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The richness of the mean-field solution of simple glasses leaves many of its features challenging to interpret.
A minimal model that illuminates glass physics in the same way that the random energy model clarifies spin
glass behavior would therefore be beneficial. Here we propose such a real-space model that is amenable to
infinite-dimensional d → ∞ analysis and is exactly solvable in finite d in some regimes. By joining analysis
with numerical simulations, we uncover geometrical signatures of the dynamical and jamming transitions and
obtain insight into the origin of activated processes. Translating these findings into the context of standard glass
formers further reveals the role played by nonconvexity in the emergence of Gardner and jamming physics.
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I. INTRODUCTION

The prototypical random energy model (REM) [1,2] plays
a key pedagogical role in the study of disordered systems
[3–6]. Comparing probabilistic and theoretical physics de-
scriptions of the model notably provides key insight into
the nature of the replica symmetry-breaking (RSB) formal-
ism. The recent formulation of a first-principle theory of
simple glasses by porting the RSB approach to real-space
systems in the mean-field infinite-dimensional limit d → ∞
[7] could benefit from a REM-like reference. The richness
of the theoretical description indeed at times obfuscates its
interpretation. The role of geometry in the dynamical arrest,
the nature of the rare escape (instantonic) trajectories, and
the robustness of jamming criticality are but a few of its
stupefying features.

Simplifying a model to effectively investigate its essence,
however, is easier said than done. In the case of simple glasses
even drastic truncations, such as removing all multibody cor-
relations in the Mari-Kurchan model [8,9] or immobilizing all
but one particle in the random Lorentz gas (RLG) [10], result
in mean-field descriptions that are no simpler than the original
one [11–14]. What minimal description could be proposed to
achieve a REM-like grasp of the system?

An oft-used simplifying strategy for real-space systems is
to construct a convex cell version of the model. The cell,
which corresponds to the (free volume) cavity explored by
an individual sphere while fixing all others, can then be ther-
modynamically analyzed [15,16]. That approach has a long
track record, from the Lennard-Jones-Devonshire cell model
of liquids [17,18] to cell models of both ordered [19–21] and
amorphous [22–25] solids, albeit with mixed success. While
it has since been largely discarded for the former [26], it
remains squarely in use for the latter [27], efficiently captur-
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ing, for instance, the scaling of the pressure divergence upon
approaching close packing [28–30].

In this spirit we here propose a convex cell version of
the RLG, the hyperplane-RLG (hRLG), which is singularly
amenable to analysis. Its exact solution in the mean-field limit
d → ∞ can be obtained using the RSB method, and both
its high- and low-density properties can be related to models
of Poisson hyperplane tessellation (PHT) that were recently
solved for all d [31–33]. By combining these two descriptions,
key insights into the role of nonconvexity in glass formation
are obtained. Moreover, by defining an analog of jamming,
we find that isostaticity can emerge without the need for a
Gardner transition.

II. MODEL AND EXACT RESULTS

To rigorously define the hRLG model, first recall that the
RLG consists of noninteracting spherical obstacles of radius
l distributed uniformly at random in Rd with number density
(or intensity) ρ = N/V . Considering a random origin x0 such
that it lies inside a RLG cage (void between obstacles), there
exists a one-to-one map from obstacles to tangent planes (see
Fig. 1). (In the limit ρ → ∞ the RLG is congruent to the
hRLG, because small cages are then bounded by nearly flat
surfaces.) The probability distribution function of the distance
H between a hyperplane and that origin is then

P(H )dH ∝ (H + l )d−1 dH for H > 0. (1)

Although P(H ) diverges with H , the number of planes that
actually delimit a cage is finite. We can therefore define a cut-
off Hmax to the distribution. In numerical simulations (detailed
in Appendix A), we fix the total number M of hyperplanes
sampled, such that M = αM#(facets of a typical cell) with
αM � 1 but not too large so as to limit computational costs.
(In practice, αM = 200 is found to be a good compromise.)
The resulting cumulative probability (setting the radius to
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FIG. 1. Sample hRLG construction in d = 2 for a point tracer
initially at x0 (black dot). The hRLG cell (green hatched polygon)
is obtained by convexifying the RLG cage, which is the space com-
plementary to the obstacles (blue disks). The process is equivalent to
randomly sampling hyperplanes (black lines) normal to isotropically
distributed vectors of length H taken from P(H ) (red arrows). The
inscribed sphere of the hRLG cell (dark green circle) is unique and
isostatic. It corresponds to the inherent structure obtained by growing
the tracer.

unity, l = 1) is then

C(H ) = dϕ̂

M
[(1 + H )d − 1] for 0 < H < Hmax (2)

and C(H > Hmax) = 1 with Hmax = ( M
dϕ̂

+ 1)1/d − 1, using
the dimensionally rescaled volume fraction ϕ̂ = ρVd/d with
Vd the volume of the d-dimensional ball of unit radius.

The cage formed by random planes around the origin also
corresponds to the zero cell of a PHT process. In each instance
that cell varies in shape and size, but its average geomet-
ric features are well defined. Recent results from stochastic
geometry evaluate certain of these quantities for PHT with
homogeneous cumulative probability

C̃(H ) = d2ϕ̂

rM
Hr for 0 < H <

(
rM

d2ϕ̂

)1/r

, (3)

where r ∈ (0,∞) is the distance exponent [34]. In particular,
for r = 1, d exact finite-d results have been obtained for the
average number of k-faces [32,33] as well as the average cell
volume and its fluctuations [31].

Direct comparison of Eqs. (2) and (3) gives that two PHT
cases are recovered as limits of the hRLG model: r = 1
is attained in the small cell limit ϕ̂ → ∞ (or equivalently
Hmax → 0); and r = d is attained in the Poisson-Voronoi tes-
sellation limit ϕ̂ → 0 (or Hmax → ∞) [31]. Note that other
P(H ) distributions could be recovered by generalizing the
hRLG model to different potentials for sampling obstacles

FIG. 2. Comparison of hRLG simulation results in d = 1, . . . , 6
(full lines) with the zero cell results of the PHT with r = 1 [35]
(dotted lines) and r = d [36], Thm. 3.3] (dashed lines), to which
the model corresponds in the limits ϕ̂ → ∞ and ϕ̂ → 0, respec-
tively. The average number of (a) vertices (0-faces) and (b) facets
[(d − 1)-faces] smoothly interpolates between these two limits, but
upon increasing d the crossover becomes more pronounced. Scaling
analysis suggests that the discontinuity converges to ϕ̂ = 0 in the
limit d → ∞ (Appendix B).

around the central one or by softening the particle-obstacle
interaction [37].

III. RESULTS

Figure 2 shows the robust agreement between PHT re-
sults for r = 1 and r = d with numerical hRLG tessellations
obtained using the qhull [38] and scipy [39] packages.
Interestingly, the average number of vertices and facets
in the two limiting cases of r scale differently with d ,
i.e., limd→∞ E[#vertices, #facets] ∝ ed ln(π ) for r = 1 and ∝
ed ln(2πd )/2 for r = d [40]. In order for the superexponential
(r = d) and the exponential (r = 1) scaling to match, the
finite-d crossover in ϕ̂ grows increasingly sharp with d . This
crossover suggests the emergence of a marked change in the
geometry of the typical polytope [41], which we conjecture
turns into a sharp geometrical transition at ϕ̂ = 0 in the limit
d → ∞ (Appendix B). Because this transition involves the
cell surface and not its volume, however, it is not thermo-
dynamic in nature, and therefore a standard Monte Carlo or
Newtonian dynamics exploration of the cell would be blind to
this particular feature

To see if a clearer thermodynamic signature of this effect
could be obtained, we next consider the hRLG model in the
mean-field limit of d → ∞, which can be studied analytically
using the RSB method. This approach notably provides the
average volume E[V ], the average of the logarithm of the
volume E[ln(V )], and the variance of the distance from the
center of mass of the cage (or the long-time mean-squared dis-
placement for a reversible dynamics) E[�] = E[

∫
Vcell

dx |x −
xc|2/Vcell]. An annealed calculation provides a closed expres-
sion for the average volume (Appendix C)

E[Vcell] ∼ edF [�∗]−d2 ln(d ) (4)

with

F [�] = 1

2
ln(πe�) + ϕ̂

2

{
1 − e�/4

[
1 + erf

(√
�

2

)]}
, (5)
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FIG. 3. Average cell volume in the hRLG model from the RSB
method for the annealed (solid black line) and quenched (dashed
black line) estimates, as well as exact finite d results for the average
cell volume for d = 2, . . . , 80 (solid color lines from top to bottom).
(Results for d = 1 are off trend.) A quadratic fit to the finite d results
extrapolate to the d → ∞ prediction with increasing difficulty as
ϕ̂ → 0 (red dashed line). (Inset) The linear and quadratic coefficients
of these fits grow as density decreases, as a result of the increase in
fluctuations.

and �∗ = E[�] is the saddle point solution

ϕ̂−1 =
√

�∗

2
√

π
+ 1

4
e�∗/4�∗

[
1 + erf

(√
�∗

2

)]
. (6)

A quenched computation evaluated numerically also gives
E[ln(V )] (see Fig. 3). The two results nearly coincide at
all ϕ̂. Upon closer inspection, however, we note that the
second converge to the first only at small ϕ̂, meaning that
sample-to-sample fluctuations are then suppressed. Another
key distinction is that the rotational symmetry of the annealed
computation gives that the center of mass and the origin of the
cell coincide, i.e., x0 = xc, whereas the quenched computation
finds that the center of mass of a typical cell does not coincide
with its origin, i.e., x0 
= xc. That effect also vanishes at small
ϕ̂ (large cages).

Surprisingly, the results from Eqs. (4)–(6) converge to the
d → ∞ PHT predictions only for large ϕ̂ (where r = 1). To
obtain a clearer understanding of the low-density limit behav-
ior (where r = d), we obtain finite-d analytical results for the
average volume (in Appendix D), which recapitulate the PHT
results at both high and low densities. Figure 3 shows that at
small density the curves spread apart, with the gap steadily
diverging as ϕ̂ → 0. Although the finite-density results all
clearly extrapolate to the d → ∞ curve, ever higher order
corrections are needed to do so upon approaching ϕ̂ = 0. The
limits ϕ̂ → 0 and d → ∞ therefore do not commute. This
phenomenon is consistent with the existence of a dynamical
transition at ϕ̂ = 0 in the mean field d → ∞ hRLG. This
transition, which gives rise to diverging fluctuations [42], is
associated with cage or cell formation, in close analogy with
the formation of states at infinite temperature in the REM.
We further observe that as the limit d → ∞ is approached,

FIG. 4. Compression (state-following) procedure for the hRLG
in the mean-field limit d → ∞ for different initial ϕ̂in (dashed
colored lines increasing from left to right). Each colored dashed
line follows the change in the average second moment � =
2dE[

∫
Vcell

dx(x−xc )2

Vcell
] during a compression from different initial ϕ̂in =

0.1, 0.23, 0.51, 1.14, 2.56, 5.77. Because ϕ̂in = 0 jams at zero den-
sity, the jamming line here extends over the whole ϕ̂ axis. (Inset)
Simulation results for in d = 2, . . . , 89 (points; lines are guides for
the eyes) for the inherent structure density for the hRLG at the same
ϕ̂in as in the main panel (increasing from top to bottom). The average
insphere radius is expected to scale asymptotically as E[rsph] = η/d ,
where η can be determined from the mean-field d → ∞ description
(dashed lines) as described in Appendix C.

the primary distinction between RLG and hRLG lies in the
curvature of the spherical obstacles. In essence, the RLG (as
d → ∞) is analogous to a random paraboloid model, where
the paraboloids are tangent to the hRLG planes. Consequently,
introducing any constant curvature component to the obsta-
cles, thus breaking convexity, shifts cell formation to finite ϕ̂.

In order to identify the jamming transition of the hRLG
[7,43–45], we next consider the equivalent of a compression
protocol. In the hRLG, cell compression is akin to growing the
tracer until the volume available to its center is but a single
point. This process, which is analogous to identifying the
inherent structure in the REM and other models, corresponds
to determining the inscribed sphere (or insphere) for the cell.
The tracer is then expected to be confined within an isostatic
simplex composed of d + 1 hyperplanes (see Fig. 1). In the
mean-field d → ∞ limit, the radius rsph and the distance |xsph|
from the origin x0 can be computed using the RSB method
and the quasiequilibrium state-following construction. The
approach properly recovers isostaticity and Fig. 4 shows the
robust agreement between d → ∞ result and extrapolations
from finite-d simulations obtained by linear optimization as
detailed in Appendix A.

Interestingly, the purely convex nature of the hRLG results
in an unambiguous (bijective) inherent structure mapping.
By contrast, in the limit d → ∞, a comparable com-
pression procedure for the RLG necessarily undergoes a
Gardner transition, beyond which the cage is defined by an
ultrametric structure of subcages, thus resulting in a large re-
sponse to small perturbation, i.e., marginality. Although both
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scenarios result in isostatic jammed configurations, their out-
come differs in one key respect. The jammed states of the
hRLG have dimensionally robust trivial critical exponents
that describe microstructure at jamming (Appendix C) [46],
whereas dimensionally-robust nontrivial critical exponents re-
sult from Gardner physics [47,48].

The close analogy between the RLG and the hRLG
nevertheless suggests a practical procedure for determining
inherent structures in the RLG. Recall that the cell construc-
tion in going from the RLG to the hRLG depends on the
choice of origin x0. That cell is therefore only one possible
convexification of the RLG. Each x0 can be mapped (by the
compression procedure) into a different xsph with correspond-
ing insphere radius rsph. Any jump in rsph by continuously
moving x0 signals a change in basin of attraction and cor-
responding inherent structure. Equivalently one can build an
algorithm that, given any initial caged point xin in the RLG,
finds the closest inherent structure to it. First, xsph is found
(by linear optimization) and then the relative rsph is locally
optimized by moving x0, so as to maximize its growth. The
scheme converges on rsph with corresponding xsph being the
inherent structure for the initial point xin. This volume ascent
(by analogy with gradient descent) algorithm further allows
for the partitioning of the RLG cage in different basins, and
therefore the direct study of its jamming criticality. This
gedanken experiment moreover suggests that the ultrametric
Gardner phase can be a local geometrical phenomenon that
requires only a single cage to be observed, although only in
the limit d → ∞.

IV. CONCLUSION

We have introduced the hRLG model as a real-space ana-
log of the REM. This convex model of glasslike caging is
amenable to direct treatment using the replica method in the
limit d → ∞ as well as to formal analysis for certain ob-
servables in all d . Bringing together these two perspectives
reveals the existence of a geometrical transition of the shape of
the cell surface that corresponds to a zero-density dynamical
transition. Pushing the geometric analogy further allows us to
formulate an inherent structure determination procedure for
the hRLG. Remarkably, the resulting jammed states are iso-
static with trivial structural critical exponents. The procedure
also informs the formulation of a comparable procedure for
the RLG, which should enable the exploration of the single-
particle nature of Gardner and jamming physics in that model.

More generally, the hRLG enriches our understanding of
the role of nonconvexity (obstacle curvature) in glasses. It is
found to be key for having a finite-density dynamical tran-
sition in d → ∞. Because a purely convex model of caging
does not permit any escape paths, we also understand acti-
vated (instantonic) paths, such as the entropic bottlenecks that
allow one to sidestep that transition in finite d , to be deeply
reliant on nonconvexity. Put differently, geometrical convexity
underlies fast configurational sampling, and hence glassiness
is intimately linked to nonconvexity. Because Gardner physics
(multibasin hierarchy) and nontrivial jamming criticality also
emerge due to obstacle curvature, cage flatness should be
considered an indicator of the absence of Gardner physics.
Systems of binary mixtures with large size asymmetry or
with broad size polydispersity likely belong to this class, but

have yet to be carefully examined under this lens. Particle
softness, which also causes Gardner avoidance [7,49], might
analogously find the hRLG to be a natural reference model
system.

Finally, the hRLG suggests a very simple geometrical
connection between jamming and equilibrium cages through
the inscribed sphere construction. This connection offers a
promising step toward resolving the mathematical conundrum
of constructing a model for a “random jammed packing of
hard balls” as described on pp. 240–242 of Ref. [50].

Data relevant to this work have been archived and can be
accessed at the Duke Digital Repository [51].
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APPENDIX A: hRLG SIMULATIONS

Recall that the hRLG cell is convexified from a RLG cage
built around a tracer at x0. To generate a cell (a random
convex polytope) we use a planting scheme [14]. We sample
M values of Hi from the radial distribution of hyperplanes (1)
and associate with each a random unit vector Vi, thus defining
the distance of the hyperplane from the origin and its normal.
(Although M hyperplanes are generated, only a small fraction
actually define the cell, i.e., E[#facets] � M.) The cell is then
given by the intersection of the M half spaces

Vi · x � Hi for i = 1, . . . , M. (A1)

Different algorithms are used to determine: (1) the number of
facets and vertices of a cell, (2) a cell volume and its second
moment, and (3) the position and size of the largest inscribed
sphere in a cell.

1. Convex hull of the dual cell: Facets and vertices

The simplest way to identify the hyperplanes (≈
E[#facets]) that contribute to the cell is to evaluate all inter-
section points between hyperplanes by solving all possible
linear equations involving d hyperplanes Vπ i · x = Hπ i for
i = 1, . . . , d , with πi 
=i is one of the

(M
d

)
collections of d

hyperplanes between M. The resulting points which respect
Eq. (A1) are the vertices of the cell from which the facets can
be deduced. Given the factorial in M computational cost of
this approach, however, it is impractical.

A more efficient approach consists of solving the convex
hull of the dual structure, obtained by matching hyperplanes
to points [52]. The intersection of the corresponding hy-
perspaces (cell) is then mapped to the convex hull of dual
points. This algorithm, which is implemented in the qhull
package [38], returns the set of facets and vertices of the
resulting convex polytope (cell). Although the computational
cost of this approach scales markedly more favorably than the
brute-force scheme, M ln M v M!, its reach remains limited.
Because M � #facets, which scales at least exponentially
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FIG. 5. Average volume of the hRLG cell versus ϕ̂ for different d (increasing from top to bottom on the right side). The results agree with
the exact PHT results for r = d (dashed line) and r = 1 (dotted line) [31] at low and high densities, respectively.

with d (see main text), algorithmic complexity also scales
at least exponentially with dimension d . (In practice, prior
studies have reached at most d = 9 [13].) Random polytopes
have an inherent complexity given by their large number of
facets or vertices (exponential for r = 1 and factorial for r =
d), thus lower bounding algorithmic complexity. The convex
hull algorithm—by cleverly selecting the relevant facets or
vertices—saturates that bound. As a result, even in the (worst)
factorial case, the prefactor is significantly smaller than for the
brute-force algorithm.

2. Delaunay triangulation: Cell volume and its second moment

Once the set of Nv vertices has been obtained, a Delaunay
triangulation—also implemented in the qhull package [38]—
is used to decompose the polytope into a set Sk of Ns polytopes
with d + 1 facets, i.e., simplexes. This decomposition, which
is univocal and dual to the Voronoi tessellation, can be algo-
rithmically obtained in a time Nv ln Nv , which results in the
complexity scaling at least exponentially in d .

Given the set of simplexes Sk , the total volume of the
cell is obtained by adding the volumes of each simplex
(obtained through the determinant formula). Results are pre-
sented in Fig. 5. The same is true for the moment of inertia
distribution (or mean-squared displacement) � =∑Ns

k [x2
c,k +∫

VSk
(x − xc,k )2/VSk ], which can be simply evaluated around

the center of mass xc,k of each simplex [53].

3. Convex optimization: Insphere

Solving for the cell insphere can be formulated as a linear
optimization problem

max r, s.t. Vi · x + |Vi|r � Hi for i = 1, . . . , M,

(A2)

which finds the optimal sphere radius rsph = r∗ and its
(Chebychev) center xsph. Recall that the center of mass at
the end of the compression algorithm described in the main
text converges to xsph. The best linear optimization algorithm
for Eq. (A2) scales linearly in M (at fixed d) [55]. One

might therefore expect complexity again to scale at least ex-
ponentially with d . However, because the (isostatic) insphere
touches only d + 1 hyperplanes, we no longer need to sample
M � E[#facets] hyperplanes. A smaller M (and correspond-
ingly smaller hmax) instead can be used. In practice, we
find that M = 1000d suffices to approach the d → ∞ result.
Within a few hours of CPU time, 1000 samples therefore can
be obtained for up to d = 100. Figure 6 presents the results
for the radius and center of the inscribed sphere obtained by
solving the linear optimization problem.

Given the center of the inscribed sphere, xsph, it is also
possible to evaluate the distribution of planes

Psph(h) = E

[
1

M

M∑
i

δ(h − hsph,i )

]
with

hsph,i = d (Hi − Vi · xsph − rsph ). (A3)

If the inscribed sphere is isostatic (with only d + 1
planes in contact), this distribution is expected to take the
form MPsph(h) = (d + 1)δ(h) + ρ+(h)/d , where ρ+(h) is a
smooth function. Simulation results in Fig. 7 show that
ρ+(h) = const at small h, consistent with the analytical pre-
dictions for the limit d → ∞ obtained in Appendix C. Note
that ρ+(h) grows linearly at small h, thus resulting in a critical
structural exponent that is trivial.

APPENDIX B: GEOMETRICAL CROSSOVER

As shown in Fig. 2, both the average number of facets
E[#facets] and the average number of vertices E[#vertices]
exhibit a crossover from an exponential exp(d ) to a superex-
ponential d exp(d ) scaling as density is reduced. Two lines of
numerical evidence suggest that the crossover converges to a
sharp transition at ϕ̂ = 0 in the limit of d → ∞. First, because
the convergence to the superexponential regime scales as ϕ̂1/d

[Fig. 8(a)], to have half the facets expected at ϕ̂ = 0 one needs
ϕ̂ = 1/2d , which quickly converges to 0. Second, because
the approach to the exponential regime goes as ϕ̂−1(d ln d )
[Fig. 8(b)], to have half of the facets expected at ϕ̂ = 0
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FIG. 6. Dimensional scaling of the center xsph and radius rsph of the inscribed sphere in the hRLG obtained from linear optimization. Initial
packing fractions ϕ̂in = 0.1, . . . , 29.19 (increasing from top to bottom) are considered for d = 2, . . . , 89 (following a Fibonacci sequence).
Each result is averaged over 1000 realizations. (a) Dimensionally rescaled mean-squared distance of the center of the sphere from the origin,
δ�. (b) Rescaled sphere radius drsph. Dashed lines denote analytical results for the limit d → ∞.

FIG. 7. Cumulative distribution Csph of plane distances around the insphere. Simulation results are averaged over 1000 replicates for
d = 2, . . . , 34 (following a Fibonacci sequence increasing from right to left) at (a) ϕ̂ = 0.1 and (b) ϕ̂ = 5.77. The isostatic term is subtracted
from the distribution to highlight the scaling near the sphere surface. The results converge to the analytical prediction of Eq. (C39) in the limit
d → ∞ (solid black line). The distribution is cut off by fixing M = 1000d (dashed line).

FIG. 8. Convergence of the number of facets to (a) the superexponential and (b) the exponential regimes from simulations with d =
2, . . . , 6, where fd is the exact number of facets in the PHT model with r = d . The black lines denote x and x−1, respectively. Note that the (y
axis) distance from the exact values is renormalized with f d − f 1.
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one needs ϕ̂ = ϕ̂ = 1/2/(d ln d ), which also converges (albeit
more slowly) to 0 with increasing d .

APPENDIX C: hRLG REPLICA FORMULATION

In order to obtain analytical results for the limit d → ∞,
we start from the replicated partition function

E[Zn] = exp

{
− λ

∫
dR
[
e−βV (R) − 1

]} ∫
dnx

× exp

{
λ

∫
dR
[
e−βV (R)e−β

∑n
a=1 W (−xa;R) − 1

]}
,

(C1)

where βV (R) is the radial function that describes the distribu-
tion of obstacles and W (−x; R) is a function that depends on
the projection of x in the direction defined by R. In particular,
it is a function of the distance from the “tangent” plane

R
|R| · x = |R| − l (C2)

with l the radius of the obstacle centered at R. This plane is
tangent to the spherical obstacle (centered at R and of radius
l) and orthogonal to R and is equivalent to Eq. (A1) with H =
|R| − l and V = R

|R| . For hard spheres (HSs) and hard planes
(HPs), we have, respectively,

e−βV (R) = θ (|R| > l ), (C3)

e−βW (−x;R) = θ

(
R
|R| · x < |R| − l

)
. (C4)

In the limit d → ∞, because λ = dϕ̂/Vd , the measures in
Eq. (C1) concentrate on the saddle point in R. It is then
possible to study the replicated Mayer function

f n(R) =
∫

dnx
{
e−βV (R)e−β

∑n
a=1 W (−xa;R) − 1

}
, (C5)

which is by definition a large deviation function of λ. In order
to evaluate Eq. (C5), we assume that in the limit d → ∞
the distribution of xa is Gaussian and concentrates in a shell
1/d around the typical value, in analogy with Eq. (4.44) of
Ref. [7]. This scaling regime is examined by considering
the rescaled radius h = dH , given by |R| = l (1 + h/d ), thus
defining the shell potentials

v̄(h) ≡ V

[
l

(
1 + h

d

)]
, (C6)

w̄(h) ≡ W

(
l

h

d
; R

)
. (C7)

We then assume that xa is a rotationally invariant (in Rd )
Gaussian distribution with zero mean E[xa] = 0 and variance

E[xa · xb] = l2

d
αab ∀ a, b, (C8)

where the l2 prefactor is given for convenience and d2 is the
presumed scaling. To consider W in this regime, we define the
distance from the hyperplane

ya = R
|R| · xa − (|R| − l ), (C9)

with mean E[ya] = −(|R| − l ) and variance given by
Eq. (C8). Rescaling then gives

d

l
ya = −h + za ∀ a, (C10)

where h is the rescaled radius and za is a normal distribution
with variance αab. We finally obtain

f n(h) = e−βv̄(h)e
∑n

a,b=1
αab

2 ∂ha ∂hb e−β
∑n

c=1 w̄(hc )|hc=h − 1. (C11)

The only difference from the RLG result is that the diagonal
term αaa is missing. Because this term encodes for the curva-
ture of the obstacles (see Eq. (4.52) of Ref. [7] and Eq. (133)
of Ref. [42]), it is properly expected to vanish for hyperplanes.
The resulting free energy is then

ln(E[Zn]) = n
d

2
ln

(
πe

d2

)
+ d

2
ln det α + dϕ̂

∫ ∞

−∞
dheh f n(h).

(C12)

1. RS solution

We then rewrite the overlap matrix αab in terms of mean-
squared displacements (MSDs)

�ab = d

l2
E[|xa − xb|2] = αaa − 2αab + αbb. (C13)

In the following we set l = 1 for simplicity. Assuming that the
MSD has the planted replica symmetric (RS) structure

�ab =
⎧⎨⎩0 for a = b

�r for a = 0, b 
= 0 ∧ a 
= 0, b = 0
� for a 
= 0 ∨ b 
= 0 ∨ a 
= b

e.g., for

n = 3

⎛⎜⎜⎝
0 �r �r �r

�r 0 � �

�r � 0 �

�r � � 0

⎞⎟⎟⎠, (C14)

where �r is the MSD with the origin while � is the MSD
between a pair of replicas (see [7], Eq. (4.63)]). Given this
(n + 1) × (n + 1) matrix of MSD, the n × n matrix of over-
laps reads

αab = 1
2 (�δab + δ�), (C15)

where we introduce the new variable δ� = 2�r − �. Note
that the quantities � and δ� have the following geometrical
meaning:

� = 2d

∫
Vcell

dx(x − xc)2∫
Vcell

dx
, δ� = 2d x2

c (C16)

with Vcell the volume of the cell and xc its center of mass.
Given this RS structure, the quenched free energy

E[ln(Z )] = limn→0 ∂n ln(E[Zn]) can be evaluated. The second
term of Eq. (C12) is

d

2
lim
n→0

∂n ln det α = d

2

[
ln(�) + δ�

�

]
, (C17)
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and the third term is

dϕ̂ lim
n→0

∂n

∫ ∞

−∞
dheh f n(h) = dϕ̂ lim

n→0
∂n

∫ ∞

−∞
dheh

[
e−βv̄(h)e

δ�
4 ∂2

h
(
e

�
4 ∂2

h e−βw̄(h)
)n − 1

]
= dϕ̂

∫ ∞

−∞
dhehe−βv̄(h)e

δ�
4 ∂2

h ln
(
e

�
4 ∂2

h e−βw̄(h)
)

= dϕ̂

∫ ∞

−∞
dhehe−βv̄(h)e

δ�
4 ∂2

h f (h), (C18)

where f (h) = ln(e
�
4 ∂2

h e−βw̄(h) ). We then introduce the func-
tion

gRLG(h) = e
δ�
4 ∂2

h e−βv̄(h+ δ�
4 ), (C19)

which describes the correlations with the origin (the result is
the same for the RLG, hence the subscript), and

gPL(h) = e
�
4 ∂2

h e−βw̄(h− δ�
4 ), (C20)

which describes correlations with the hyperplanes (PL). The
fact that these two functions are different reflects the asym-
metry of the problem. (In the RLG, the two functions are
the same because of the symmetry between the tracer and
the spherical obstacles.) Using gRLG(h), gPL(h) (by means of
simple manipulations; see Sec. 4.3 of Ref. [7]) the free energy
reads

E[ln(Z )] = d

2
ln

(
πe

d2

)
+ d

2

[
ln(�) + δ�

�

]
+ dϕ̂

∫ ∞

−∞
dhehgRLG(h) ln[gPL(h)]. (C21)

After extremizing with respect to � and δ�, two coupled
equations are obtained:

δ� = 2�2ϕ̂

∫ ∞

−∞
dhehgRLG(h)

1

4
f ′(h − δ�/4)2

= 2�2ϕ̂

∫ ∞

−∞
dhehgRLG(h)

1

4

[
∂hgPL(h)

gPL(h)

]2

, (C22)

�−1 = −2ϕ̂

∫ ∞

−∞
dhehgRLG(h)

1

4
f ′′(h − δ�/4)

= −2ϕ̂

∫ ∞

−∞
dhehgRLG(h)

1

4

[
∂2

h gPL(h)

gPL(h)
−
(

∂hgPL(h)

gPL(h)

)2]
.

(C23)

Focusing on the hard-sphere–hard-plane case (HS-HP), we
have

gRLG,HS(h) = 1

2

[
1 + erf

(
h + δ�

4√
δ�

)]
, (C24)

gPL,HP(h) = 1

2

[
1 + erf

(
h − δ�

4√
�

)]
, (C25)

which has to be plugged into Eqs. (C22) and (C23). The
resulting equations can be recursively solved by numerical
integration, thus providing �(̂ϕ) and δ�(̂ϕ) as a function of

the packing fraction ϕ̂. The resulting RS solution is stable over
the whole range of ϕ̂ ∈ [0,∞] (the replicon eigenvalue being
always positive). As shown in Fig. 9, while � diverges as
ϕ̂ → 0, δ�(ϕ) → 0. Note that because δ� 
= 0 the origin of
the cell (with MSD �r) and the center of the cell (with MSD
�) do not coincide. As shown below, δ�(ϕ) = 0 corresponds
to the annealed solution. Note that these equations can be stud-
ied for different potentials V (R) and W (−x; R), and therefore
for different P(H ), as long as the potentials concentrate to
some definite functions v̄(h) and w̄(h) in the limit d → ∞
[7], Sec. 2.3.2].

2. Annealed solution

Reproducing the same calculations for the unreplicated
system (setting n = 1 from the start), we obtain the annealed
approximation

ln(E[Z]) = d

2
ln

(
πe

d2

)
+ d

2
ln(�)

+ dϕ̂

∫ ∞

−∞
dheh

(
e−βv̄(h)gPL(h) − 1

)
(C26)

with δ� = 0. After extremizing with respect to �, the an-
nealed solution is obtained

ϕ̂−1 = −2�

∫ ∞

−∞
dhehe−βv̄(h) 1

4
∂2

h gPL(h). (C27)

FIG. 9. Quenched �, δ� and annealed �ann, as function of the
packing fraction ϕ̂.
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If we consider the hard-plane case from Eq. (C25), then

ϕ̂−1 = �

∫ ∞

0
dheh he− h2

�√
π�3/2

=
√

�

2
√

π
+ 1

4
e�/4�

[
1 + erf

(√
�

2

)]
, (C28)

which implicitly defines � as a function of ϕ̂. Recalling that
for hard planes the partition function is equivalent to the
volume of the cell, the logarithm of the annealed volume of
a cell can then be evaluated as a function of its annealed �:

1

d
ln(E[Vcell]) + ln(d )

= 1

2
ln(πe�) + ϕ̂

2

{
1 − e�/4

[
1 + erf

(√
�

2

)]}
.

(C29)

Figure 9 shows � as a function ϕ̂, compared with the
quenched result, and Fig. 3 shows the volume versus ϕ̂, com-
pared with the d → ∞ extrapolation of finite d simulation
results.

3. State following and jamming

The RS free energy can be continuously tracked upon
changing the cell shape while keeping its origin fixed through
state following. Here we specifically wish to compress the cell
so that every hyperplane is η/d-shifted with respect to the
origin. This can be achieved by simply substituting w̄(h) →
w̄(h − η). Increasing η reduces the volume of the cell, and for
every initial density ϕ̂in there exists a maximum ηJ such that
the cell reduces to a single point, which corresponds to the
jamming limit. The limiting cell is expected to be a simplex
with d + 1 facets and therefore to be isostatic. Put differently,
the final point xsph is the center of the largest inscribed sphere,
with radius rsph, in the original cell.

The RS equations for the state followed (compressed) cell
are the same as Eq. (C22) after substituting gPL(h) from
Eq. (C20) by gPL(h − η) with the parameter η controlling
the compression. The resulting equations can then be nu-
merically solved to obtain � and δ� for given ϕ̂in and η.
The compression protocol consists of increasing η until at
ηj = dE[rsph] the cell contracts to a single point, and there-
fore �j = 0, while δ�j = 2dE[|xsph − x0|2] remains finite.
Figure 4 shows the compression lines for different starting
ϕ̂in. The end points ηj (̂ϕ), δ�j (̂ϕ) of different compression
protocols for ϕ̂ ∈ [0,∞] define the jamming line, which in
the hRLG can be reached without encountering any instability,
such as a Gardner transition. In other words, the RS solution
is stable up to the jamming line for any ϕ̂. The stability is a
direct consequence of the convexity of the initial polytope.

4. Jamming line with harmonic planes

In order to characterize the states on the jamming line, we
adopt the overjammed calculation scheme. In this scheme, HP

are replaced by harmonic planes (hrmP)

w̄(h) = h2

2
θ (−h). (C30)

By definition the limit T → 0 for hrmP is equivalent to the
HP case whenever the HP cell exists, but the jamming transi-
tion can then be studied starting from the overjammed phase
(η → η+

j ), i.e., when hrmP superimpose (UNSAT phase). The
advantage of the harmonic model is that in this limit, the
number of contacts corresponds to the number of half-spaces
that intersect at xsph, which is countable even before jamming
is reached.

The free energy of the model is given in Eq. (C21). To
study the limit T → 0, we consider the change of variable
�
2 = χT , which is expected to be a reasonable scaling in the
overjammed phase (see Sec. 9.4.3 of Ref. [7]). Using a saddle
point approximation with parameter β = 1/T , we can then
rewrite (see Appendix C of Ref. [48])

f0(h) ≡ lim
T →0,�=χT

ln(gPL(h)) = − 1

T (1 + χ )

h2

2
θ (−h),

(C31)

where for state following h → h − η. The free energy in the
limit T → 0 transforms into

E[ln(Z )] = const + d

2

[
ln(χT ) + δ�

2χT

]

− dϕ̂
1

T (1 + χ )

1

2

∫ η+ δ�
4

−∞
dhehgRLG(h)

×
(

h − η − δ�

4

)2

. (C32)

Extremizing with respect to χ and δ� gives two coupled
equations

δ� = 2ϕ̂

(
χ

1 + χ

)2 ∫ η+ δ�
4

−∞
dhehgRLG(h)

(
h − η − δ�

4

)2

= 2χ2eRS, (C33)

1 = ϕ̂
χ

1 + χ

∫ η+ δ�
4

−∞
dhehgRLG(h), (C34)

where eRS = −∂βE[ln(Z )]/d is the energy. Recall that
gRLG(h) contains δ�. Approaching the jamming transition
from below, given Eq. (C34) (and given that δ� is finite and
eRS → 0) the susceptibility must diverge (χ → ∞), and the
resulting equations for the jamming line are

δ�j = 2ϕ̂

∫ ηj+ δ�j
4

−∞
dheh 1

2

[
1 + erf

(
4h − δ�j

δ�j

)]

×
(

h − ηj − δ�j

4

)2

, (C35)

1 = ϕ̂

∫ ηj+ δ�j
4

−∞
dheh 1

2

[
1 + erf

(
4h − δ�j

δ�j

)]
. (C36)
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FIG. 10. Values of ηj and δ�j along the jamming line. For ϕ̂ →
0, ηj converges to 4.

This expression implicitly defines ηj (̂ϕ) and δ� j (̂ϕ), which
are respectively equal to dE[rsph] and 2dE[|xsph − x0|2]. The
results are shown in Fig. 10 and are compared with simula-
tions in Fig. 6.

5. Gap probability distribution and isostaticity

The gap probability distribution ρ(h) of the planes
in the state-followed cell can be evaluated by functional
differentiation of the free energy in Eq. (C18),

ρ(h) = δE[ln(Z )]

δ[−βw(h)]
= dϕ̂ehḡ(h)

= dϕ̂

∫ ∞

−∞
dzez+ηe−βv̄(z+η)e

δ�
4 ∂z2

×
{(

e
�
4 ∂z2 e−βw̄(z))−1

e
�
4 ∂z2

δe−βw̄(z)

δ[−βw(h)]

}
, (C37)

where ḡ(h) is the two-point correlation function. Integrating
the last line by parts, we obtain the RS correlation function
(equivalent to Eq. (6.19) of Ref. [7])

ehḡ(h) = e−βw̄(h)e
�
4 ∂2

h

[
e

δ�
4 ∂2

h eh+η−βv̄(h+η)

e
�
4 ∂2

h e−βw̄(h)

]
. (C38)

Considering HP, the small cell limit of the correlation function
reads as Eq. (9.71) of Ref. [7])

ρ+(h)/d ≡ ϕ̂ lim
�→0

ehḡ(h) = ϕ̂ θ (h)e
δ�
4 ∂2

h eh+η−βv̄(h+η)

= ϕ̂ θ (h)eh+η+ δ�
4 e

δ�
4 ∂2

h e−βv̄(h+η+ δ�
2 )

= ϕ̂ θ (h)eh+η+ δ�
4 grlg

(
h + η + δ�

4

)
. (C39)

If we instead consider hrmP in the limit of T → 0, the positive gaps (h > 0) have the same distribution of HP. This result is
consistent with simulations (see Fig. 7 on the jamming line with �j and ηj derived in the previous section). While for the negative
gaps (h < 0) we obtain

ρ−(h)/d ≡ ϕ̂ lim
T →0

ehḡ(h) ≈ ϕ̂ e−βw̄(h)e
χT
2 ∂2

h

[
e

δ�
4 ∂2

h eh+η−βv̄(h+η)

e
χT
2 ∂2

h e−βw̄(h)

]
= ϕ̂ θ (−h)

∫
dk√

2πχT
e− β

2χ
(h−k)2

e
β

2(1+χ ) k2[
e

δ�
4 ∂2

k ek+η−βv̄(k+η)
]

= ϕ̂ θ (−h)eh(1+χ )+η+ δ�
4 grlg

[
h(1 + χ ) + η + δ�

4

]
(1 + χ ), (C40)

where from the second to the third line we have used the sad-
dle point in k given the large parameter β (see also [48,54]).
The total number of interacting planes (superimposed in xsph)
can then be found by integrating the two-point correlation for
negative gaps,

z =
∫ 0

−∞
dhρ(h) = dϕ̂

∫ η+ δ�
4

−∞
dhehgRLG(h) = d

1 + χ

χ
,

(C41)

where the last equality uses Eq. (C34). On the jamming line
χ → ∞ and the system is isostatic, i.e., z = d . Note that this
result differs from the usual hard-sphere isostaticity, because
it does not require the presence of a prior Gardner phase from
the HP side.

6. High-density limit: RLG → PHT(r = 1)

Following Eq. (7.36) of Ref. [7], we have that the typ-
ical logarithm of the volume of a cage (which for a hard
sphere potential corresponds to the free energy) in the limit
d → ∞ is

E[ln(Vcage)] = d

(
− ln(d ) + 1

2
+ 1

2
ln(2π�)

+ ϕ̂

∫ ∞

−∞
dhehqRLG(�; h) ln[qRLG(�; h)]

)
(C42)
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with

qRLG(�; h) = 1

2

[
1 + erf

(
�
4 + h√

�

)]
, (C43)

where erf(x) = 2
π

∫∞
0 dxe−x2

and � is the rescaled MSD,
which is an implicit function of ϕ̂,

ϕ̂−1 = −2�

∫ ∞

−∞
dheh ln[qRLG(�; h)]∂�qRLG(�; h)

=
∫ ∞

−∞
dh

e− �
8 − 2h2

�

π
[
erf
(

�
4 +h√

�

)
+ 1
] . (C44)

An analogous formula can be written for the logarithm of
the typical volume, i.e., the annealed volume computation,

ln(E[Vcage]) = d

(
− ln(d ) + 1

2
+ 1

2
ln(2π�)

+ ϕ̂

∫ ∞

−∞
dhehqRLG(�; h)[qRLG(�; h) − 1]

)
,

(C45)

which gives the annealed cage dimension

ϕ̂−1 = −2�

∫ ∞

−∞
dheh[2qRLG(�; h) − 1]∂�qRLG(�; h).

(C46)

We wish to compare the RS computation with the PHT
result for r = 1 in the limits ϕ̂ → ∞ and d → ∞ (the only
case in which the two are expected to coincide). Note that the
finite-dimensional analysis of the zero cell (cage) of the PHT
with r = 1 gives for the volume (following Proposition 1 of
Ref. [31])

ln(E[Vcell]) = d

(
− ln(d ) + ln

(
π

ϕ̂

)

+ ln

[
�
(

d+1
2

)
�
(

d
2 + 1

)]+
ln
(

�(d+1)
�( d

2 +1)
)

d

)
, (C47)

after the change of variable γ = d2ϕ̂/2. We first rescale by d
and remove the common ln(d ) shift. We then take the d → ∞
limit, which for Eq. (C47) gives

ln(Vcell )/d + ln(d )/d = − ln (̂ϕ) + ln (2π ) − 1
2 , (C48)

Although the limit d → ∞ of Eq. (C42) cannot be evaluated
analytically for arbitrary ϕ̂, the expression simplifies in the
limit ϕ̂ → ∞ (� → 0). After changing variable h → √

�x,
we have that Eq. (C44) and Eq. (C46) both give

ϕ̂−1 ≈ K
√

� (C49)

with Kqch = 1
π

∫∞
−∞ dx e−2x2

1+erf(x) ≈ 0.638657 for the quenched

computation and Kann = 1√
π

∫∞
−∞ e−x2

x erf(x) = 1/
√

2π for
the annealed one. After inserting this asymptotic behavior for
large ϕ̂ in Eq. (C42) and Eq. (C45), we get

ln(Vcage)/d + ln(d )/d = − ln (̂ϕ) + ln(2π )

2
− ln (K ) − 1

2
,

(C50)

where we have used the identity
∫∞
−∞ dx 1

2 [erf(x) +
1] ln{ 1

2 [erf(x) + 1]} = −Kqch ≈ −0.638657 and
∫∞
−∞ dx 1

4

(erf(x)2 − 1) = −Kann = −1/
√

2π . Therefore, in the limit of
high density, the annealed volume does match the PHT cell
volume for r = 1.

APPENDIX D: hRLG VOLUME IN FINITE d

The average volume E[Vcell] of the hRLG can be ex-
actly calculated using a standard zero cell computation from
stochastic geometry. To do so, we first need to reintroduce
the hRLG cell more formally. Given a Poisson hyperplane
process η with intensity measure 2γμ for μ the rotation in-
variant measure of density introduced in Eq. (1). The volume
of the zero cell (i.e., the cell around the origin) can then be
written as

E[Vcell] = E[
∫
Rd

dx 1(x ∈ cell)] =
∫
Rd

dx P (x ∈ cell)

= ωd

∫ ∞

0
drrd−1 P (re1 ∈ cell), (D1)

where ωd = dVd is the surface of the unit ball (integrated
because of rotational invariance) and e1 is a unit vector of
the canonical base of Rd . The probability that the vector re1

lies inside the zero cell is equivalent to the probability that
the segment [0, re1] does not intersect any of the Poisson
hyperplanes H [Fig. 11(a)]

P (re1 ∈ cell) = P (#{H ∈ η : H ∩ [0, re1] 
= ∅} = 0)

= e−2γμ({H∈η:H∩[0,re1]
=∅}), (D2)

where the last expression is specific to a Poisson process. As-
suming the radial density of the hRLG P(H ) = (H + l )d−1,
we have

μ({H ∈ η : H ∩ [0, re1] 
= ∅}) =
∫

Sd−1

σ (du)

ωd

∫ ∞

0
dH1((Hu + u⊥) ∩ [0, re1] 
= ∅)(H + l )d−1

=
∫

Sd−1

σ (du)

ωd

∫ ∞

0
dH1

(
H

u · e1
∈ [0, r]

)
(H + l )d−1, (D3)

where Sd−1 is the surface of the d-dimensional ball and σ (du) is the spherical Lebesgue measure. Note that u is a unit vector
and u⊥ is a base perpendicular to it (that spans the hyperplane) [see Fig. 11(b)]. Because u is spherically uniform, the density

024125-11



BONNET, CHARBONNEAU, AND FOLENA PHYSICAL REVIEW E 109, 024125 (2024)

FIG. 11. Setup for the stochastic geometry calculation of the average volume. (a) The ensemble of hyperplanes (black lines) that do not
intersect the segment [0, re1] (blue line) as well as the forbidden hyperplanes (dashed red lines). (b) The intersection between a hyperplane
(red line) and the segment [0, re1] (blue line) depends on the angle u · e1. (c) Average volume of the hRLG cell obtained from Eq. (D5) for
different d (solid lines). Simulation results for d = 2, . . . , 6 (dots) fully agree with these predictions.

can be expressed in terms of the scalar product u1 ≡ u · e1 alone (see, for example, Lemma 4.4 (a) of Ref. [56]). Therefore,

μ({H ∈ η : H ∩ [0, re1] 
= ∅}) =
∫ 1

−1
du1cd

(
1 − u2

1

) d−3
2 1(u1 � 0)

∫ ru1

0
dH (H + l )d−1

= cd

d

∫ 1

0
du1
(
1 − u2

1

) d−3
2 ((l + ru1)d − ld ), (D4)

where cd = 1/
∫ 1
−1 du1(1 − u2

1)
d−3

2 = �( d
2 )/�( d−1

2 )
√

π is a normalization factor and the last identity is obtained by elementary
manipulations. Therefore the average volume of a hRLG cell is

E[Vcell] = ωd

∫ ∞

0
drrd−1e−2γ

cd
d

∫ 1
0 du1(1−u2

1 )
d−3

2 ((l+ru1 )d −ld ). (D5)

Finally, to obtain the volume as a function of the packing fraction we substitute γ → d2ϕ̂

2 . Evaluating Eq. (D5) numerically agrees
closely with simulations results [see Fig. 11(c)]. Note that it is trivial to generalize the calculation to arbitrary radial density P(H )
with corresponding cumulative distribution function C(H ) = ∫ H

0 dH ′ P(H ′). It indeed suffices to substitute [(l + ru1)d − ld ]/d
by C(ru1) in the above treatment.
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