and its peak
becomes greater. The work output per particle increases with
increasing dimensionality, as it should [see the lower panel of
Figs. 3(a)–3(c)].

From Eq. (14) [(15)], we find that the system tempera-
ture T3 (T1) deviates from the reservoir temperature Th (Tl )
due to finite-time duration τh (τl ). Unlike in the quasistatic
limit where the values of th,l determine the working regimes,
the working regimes for the heat engine in finite time are
dependent on the values of t3,1. For finite-time operation,
the relations of t1,3 < 1, t1 < 1 � t3, and t1,3 > 1 correspond
to the full condensation regime, near-critical point regime,
and noncondensation regime, respectively. It is an interesting
question whether or not the power output can be enhanced
by the phase transition. In order to answer this, we compare
the power output in the near-critical point regime with those
in the regimes away from the critical point by plotting the
power per particle as a function of reduced temperature t3.
This comparison is shown in Fig. 4. Apparently, the behav-
ior of power output for finite-time operation is similar to
that work in the quasistatic case. The power output, like the
work output, is larger in the three-dimensional case than in

the two-dimensional case. The power output in the complete
condensation phase is extremely low due to particularly small
work, as shown in Fig. 4(a), implying again that this working
regime is of no meaningful application. Figures 4(b) and 4(c)
show that the machine working across the phase transition
produces much higher power than its counterpart with no
phase transition, demonstrating that Bose-Einstein condensa-
tion can boost the power output of the machine.

D. Maximum power and maximum efficient power with respect
to corresponding efficiencies

To consider the effects of phase transition on the per-
formance of the heat engine in finite time, we consider
both power and efficiency by comparing the three working
regimes: (i) the near-critical point regime when the machine
operates with the cycle passing through the Bose-Einstein
condensation with t1 < 1 < t3, (ii) the out-of-condensation,
finite-temperature regime where the temperature of the sys-
tem is higher than the critical temperature, but not by much,
namely, t1,3 > 1, and (iii) the regime of high temperatures
where t1,3 � 1. The power output (18) as a function of the
efficiency (12) is shown in Fig. 5(a). For a given working
regime, there is a maximal power output Pmax that determines
the optimal efficiency η∗. We see that the power output in
the noncondensation regime (red dashed line) lies close to
the corresponding one in the high-temperature limit (black
short-dashed line), and the difference of the efficiencies at
maximum power between these two cases is small. By con-
trast, both the power output and the efficiency at maximum
power are much higher in the near-critical regime than both in
the out-of-condensation regime and in the high-temperature
limit. This can be understood by the fact that the exhibition
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FIG. 4. The power per particle as function of t3 for the Brayton heat engine operating in three different regimes: (a) complete condensation
regime with tl = 0.2, (b) out-of-condensation regime with tl = 1.1, and (c) near-critical point regime with tl = 0.5. While the upper panels of
these figures are plotted for d = 3 and N = 200, 2000, 20 000, the lower panels are shown for N = 200 and d = 2, 3. The other parameters are
Tl = 1, Th = 5, κl = κh = 1, β = 1, and τh = τl = 1. Note that given these parameters, t1 and th can be numerically determined by substituting
the relation r = thTl/(tl Th ) into Eq. (17).

of the phase transition significantly enhances the power out-
put. The efficiency η = 1 − r = 1 − thTl/(tlTh) approaches
the Carnot efficiency in the extremal case th → tl . At this
limit, the machine under consideration runs at the efficiency
equal to the efficiency of the ideal Carnot engine, but it pro-
duces vanishing work and thus null power [73].

To consider the efficiency for the heat engine under max-
imal power, we numerically determine the maximal value of
power output [cf. Eq. (18)] and the corresponding efficiency
(η∗) through optimal control of external parameters that in-
clude the parameters r, t2, t3 (see Appendix E for details).

In Fig. 5(b), numerical results are reported for the values
of efficiency at maximum power as a function of Carnot
efficiency ηC in the near-critical point regime (η∗

crit), and out-
of-condensation regime (η∗

hcrit ) in which the temperature is not
much higher than the critical temperature, compared with the
CA efficiency ηCA. When the engine operates in the noncon-
densation regime but with temperature slightly higher than
the critical temperature, the efficiency at maximum power
is observed to be higher than the CA efficiency. Crucially,
the efficiency at maximum power is much higher than the
CA efficiency when the machine cycle passes through the

FIG. 5. (a) Power as a function of reduced efficiency η/ηC , with the Carnot efficiency ηC . (b),(c) The efficiencies corresponding to (b) the
maximum power and (c) the maximum efficiency power vs the Carnot efficiency ηC , for the machine operating in the near-critical point
regime (blue solid line) where tl = 0.98, in the noncondensation regime (red dashed line) where tl = 1.01, and (black short dashed line)
reproduced in the high-temperature limit where tl = 2. In (a), the vertical dotted line pattern (black, red, and blue) indicates the maximum
power corresponding to the ratio of efficiency to Carnot efficiency (η/ηC = 0.691, η/ηC = 0.724, η/ηC = 0.951). In (a), the parameters are
Tl = 1, Th = 5, and τh = τl = 5. The other parameters are κl = κh = 1 and β = 1.
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Bose-Einstein condensation. The efficiency at maximum
power in such a case, not limited by the CA bound, ηC/2 +
η2

C/8 [50], can approach the Carnot limit due to the phase tran-
sition that accounts for improved finite-time performance (see
Appendix F for the explanation). Noteworthy, we find that the
efficiency at maximum power in the high-temperature regime
is identical to the CA efficiency ηCA that is indicated by the
black short-dashed line in Fig. 5(b). This is the expected result
since the quantum Brayton cycle turns out to be the classical
endoreversible model in the high-temperature limit where the
state function becomes the classical form PV = NT .

The efficient power as the product of power and effi-
ciency is given by � = Pη, where P and η were given
by Eqs. (18) and (12), respectively. The efficient power �

can be used as another objective optimization criterion, in
which the trade-off between efficiency and power is in-
volved. The efficiency at maximum efficient power can be
determined following the same approach that we used to
determine the efficiency at maximum power, and thus we
set {∂�/∂t1 = 0, ∂�/∂t3 = 0, ∂�/∂r = 0} to obtain the op-
timal values of t1, t3, and r, as well as the optimal efficiency
η◦. Our numerical result shows that the efficiency for the
engine under maximal efficient power behaves similarly to
the efficiency at maximum power [see Fig. 5(c)]. We ob-
serve that, the efficiency at maximum efficient power in
the near-critical point regime (η◦

crit) is much larger than the
corresponding ones in both the out-of-condensation, finite-
temperature regime (η◦

hcrit) and the high-temperature limit η̂,
whereas the optimal efficiency η◦

hcrit is only slightly higher
than the optimized efficiency η̂. Like the power output (see
Appendix E), the efficient power � be reexpressed in terms of
τl and τh : � = 2NTh(1 + d )(1 − r)( 1

r − 1)(r + ηC − 1) ×
sinh(κl τl /2) sinh(κhτh/2)

β(τh+τl ) sinh[(κhτh+κl τl )/2] . The system of equations {∂�/∂τh =
0, ∂�/∂τl = 0} gives the same optimal time allocations τh

and τl as those in maximizing power output. We then use
∂�/∂r = 0 to obtain the efficiency at maximum efficient
power as η̂ = [3 + ηC − √

(ηC − 9)(ηC − 1)]/4, which was
previously obtained from Carnot-like engines based on en-
doreversible [59,60] or low-dissipation [74] assumption.

As emphasized, the results for efficiency at maximum
power and efficiency at maximum efficient power are valid
for all non-one-dimensional systems and all particle numbers,
which are therefore universal for any non-one-dimensional,
finite-size Bose systems.

As a final remark, a quantum Brayton engine may be exper-
imentally implemented by alternatively coupling an extremely
dilute gas of cold atoms confined in a harmonic trap to two
bosonic heat baths of different temperatures. We focus on a
finite number of cold atoms confined in a harmonic trap be-
cause of its relevance to the realized experiments [38,75,76].
Thermodynamic transformations are achieved by accurately
controlling and also tuning off the weak interaction between
the system and heat bath. During an isobaric process, the
system of trapped cold atoms is weakly coupled to a boson
bath. The bath Hamiltonian reads ĤB = ∑

k ωkb̂†
kbk , where b̂k

and b̂†
k are the annihilation and creation operators for a mode k

[77]. The bath may include a photon bath (the electromagnetic
field) or a phonon bath (a macroscopic piece of solid), or
a thermal cloud of ultracold atoms (a species of cold atoms

different from the working system [78]). An adiabatic stroke is
performed through adiabatically changing the trap frequency
� via the power of the laser forming the trapping potential,
during which work is thus performed. Approximate adiabatic
dynamics in the experiment requires a very slow change of
the control Hamiltonian, leading to no net change in the pop-
ulation of the instantaneous energy levels. We further change
the external field through varying trap frequency together with
the temperature to realize an isobaric process along which
both heat dissipation and work are produced. The temperature
that can be measured is changed while satisfying the condition
that the pressure, given by Eq. (3) (in which the fugacity z is
determined by frequency and temperature for constant particle
number), is kept constant.

III. CONCLUSION

In summary, we have theoretically analyzed a Brayton
engine which uses an ideal Bose gas with a finite number
of particles confined in a d-dimensional harmonic trap as its
working substance. Our analysis shows that the engine work-
ing across the Bose-Einstein-condensation transition point can
outperform its nontransition counterpart by dramatically en-
hancing power output and efficiency at maximum power or
maximum efficient power. While the efficiency at maximum
power is independent of particle number N , the Bose-Einstein
condensation as an appropriate form of coupling may boost
the power output, which leads to the power output surpassing
that of an ensemble of independent single-particle quantum
heat engines. Our findings demonstrated the potential of
many-particle quantum heat engines utilizing phase transition
with singularity of physical quantities to realize ideal thermal
machines with an overall good performance.
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APPENDIX A: BOSE-EINSTEIN CONDENSATION
THERMODYNAMICS

Let us consider an ideal Bose gas with a finite number
of particles confined in a d-dimensional harmonic trap, of
which the frequencies along the x1, x2, . . . and xd axis are
ω1, ω2, . . . and ωd , respectively. By using a grand-canonical-
ensemble treatment, the mean population of the Bose system
with temperature T and chemical potential μ can be expressed
as (kB ≡ 1)

ni = 1

exp[(εi − μ)/T ] − 1
, (A1)
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with i = {i1, i2, . . . , id} being nonzero integers. Here the
single-particle energies εi take the following form (h̄ ≡ 1) :
εi = ∑

iiωi + ε0, with ground-state energy ε0 = ∑
j ω j/2

with j = 1, 2, . . . , d . The particle conservation N = ∑
i ni

should be satisfied.
The density of states with the geometric mean of the oscil-

lator frequencies � = (
∏d

d=1 ωi )1/d is given by [41]

ρ(E ) = Ed−1

�(d )�d
+ λ

Ed−2

�d−1
, (A2)

where λ = [1/2�(d − 1)][
∑d

i=1 ωi/(
∏d

i=1 ωi )1/d ] is the co-
efficient related to the individual oscillator frequency, with
�(x) = (x − 1)! the gamma function. When the particle num-
ber N is sufficiently large, the second term in Eq. (A2) can
be neglected. This term, however, plays an important role, as
it accounts for the correction due to finite particle number N
[41,43,62].

Using the identity N − N0 = ∫ ∞
0 ρ(E )n(E )dE , we obtain

the total number of particles [63] as

N = N0 +
(

T

�

)d

gd (z) + λ�(d − 1)

(
T

�

)d−1

gd−1(z),

(A3)

where N0 = z/(1 − z) is the ground-state occupation num-
ber, with the fugacity z = exp[(μ − ε0)/T ], and gv (z) =∑∞

l=1 zl/lv indicates the Bose-Einstein function. As 0 � z <

1, the function gv (z) is bounded by gv (1) = ζ (v), where ζ (v)
is the Riemannian zeta function.

The logarithm of the grand partition function [64] for an
ideal Bose system confined in harmonic trap is given by

ln � = −
∑
εi

ln {1 − exp[(μ − εi)/T ]}. (A4)

By using ln � = − ∫ ∞
0 ρ(E ) ln{1 − exp[(μ − ε0 −

E )/T ]}dE , the logarithm of the grand partition function
can be obtained as

ln � =
(

T

�

)d

gd+1(z) + λ�(d − 1)

×
(

T

�

)d−1

gd (z) − ln(1 − z), (A5)

which determines the grand thermodynamic potential G =
−T ln �. Employing the identity U = T 2(∂ ln �/∂T )z,�, it
follows that the internal energy U reads

U = T d

(
T

�

)d

gd+1(z) + λ�(d )T

(
T

�

)d−1

gd (z). (A6)

Introducing the “harmonic volume” V = �−d [62], we
can determine the pressure P by using the identity P =
−(∂G/∂V )z,T to arrive at

P = T d+1gd+1(z) + λ
�(d )

d
�T d gd (z). (A7)

In the condensation phase, the fugacity of the system satis-
fies z ≈ 1, and the ground-state particle number (A3) can be

reexpressed as

N0 = N −
(

T

�

)d

ζ (d ) − λ�(d − 1)

(
T

�

)d−1

ζ (d − 1).

(A8)

At the critical point of the phase transition, N0 ≈ 0. It follows,
using Eq. (A8), that the ratio of the critical temperature T P

c to
the critical frequency �P

c at constant pressure can be obtained,

T P
c

�P
c

≈
(

N

ζ (d )

)1/d[
1 − �(d − 1)λζ (d − 1)

dζ (d )1−1/d

1

N1/d

]
. (A9)

At the phase transition point, the pressure (A7) becomes

P = (
T P

c

)d+1
ζ (d + 1) + λ

�(d )

d
�P

c

(
T P

c

)d
ζ (d ). (A10)

With consideration of Eqs. (A9) and (A10), the transition
temperature for the finite Bose system at constant pressure is
obtained as Eq. (4).

APPENDIX B: THE EQUATION OF STATE

Here we analyze the equation of state for the Bose system
[21,64] with particle number N . In the case when the temper-
ature T is not larger than the critical temperature T P

c , and the
fugacity z ≈ 1, the pressure (A7) can be rewritten as

P = T d+1ζ (d + 1) + λ
�(d )

d
�T dζ (d ), (B1)

where the second term would be vanishing in the thermody-
namic limit. For a large-size Bose system, the isobaric process
means the isothermal process. However, this is not the case for
the finite-size system where � is varied to realize an isobaric
stroke. Equation (B1), combining with Eq. (A8), gives rise to

PV
∣∣∣
T�T P

c

= NT
ζ (d + 1) + [�(d )λ�/T d]ζ (d )

ζ (d ) + [λ�(d − 1)�/T ]ζ (d − 1)

×
[(

T

�

)d
ζ (d )

N
+

(
T

�

)d−1
λζ (d − 1)

N

]
.

(B2)

Using Eqs. (4) and (B1), we have

�

T

∣∣∣
T <T P

c

= d

�(d )λζ (d )

[ X
t d+1

− ζ (d + 1)

]
. (B3)

Substituting Eq. (B3) into Eq. (B2) leads to

PV
∣∣
T�T P

c
= NT

ζ (d + 1) + Xt

ζ (d ) + dζ (d−1)
(d−1)ζ (d )Xt

(
�(d )λζ (d )

Xt d

)d−1

×
[
�(d )λζ (d )2

Xt Nd
+ λζ (d − 1)

N

]
, (B4)

where we have used Xt ≡ X /t d+1 − ζ (d + 1), with X as
given in Eq. (4).

On the other hand, when the system temperature T > T P
c ,

the number of particles in the ground state almost disappears,
N0 ≈ 0. Equations (A3) and (A7) set the equation of state,

PV = NT
gd+1(z) + [�(d )λ�/T d]gd (z)

gd (z) + [λ�(d − 1)�/T ]gd−1(z)
. (B5)
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The relation

�

T

∣∣∣
T >T P

c

= d

�(d )λgd (z)

[ X
t d+1

− gd+1(z)

]
(B6)

can be derived from Eqs. (A7) and (4). Substitution of
Eq. (B6) into Eq. (B5) yields

PV
∣∣∣
T >T P

c

= NT
X /t d

gd (z) + d
d−1

gd−1(z)
gd (z) [X /t d − gd+1(z)]

. (B7)

We therefore conclude that the equation of state for the
trapped d-dimensional Bose systems is expressed as Eq. (6).

When T > T P
c , the correction factor simplifies

F (z)|
N→∞
T >T P

c
= gd+1(z)

gd (z) in the thermodynamic limit. At higher
temperatures, the correction factor can be approximated
by F (z) ≈ 1 and thus the equation of state turns out to be
PV = NT , as it should [64].

APPENDIX C: ISENTROPIC CONDITION DURING
AN ADIABATIC PROCESS

We show that the ratio �/T is kept constant during the
adiabatic process. Using the grand thermodynamic potential
G = −T ln �, the thermodynamic entropy S = −(∂G/∂T )u,�

can be obtained as

S =
(

T

�

)d

[(1 + d )gd+1(z) − gd ln z(z)]

+ λ�(d − 1)

(
T

�

)d−1

[gd (z)d − gd−1(z) ln z]. (C1)

During the isentropic, adiabatic process, we obtain

dS =
(

∂S

∂T

)
�

dT +
(

∂S

∂T

)
T

d� = 0, (C2)

leading to

d�

dT
= −

(
∂S
∂T

)
�(

∂S
∂�

)
T

. (C3)

Using Eq. (C1) and the relation dgv (z)/dz = gv−1(z)/z, it
follows that

−
(

∂S
∂T

)
�(

∂S
∂�

)
T

= �

T

(
� + T ∂z

∂T �

� − � ∂z
∂�

�

)
, (C4)

where we have used � ≡ d[(1 + d )gd+1(z) −
gd ln z(z)] + λ��(d )[gd (z)d − gd−1(z) ln z]/T and � ≡
[gd (z)d − gd−1(z) ln z]/z + λ�[�(d )gd−1(z) − �(d−1)gd−2

(z) ln z]/(T z).
Due to conservation of the particle number given by (A3),

we have (∂N/∂T )� = 0 and (∂N/∂�)T = 0 during the adia-
batic process, leading to

∂z

∂T
= − zd

T

gd (z) + [�(d )λ�/T d]gd−1(z)

ϒ + gd−1(z) + [�(d − 1)λ�/T ]gd−2(z)
(C5)

and

∂z

∂�
= zd

�

gd (z) + [�(d )λ�/T d]gd−1(z)

ϒ + gd−1(z) + [�(d − 1)λ�/T ]gd−2(z)
, (C6)

where we have used ϒ = z
(z−1)2 ( �

T )d . The combination of
Eq. (C5) with Eq. (C6) gives rise to

T
∂z

∂T
= −�

∂z

∂�
. (C7)

With consideration of Eqs. (C4), (C3), and (C7), we have
d�/dT = �/T , yielding the isentropic condition T/� =
const [24,45]. That is, the ratio of frequency to temperature
�/T remains constant during the adiabatic process.

As S = S(�/T, z) = const with ω/T = const during the
adiabatic process, we can obtain z = const, where there ex-
ists a relation of z1 = z2 and z3 = z4. Since the ground-state
particle number N0 = z/(1 − z), this means that no phase
transition can occur in an adiabatic process. The correction
factor F (z) in Eq. (6) is kept constant and we obtain the
isentropic condition as

V1

V2
=

(Ph

Pl

) d
d+1

=
(

T2

T1

)d

,

V4

V3
=

(Ph

Pl

) d
d+1

=
(

T3

T4

)d

. (C8)

Via comparing with PVγ = const for the classical adiabatic
process, the adiabatic exponent for the d-dimensional Bose
system is obtained: γ = (d + 1)/d . Using Eqs. (10) and (C8),
we then obtain Eq. (5). Since satisfying TP

1
γ
−1 = const in the

adiabatic process, using Eq. (4), we can obtain the reduced
temperature t = const in the adiabatic process.

APPENDIX D: HEAT CAPACITY AT CONSTANT
PRESSURE

From the comparison of Eq. (A6) with Eq. (A7), we
find that the system energy can be given by U = PVd with
V = �−d . The specific heat at constant pressure is then de-
termined by CP = ( ∂H

∂T )N,P, with enthalpy H = U + PV =
(1 + d )PV , to arrive at

CP = −d (1 + d )
P

�d+1

(
∂�

∂T

)
N,P

, (D1)

where

∂�

∂T

∣∣∣∣
T�T P

c

= −d

[
(d + 1)ζ (d + 1)

λ�(d )ζ (d )
+ �

T

]
(D2)

can be obtained by using the condition ∂P/∂T = 0, with
the pressure given by (B1). It follows that by substituting
Eqs. (B1) and (B3) into Eq. (D1), the specific heat at constant
pressure in the condensate phase reads

CP
N

∣∣∣∣
T�T P

c

= d (d + 1)[Xt + ζ (d + 1)]

× Xt d + (d + 1)ζ (d + 1)

N[Xt d/λ�(d )ζ (d )]dXt
, (D3)

where Xt was defined in Eq. (B4).
Following the same method as in the case of the con-

densed phase, we analyze the specific heat for T > T P
c .

Inserting Eqs. (A3) and (A7) into the relations ∂N/∂T = 0
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FIG. 6. The correction factor F (z) as a function of the reduced temperature. (a) Numerical (black diamonds) and analytical (green solid
line) solutions of the specific heat for the system with particle number N = 2000, comparing the calculations via setting λ in Eq. (A2) to be
zero. (b) Numerical results of specific heat for particle number N = 200, 2000, 20 000, and for d = 3. (c) Specific heat at constant pressure
for particle number N = 2000 with d = 2, 3. Insets in (b) and (c): specific heat at high temperatures (2 < t < 8).

and ∂P/∂T = 0, we have

∂�

∂T

∣∣∣
T >T P

c

= Y1
�
T + λA1

(
�
T

)2 + λ2C1
(

�
T

)3

Y2 + λA2
�
T + λ2C2

(
�
T

)2 , (D4)

where Y1=d[g2
d (z)d−(1+d )gd−1(z)gd+1(z)],Y2=[gd (z)d]2,

A1 = d�(d−1)[(d−1)gd − 1(z)gd (z)−(1+d )gd−2(z)gd+1(z)],
A2 = (1 + 2d )�(d )gd−1(z)gd (z), C1 = �(d − 1)�(d )[(d − 1)
g2

d−1(z) − gd−2(z)gd (z)d], C2 = [�(d )gd−1(z)]2 + �(d − 1)
�(d )gd−2(z)gd (z). Thus, inserting Eqs. (D4), (A7), and (B6)
into the relation CP = −d (1 + d ) P

�d+1 ( ∂�
∂T )N,P, we can obtain

the heat capacity at constant pressure in the noncondensed
phase, given by

CP
N

∣∣∣
T >T P

c

= − d (d2 − 1)Xgd (z)

t d+1[(d − 1)gd (z)2 + gd−1(z)Xt,zd]

× [�(d )gd (z)]2Y1 + d�(d )gd (z)A1Xt,z + C1[Xt,zd]2

[�(d )gd (z)]2Y2 + d�(d )gd (z)A2Xt,z + C2[Xt,zd]2 ,

(D5)

where Xt,z = X /t d+1 − gd+1(z).
In the thermodynamic limit, Eq. (D5) gives rise to

CP
N

∣∣∣N→∞

T >T P
c

= (d + 1)
gd+1(z)gd−1(z)

gd (z)2

×
[

(d + 1)
gd+1(z)

gd (z)
− d

gd (z)

gd−1(z)

]
(D6)

which, in the high-temperature limit, gives rise to CP |N→∞
T >T P

c
=

N (d + 1), as expected.
The analytical expressions for the heat capacity, given by

Eqs. (D3) and (D5), were found based on the two approxi-
mations, z ≈ 1 for T < T P

c and N0 ≈ 0 for T > T P
c , but they

are confirmed by our exact numerical calculation, as shown
in Fig. 6(a), where N = 2000. The nice agreement between
the numerical and analytical solutions supports an argument
in favor of our analytical approach. We may notice the quite

different results when ignoring the second term in Eq. (A2),
as also shown in Fig. 6(a), demonstrating the significance of
the finite-size correction.

Figure 6(b) shows the specific heat per particle at con-
stant pressure as a function of reduced temperature t for the
three-dimensional trapped Bose system with N = 200, 2000
and 20 000, respectively. We observed that the specific heat
becomes sharper with increasing particle number N at the
critical point, exhibiting a divergent behavior of the specific
heat. This is because, at the critical point, the majority of the
energy input is not employed to heat up but rather to make
the phase transition, so a finite heat exchange is accompa-
nied by an infinitesimal change in temperature. Figure 6(c)
shows the specific heat per particle at constant pressure for
the Bose system with N = 200 particles confined in different
dimensional harmonic trap, d = 2 and 3 [70], respectively.
Given this particle number, the specific heat at the critical
point becomes larger as the dimension increases.

APPENDIX E: METHOD FOR CALCULATING THE
EFFICIENCY AT MAXIMUM POWER

Here we show how to numerically determine the efficiency
at maximum power by considering the three cases as in
Sec. II D of the main text.

1. Case I: The noncondensation regime.

Let us consider the case for the machine cycle work at
temperatures higher than the phase transition, i.e., reduced
temperature t1 > 1 and t3 > 1 with t1 = T1/T Pl

c , t3 = T3/T Ph
c .

By setting ∂P/∂t1 = 0, ∂P/∂t3 = 0, and ∂P/∂r = 0, where
the power output P was given by Eq. (18), we have the follow-
ing equations:

F (z1) + t1
∂F (z1)

∂t1
=I1

I3
[t3F (z3) − t1F (z1)], (E1)

F (z3) + t3
∂F (z3)

∂t3
=I2

I3
[t3F (z3) − t1F (z1)], (E2)

(1 − r)(t3 − t1)

(t1Tl − rtlTh)
=I3(t3Tl − rtlTh)

κl rtlTlTh
, (E3)
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where we have used I1 ≡ κh
t1−tl

− κl Tl
t1Tl −rtl Th

, I2 ≡ κh
t3−tl

− κl Tl
t3Tl −rtl Th

, and I3 = ln( t3−tl
t1−tl

)κh + ln( t1Tl −rtl Th
t3Tl −rtl Th

)κl . The factors in ∂F (z1)/∂t1
and ∂F (z3)/∂t3 in Eqs. (E1) and (E2) can be obtained by using Eq. (6) to arrive at

∂F (z j )

∂t
= t

∂z j

∂t j

(d − 1)X
z jt j

t d
j gd−1(z j )g2

d (z j ) + d
[
g2

d−1(z j ) − gd−2(z j )gd (z j )
]
X ∗

t j ,z j[
(d − 1)t d

j g2
d (z j ) + dgd−1(z j )X ∗

t j ,z j

]2

− (d − 1)X
z jt j

t d
j z jgd (z j )d

[
(d − 1)g2

d (z j ) − gd−1(z j )gd+1(z j )d
]

[
(d − 1)t d

j g2
d (z j ) + dgd−1(z j )X ∗

t j ,z j

]2 , (E4)

where X ∗
t j ,z j

= X − t d
j gd+1(z j ), with X defined by Eq. (4). Substituting Eq. (B6) into Eq. (1), the total particle number for the

system in the out-of-condensation regime where N0 → 0 can be reexpressed as

N =
(

�(d )λgd (z j )

d
[
X /t d+1

j − gd+1(z j )
]
)d

gd (z j ) + λ�(d − 1)

(
�(d )λgd (z j )

d
[
X /t d+1

j − gd+1(z j )
]
)d−1

gd−1(z j ). (E5)

We use the condition ∂N/∂t j = 0 due to the conservation of the total particle number to obtain

∂z j

∂t j
= − d (d + 1)z jX�(d )gd (z j )

[
g2

d (z j ) + gd−1(z j )Xt j ,z j

]
t2+d

j �(d )g2
d (z j )

[
dg2

d (z j ) + (1 + d )gd−1(z j )Xt j ,z j

] + t jd�(d − 1)Xt j ,z j t
d+1
j

[
(d − 1)gd−1(z j )g2

d (z j ) + MXt j ,z j

] , (E6)

where M = (d − 1)g2
d−1(z j ) + gd−2(z j )gd (z j ) has been used, and Xt j ,z j has been defined by Eq. (D5).

Given particle number N , dimension d , and reduced temperature t j , the fugacity z j is numerically determined according to
Eq. (E5). After having substituting Eq. (E4) [where ∂z j/∂t j was given by Eq. (E6)] into Eqs. (E1) and (E2), we can numerically
extract values of r, t1, t3 by solving the system of nonlinear equations (E1), (E2), and (E3), provided that the parameters
N, d, Th, Tl , and tl are given. As a consequence, the efficiency defined by Eq. (12) is numerically obtained under the condition
of maximal power.

2. Case II: Near-critical point regime

We consider another case for the machine cycle work across the Bose-Einstein condensation and thus t3 > 1 and t1 � 1. For
the expression of the power output [cf. Eq. (18)], F (z3) is still given by Eq. (6), but F (z1) with z1 → 1 becomes

F (z1 = 1) = ζ (d + 1) + Xt1

ζ (d ) + d
d−1

ζ (d−1)
ζ (d ) Xt1

(
�(d )λζ (d )

Xt1 d

)d−1
�(d )λζ (d )2

Xt1 Nd

[
�(d )λζ (d )2

Xt1 Nd
+ λζ (d − 1)

N

]
, (E7)

with Xt1 = X /t1d+1 − ζ (d + 1). Based on the same approach as that used in the noncondensation case, we maximize the power
output with respect to r, t1, t3 to obtain

F (z1) + t1
∂F (z1)

∂t1
= I1

I3
[t3F (z3) − t1F (z1)], (E8)

F (z3) + t3
∂F (z3)

∂t3
= I2

I3
[t3F (z3) − t1F (z1)], (E9)

(1 − r)(t3 − t1)

(t1Tl − rtlTh)
= I3(t3Tl − rtlTh)

κl rtlTlTh
, (E10)

where I1,2,3 were defined below Eq. (E3), ∂F (z3)/∂t3 is given by Eq. (E4), and ∂F (z1)/∂t1 can be derived by using Eq. (E7),

∂F (z1 → 1)

∂t
= I4{[dXtζ (d − 1)]2[d (X /t d+1) − Xt ] + (d + 1)�(d )ζ (d )4[d (X /t d+1) − Xt ] + dXtζ (d − 1)ζ (d )2I5}

tNXt�(d )[dXtζ (d − 1) + (d − 1)ζ (d )2]2
,

(E11)

with Xt defined in Eq. (6), I4 = X [λ�(d )ζ (d )/(Xt d )]d (d2 −
1)/t d+1 and I5 = [2 − 3d + d2 + �(d + 1)]Xt + ζ (1 +
d )[(d − 1)2 + (1 + d )�(d )]. We substitute Eq. (6) (with
j = 3), Eq. (E7), and Eq. (E11) into the system of Eqs. (E8),

(E9), and (E10), which, together with Eqs. (E5) and (E6), lead
to the optimal values of r, t1, t3 under maximal power. We then
obtain the efficiency, η = 1 − r, for the machine operating
across the phase transition and working at maximum power.
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3. Case III: The high-temperature limit

When the machine cycle operates in the high-temperature
regime, i.e., t1 � 1 and t3 � 1, we have F (z1) ≈ 1 and
F (z3) ≈ 1. In such a limit, the power output given by Eq. (18)
simplifies to

P = N (1 + d )(1 − r)κhκlTl [t3 − t1]

βrtl
[
ln

( t3−tl
t1−tl

)
κh + ln

( t1Tl −rtl Th
t3Tl −rtl Th

)
κl

] . (E12)

By setting ∂P/∂t1 = 0, ∂P/∂t3 = 0, and ∂P/∂r = 0, we have
the following equations:

I1(t3 − t1) = I3, (E13)

I2(t3 − t1) = I3, (E14)

(1 − r)(t3 − t1)

(t1Tl − rtlTh)
= I3(t3Tl − rtlTh)

κl rtlTl Th
, (E15)

where I1,2,3 were defined after Eq. (E3). A comparison be-
tween Eqs. (E13) and (E14) leads to I1 = I2, which means
that

κh

t1 − tl
− κlTl

t1Tl − rtlTh
= κh

t3 − tl
− κlTl

t3Tl − rtlTh
. (E16)

Using Eqs. (E13) and (E15), we have

κh

t1 − tl
− κlTl

t1Tl − rtlTh
= κl rtlTl Th(1 − r)

(t1Tl − rtlTh)(t3Tl − rtlTh)
. (E17)

With consideration of Eqs. (E16) and (E17), we can obtain

r =
√

Tl/Th (E18)

and

t3 = tl [κl (t1 − tl )Tl − κht1
√

TlTh + κhtlTh]

κl (t1 − tl )Tl + κh(tl
√

TlTh − t1Tl )
. (E19)

When κl = κh, Eq. (E19) becomes t3 = tl − t1 + tl
√

Th/Tl ,
which, together with Eq. (17), gives rise to τl = τh.

We note that we have used the optimization scheme
by using the extremal condition {∂P/∂t1 = 0, ∂P/∂t3 =
0, ∂P/∂r = 0} to determine the efficiency at maximum
power, for the sake of mathematical simplicity when the
machine works across the Bose-Einstein condensation or in
the near-critical point regime. Since τh and τl are functions
of t1 and t3, the extremal condition we used is equivalent
to that {∂P/∂τh = 0, ∂P/∂τl = 0, ∂P/∂r = 0}. In the lat-
ter case, the power output P = W/τcyc, with work W given
by Eq. (11), should be reexpressed in terms of τh and
τl ,

P = N (1 + d )(r − 1)[R1F (z1) + R2F (z3)]

βr(τl + τh)[exp(κlτl + κhτh) − 1]
, (E20)

where R1 = exp(κhτh)[exp(κlτl ) − 1]Tl + [exp(κhτh) −
1]rTh and R2 = Tl [1 − exp(κlτl )] − exp(κlτl )[exp(κhτh) −
1]rTh.

As an example, we now maximize the power output
with respect to r and τl,h to obtain the corresponding
efficiency. In the high-temperature limit where the correc-
tion factor F (z) → 1, the power output (E20) simplifies

to

P = 2NTh(1 + d )

(
1

r
− 1

)
(r + ηC − 1)

× sinh(κlτl/2) sinh(κhτh/2)

β(τh + τl ) sinh[(κhτh + κlτl )/2]
. (E21)

The power P is therefore written as a product of two terms: a
term F ≡ 2NTh(1 + d )(1 − r)(r + ηC − 1)/r, which explic-
itly depends on the external parameters d, r, and Th,l , and the
other one G ≡ sinh(κl τl /2) sinh(κhτh/2)

β(τh+τl ) sinh[(κhτh+κl τl )/2] being only dependent
on the time allocations τh and τl . Given the external con-
straints, maximizing the power output is realized by setting
∂G/∂τh = 0 and ∂G/∂τl = 0, giving rise to the optimal pro-
tocol, κh[cosh(κlτl ) − 1] = κl [cosh(κhτh) − 1], and thus τh =
τl if κl = κh. In such a case, maximizing the power output
by performing ∂F/∂r = 0, we obtain the pressure ratio as
r = √

1 − ηC , showing that the efficiency at maximum power
is the same as the CA efficiency ηCA.

APPENDIX F: ESTIMATE: AN EXPLANATION OF WHY
EFFICIENCY AT MAXIMUM POWER IS BEYOND THE

UNIVERSALITY OF CA VALUE

While obtaining the exactly analytical expression of effi-
ciency at maximum power in the near-critical point regime
is a formidable task, we make an estimate of the opti-
mal efficiency by considering the critical behavior of the
heat capacity. Under the assumption that the machine cy-
cle is in the quasistatic limit, the system temperatures T3

and T1 tend to be the reservoir temperatures Th and Tl ,
respectively. In the regime close to the critical point, the
heat capacity at constant pressure scales as CP/N ∼ |t −
1|−α , where α is the critical exponent and t = T/T P

c in-
dicates the reduced temperature. For the machine in the
near-critical point regime with th > 1 and tl � 1, the work
output given as Eq. (19) scales as W/N ∼ ( Th

th
− Tl

tl
)
∫ th

tl
|t −

1|−αdt ∼ 1
1−α

( Th
th

− Tl
tl

)[(th − 1)1−α + (1 − tl )1−α]. By setting
∂W/∂th = 0 and ∂W/∂tl = 0, we can obtain the relation

t2
l (th − 1)α

t2
h (1 − tl )α

= Tl

Th
. (F1)

When the Bose gas is confined in a three-dimensional har-
monic trap, the critical exponent α = 1 [71], and the root
of Eq. (F1) can be expressed in terms of Carnot efficiency:

(th/tl )∗ = 2/(tl +
√

t2
l − 4(1 − ηC )(1 − tl )).

We consider the linear response regime where the differ-
ence between the two reservoir temperatures is small, namely,
ηC � 1. In such a case, the optimal efficiency, η∗ = 1 −
(1 − ηC )(th/tl )∗, can be expanded in terms of the Carnot effi-
ciency ηC by keeping the first order: η∗ = [1 − (1 − tl )tl ]ηC +
O(η2

C ). As the machine works in the near-critical point regime,
tl is close to 1, thereby implying that the optimal efficiency
may approach the Carnot efficiency.

If the system is much away from the critical point, the heat
capacity per particle behaves as CP/N ∼ 1. Using Eq. (F1)
and the relation r = thTl/(tlTh), we find that the efficiency at
maximum power can be approximated by η = 1 − √

Tl/Th =
ηC/2 + η2

C/8 + O(η3
C ), which is the same as the CA

024126-12



PERFORMANCE ENHANCEMENT OF QUANTUM BRAYTON … PHYSICAL REVIEW E 109, 024126 (2024)

efficiency. We therefore conclude that the efficiency at maxi-
mum power of the machine operating in the near-critical point
regime will be much greater than the CA efficiency, due to

the singularity of the heat capacity at the near-critical point
for the three-dimensional and two-dimensional [72] Bose
gas.
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