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Competition between lanes and transient jammed clusters in driven binary mixtures
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We consider mixtures of oppositely driven particles, showing that their nonequilibrium steady states form
lanes parallel to the drive, which coexist with transient jammed clusters where particles are temporarily
immobilized. We analyze the interplay between these two types of nonequilibrium pattern formation, including
their implications for macroscopic demixing perpendicular to the drive. Finite-size scaling analysis indicates that
there is no critical driving force associated with demixing, which appears as a crossover in finite systems. We
attribute this effect to the disruption of long-ranged order by the transient jammed clusters.
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I. INTRODUCTION

Nonequilibrium systems can form complex patterns in
their steady states, including flocking of birds [1–3], active
nematics [4,5], and motility-induced phase separation [6–8].
These patterns are sustained by the continuous injection of
energy into the system, which is dissipated as heat. The
formation and evolution of large coherent structures can
sometimes be captured by deterministic equations [9–11], but
some chaotic fluctuating patterns necessitate a stochastic de-
scription, using methods of nonequilibrium statistical physics.
These systems challenge existing theories: How should emer-
gent patterns be measured and classified? Can one identify
distinct dynamical phases, analogous to equilibrium systems?
Can the patterns be controlled by external perturbations?

A common example of a fluctuating pattern is the emer-
gence of lanes, when two species of particles are driven in
opposite directions: particles of the same species tend to fol-
low each other. In physics, this occurs for colloidal systems in
electric fields [12–14], and in plasmas [15–18], and ionic liq-
uids [19]. Similar structures are also familiar from pedestrian
flow [20–24], and ant foragers [25], and oscillatory driving
can also induce other patterns [26–28].

Laning behavior can be captured in computer simula-
tions of model systems where particles interact by repulsive
short-ranged potentials and move by Brownian dynamics.
Experiments on laning involve more complex interactions,
such as electrostatic or hydrodynamic interactions in col-
loids [13,14,27], or nontrivial decision-making by pedes-
trians [20–23]. Nevertheless, simple models can capture
generic laning behavior, indicating that this robust collective
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phenomenon [12,29–33] is amenable to the methods of statis-
tical physics.

A generic mechanism for laning is enhanced lateral diffu-
sion (ELD) [32,34–40]: collisions between oppositely driven
particles promote rapid diffusive motion perpendicular to the
field. This favors accumulation in lanes, where such collisions
are avoided. Despite considerable work on these nonequilib-
rium steady states, open questions remain about their generic
properties, such as the possible existence of long-ranged or-
der, and demixing of the system into domains, perpendicular
to the drive [30–32,39,41].

This paper presents computer simulations of a model sys-
tem that exhibits laning. The main phenomenology is outlined
in Fig. 1, with details given below. Red and blue particles are
driven in opposite directions by a force that is parameterized
by the Peclet number (Pe). Increasing Pe from zero, one
observes increasingly inhomogeneous steady states (labeled
II–IV), which may be contrasted with the homogeneous equi-
librium mixture at Pe = 0 (state I). We find three main results:
(i) Using extensive simulations for different system sizes and
driving strengths, we characterize the interplay between the
laning state III and the demixed state IV. (ii) While state IV oc-
curs in finite systems, we show that sufficiently large systems
are always mixed: hence demixing is not a phase transition.
(iii) We characterize the large density fluctuations in states II
and III in terms of transient jammed clusters (TJCs), which
tend to disrupt the lanes, suppressing long-ranged order. Pre-
vious work [30] analyzed states II and III by focusing on
long-ranged order parallel to the drive; here we analyze phase
separation perpendicular to the drive, showing that state IV
is suppressed in large systems. Hence, we interpret laning
behavior in these systems as a combination of ELD (favoring
lane formation) and transient clustering (disrupting laning).

II. MODEL

To capture the generic phenomenology of laning—as it ap-
pears in a variety of practical contexts [12,29–33]—we adopt
a simplified model that is sufficient to capture the behavior of
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FIG. 1. (a) Example of a transient jammed cluster. (b) Steady-
state configurations of a system with L‖ = 150d0, varying Pe, as
shown. Supplemental Material movies 1–3 show trajectories from
steady states II–IV [42].

interest. Similar to previous works [12,23,24,30–33,41], the
model captures the fact that two species of particle are driven
in opposite directions and that they feel strong repulsive in-
teractions that prevent them from overlapping. Their motion
is biased by the driving field but also includes a noise term,
which can describe Brownian motion in colloidal systems
or other random influences from the environment. Specific
laning systems might include other interactions, such as elec-
trostatic forces in colloids or more complex decision rules for
pedestrians, but these are not generically required for laning to
occur, so we neglect them, consistent with Refs. [12,23,24,30–
33,41].

To this end, we consider a binary mixture of N particles,
with N/2 in each species, occupying a two-dimensional box of
size L‖ × L⊥, with periodic boundary conditions. The species
of particle i is labeled as σi = +1 (blue) or σi = −1 (red).
Particles are driven by a force of strength E along the x axis
and interact with each other via WCA potentials [43],

V (r) = 4ε[(d0/r)12 − (d0/r)6 + (1/4)]�(21/6d0 − r), (1)

where d0 is the diameter, ε is the repulsion strength, and � is
the Heaviside function. The position ri = (xi, yi ) of particle i
follows Langevin dynamics, implemented in LAMMPS [44],

mr̈i = −γ ṙi − ∇iU + σiE x̂ +
√

2γ kBT ηi, (2)

where γ is a friction constant, x̂ is a unit vector in the x
direction, T is the temperature of the heat bath, kB is Boltz-
mann’s constant, U is the interaction energy, and ηi is a
Gaussian white noise with mean zero and 〈ηi,α (t )η j,β (t ′)〉 =
δi jδαβδ(t − t ′), where α, β indicate Cartesian components.
The Brownian time is τB = d2

0 γ /(kBT ).
We nondimensionalize the system using base units

d0, m, ε, see Appendix A for full details. The dimension-
less control parameters of the model are the Peclet number
Pe = Ed0/(kBT ), the area fraction φ = Nπd2

0 /(4L‖L⊥), the

reduced friction γ̃ = γ d0/
√

mε, the reduced temperature T̃ =
kBT/ε, and the aspect ratio of the simulation box S = L‖/L⊥.
We take γ̃ = 1000 to mimic a high-friction colloidal environ-
ment and T̃ = 1 (results depend weakly on this parameter).
Since particles explore space much more quickly in the x
direction, we take S = 5, except where explicitly stated oth-
erwise. We focus on φ = 0.35, which is representative of a
laning regime 0.1 � φ � 0.4, some results for other densities
are presented in the Appendices.

III. RESULTS

A. Steady states: Demixing is a smooth crossover

The steady-state behavior of this model is illustrated in
Fig. 1(b) for a range of Pe. We verified that all systems
have converged to their steady states by starting independent
simulations from both homogeneous and fully demixed initial
conditions, which lead to the same results. This requires long
simulations, up to 4000τB (see Appendix A for further details
of initialization and equilibration).

To characterise the fully demixed state, we interpret σi as
a dimensionless charge and evaluate the Fourier transform of
the charge density at k∗ = (0, 2π/L⊥) [39,45,46]:

ψdem = 〈|�(k∗)|〉 =
〈∣∣∣∣∣ 1

L⊥L‖

N∑
i=1

σie
−ik∗·ri

∣∣∣∣∣
〉
. (3)

Here and throughout, angle brackets indicate averages in the
steady state of the dynamics.

We use ψdem as an order parameter for demixing, in a
finite-size scaling analysis, by increasing N, L‖, L⊥, at fixed
Pe, φ, and aspect ratio S. A demixing phase transition would
manifest as a critical Peclet number Pe∗: For Pe < Pe∗, the
state would be homogeneous and �(k∗) would be small in
modulus (of order N−1/2 as N → ∞). For Pe > Pe∗, the state
would be demixed: the complex number �(k∗) has a modulus
of order 1; its phase is random and indicates the relative
positions of the two domains. Hence, demixing involves spon-
taneous symmetry breaking, via the phase of �.

The finite-size scaling results in Fig. 2(a) are not consistent
with any such transition. For each system size, there is a
crossover from homogeneous to demixed states on increasing
Pe. However, increasing N shows that ever larger values of Pe
are required to see demixing: there is no sharp threshold Pe∗ at
which long-ranged order appears. Figure 2(a) shows that these
results are independent of whether the system is initialized in
a homogeneous (mixed) or fully demixed state.

Figure 2(a) suggests a correlation length which grows with
Pe but never diverges. We identify it with the width of the
lanes (perpendicular to the drive), which is L⊥/2 in state IV,
but much smaller in state III, these correlations are discussed
further below. A similar scenario was proposed in Ref. [30] for
correlations parallel to the drive; our focus here on perpendic-
ular correlations is essential for detecting the fully demixed
state IV, which resembles macroscopic phase separation at
equilibrium. Comparing with that case, our observation of
demixing in large finite systems without any phase transition
is a distinctively nonequilibrium effect.
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(a)

(c)

(b)

FIG. 2. (a) ψdem against Pe at different system sizes. Dotted and solid lines are obtained from disordered and demixed initial conditions,
respectively. (b) hσ,σ (r) plotted along the x direction. The solid line indicates hσ,σ (x, 0) ∼ x−3/2. (c) Dependence of hρ,ρ (r) on r = (x, y). In
(b), (c), L‖ = 150d0.

B. Spatial correlations

1. Real-space analysis

States II and III of Fig. 1 exhibit laning, but the parti-
cle density also develops inhomogeneities, where right- and
left-moving particles tend to block each other. To investigate
these correlations, define density-density and charge-charge
correlation functions:

hρ,ρ (r) = 〈ρ(r)ρ(0)〉/ρ2 − 1,

hσ,σ (r) = 〈σ (r)σ (0)〉/ρ2, (4)

where ρ(r) = ∑N
i=1 δ(ri − r) is the empirical particle den-

sity, σ (r) = ∑N
i=1 σiδ(ri − r) is the charge density, and ρ̄ =

N/(L‖L⊥) is the mean density.
The behavior of these correlation functions on hydrody-

namic length scales has been analyzed [33,41,47,48] within
a mean-field approximation, which is valid when density
fluctuations are not too large, for example, at high density
with weakly interacting particles [33]. For the system con-
sidered here, the particles have strongly repulsive cores and
Fig. 1 shows that density fluctuations are large. Hence, mean-
field theory is not expected to be quantitative: it does not
predict the demixing effect seen in state IV. Still, the uni-
versal hydrodynamic correlations of Ref. [33] should emerge
on large scales, within homogeneous states. Figure 2(b)
shows the charge autocorrelation function measured parallel
to the drive. For Pe = 20, these results are consistent with
Ref. [33], which predicted a decay as |x|−3/2. For larger Pe, the

correlations grow smoothly with Pe, as the lanes become more
pronounced.

2. Correlations in Fourier space

It is useful to display these correlations in Fourier space.
For the charge density σ , the structure factor associated with
two-point correlations is

Sσ (k) = 1

N

〈∣∣∣∣∣∣
N∑

j=1

σ j exp(−ik · r j )

∣∣∣∣∣∣
2〉

, (5)

where k = (k‖, k⊥) is the wave vector.
Results are shown in Fig. 3. Figure 3(a) shows that

these functions have a characteristic shape, with strongly
anisotropic correlations that were already anticipated in Chap.
3.1 of Ref. [49], see also Sec. III B 3 below. (The system is not
phase separated for these parameters and system sizes.) Sσ has
two lobes that lie along the ky axis, which get stronger as Pe
increases. To characterize these lobes, we consider Sσ (0, ky)
[Fig. 3(b)] and denote its maxima by ±k∗

y .
We identify π/k∗

y as one-half of the wavelength of the
modulations in σ (r), which is the typical lane width. We also
measure the width of the lobes in Sσ , by plotting Sσ (kx, k∗

y )
as a function of kx and computing its full width at half max-
imum. This is denoted by k∗

width and represents the range of
correlations along the lanes.

Figure 3(c) shows how k∗
y depends on Pe and system size

(always at fixed density). Similarly, Fig. 3(d) shows k∗
width.
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(a)

(b) (c) (d)

FIG. 3. (a) Sσ (k) at various Pe with L‖ = 300 and φ = 0.35, corresponding to N = 8100. The red arrows indicate the locations of the
highest peaks. (b) Sσ (0, ky ) at different Pe with L‖ = 300. The peaks correspond to the k∗

y in (c). (c) The characteristic wave vector k∗
y extracted

from Sσ (k) against different Pe. (d) The width of the lobes extracted from Sσ (k) against different Pe.

Several points are notable: For small-to-moderate Pe, the
length scale π/k∗

y is a few particle diameters, independent of
system size. For the largest Pe and the smaller system sizes,
one sees a change in behavior of k∗

y , which corresponds to the
onset of macroscopic phase separation. At the smallest Pe, the
correlations are weak but appear rather long-ranged, we return
to this point in Sec. III B 3, below. We also find that k∗

width is
much smaller than k∗

y , consistent with the fact that correlations
along the lane have a range that is much longer than the lane
width. For large Pe, the width starts to depend on the system
size, which naturally limits the range of correlations (clearly,
k∗

width � π/L‖).
To complement the analysis of charge correlations, we

show the structure factor for the density field,

Sρ (k) = 1

N

〈∣∣∣∣∣∣
N∑

j=1

exp(−ik · r j )

∣∣∣∣∣∣
2〉

, (6)

which is proportional to the Fourier transform of hρ,ρ , see
Fig. 2(c). This function is shown in Fig. 4. On increasing Pe,
a significant peak appears at small k, signaling the formation
of TJCs and associated large density fluctuations. (The com-
pressibility χ̃ can be expressed in terms of an orientational
integral over Sρ .) However, this peak also has a significant
orientation dependence, which is discussed in the next sub-
section by comparing with results of mean-field theory.

3. Comparison with mean-field theory

It is instructive to compare these results in Fourier space
with those of mean-field theory [33]. Based on Eq. (9) from

Ref. [33], one can obtain the structure factors Sσ (k) and Sρ (k),

Sσ (k) ∼ k4 + Aσ k2
‖Pe2

k4 + Bσ k2
‖Pe2 , Sρ (k) ∼ Aρk2

‖Pe2

k4 + Bρk2
‖Pe2 , (7)

where Aσ , Bσ , Aρ, Bρ are positive constants that depend on
the system of interest via a single parameter ṽ0, which is
the Fourier transform of the interaction potential evaluated
at wave vector k = 0. For the purposes of this paper, it only
matters that these are positive constants, of order unity.

Figure 5 shows representative results from simulations
above, compared with results of the theory, for the representa-
tive parameter value ṽ0 = 1, which leads to Aσ , Bσ , Aρ, Bρ of
order unity. The theory captures the anisotropic correlations at
small k. However, it does not capture the peaks that appear in
the structure factor, for example, it does not make predictions
for k∗

y , nor does it capture the peak in Sρ (which we attributed
previously to TJCs). An interesting prediction of Eqs. (7) is
that small Pe leads to weak correlations with large correla-
tion lengths that scale as ξ ∼ 1/(Pe

√
C), where C is one of

Aσ , Aρ, Bσ , Bρ . It would be interesting to investigate these
length scales further, but the differences between theory and
simulation are strong enough that we do not attempt this here.
[It is not clear to us if this theoretical prediction is linked to
the increase of k∗

y with Pe, observed for small Pe in Fig. 3(c).]

C. Transient jammed clusters

1. Characterisation of TJCs

States II and III in Fig. 1 show strikingly large density fluc-
tuations involving clusters of particles with opposite charge,
which block each others’ motion, leading to a transient jam-
ming phenomenon. To analyze this, Fig. 2(c) shows density
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FIG. 4. Sρ (k) at various Pe with L‖ = 300 and φ = 0.35, corresponding to N = 8100. The features near the origin correspond to the
emergence of TJCs.

correlations for Pe = (0, 50, 100), corresponding to states I,
III, and IV in Fig. 1. For the equilibrium fluid state (Pe = 0),
the correlations are isotropic and short-ranged. For Pe = 50,
the correlations are stronger (as indicated by the darker shad-
ing) and they are also longer ranged—this is a signature of
the TJCs. For Pe = 100, the correlations resemble those for
Pe = 0. This re-entrant behavior occurs because the demixed
domains are similar to equilibrium systems that are being
advected at a constant velocity. This advection also affects
the usual nearest-neighbor correlations in hρ,ρ , leading to to
bands in hρ,ρ , extended along the driving direction.

To further quantify the TJCs, we integrate the correlation
function over space to obtain an analog of the compressibility
of an equilibrium system [50]:

χ̃ = 1 + ρ

∫
|r|<R

hρ,ρ (r)dr. (8)

The large-distance cutoff R reduces statistical uncertainty,
Appendix C shows that these results depend weakly on R.

Figure 6(a) shows χ̃ , measured relative to its equilibrium
value. It grows rapidly as Pe increases from zero, indicating
the formation of TJCs. There is a plateau at intermediate
Pe, showing that these clusters persist across broad range of
parameters. At large Pe, χ̃ decreases, due to the reentrant
demixing, recall Fig. 2(c). The mean-field theory of Ref. [33]
does not capture these TJCs because of its assumption of small
density fluctuations. For example, the correlations predicted
by that theory lead to χ̃ → 0 as R → ∞ (see Appendix C):
this prediction is not consistent with the data presented here.

As an alternative characterization of TJCs, Fig. 6(b) shows
the probability distribution of the number of particles Nin in a
randomly chosen circular probe region [51–53]. The variance
of this distribution increases dramatically with Pe, with tails at
large Nin reflecting the existence of TJCs. These clusters also
have a dynamical signature: Fig. 6(c) shows the distribution
of particle displacements parallel to the driving field. Each
particle displacement is measured as

�xi(τ ) = xi(t0 + τ ) − xi(t0), (9)

where t0 is an arbitrary initial time. Then the results are
averaged separately over the two species. The distributions
are skewed, with significant weight near zero displacement,
reflecting particles which remain almost stationary in TJCs.
Similar slowing down has been observed in 3D [54–56].

2. Residence time for particles in TJCs

The characteristic trapping time of particles in TJCs can be
estimated from the distribution of longitudinal displacement
in Fig. 6(c) using the following simple model. The measure-
ment window for the displacement is τ and we consider the
species with positive charge, so a free particle (outside of
the TJC) travels an average distance approximately �xfree =
τE/γ within this time. (The average velocity of a free particle
is vfree = E/γ .)

From Fig. 6(c), the distribution of displacements P(�x)
has an exponential tail for small �x, we write

P(�x) ≈ Ae−(�xfree−�x)/�, (10)

(a) (b)

FIG. 5. (a) Sσ (k) from both mean-field theory and simulation. (b) Sρ (k) from both mean-field theory and simulation. Both Sσ (k) and Sρ (k)
are shown with Pe = 10 and φ = 0.35. For simulations, L‖ = 300, corresponding to N = 8100.
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(a) (b) (c)

FIG. 6. (a) χ̃ − χ̃ eq against Pe, for different system sizes, with cutoff radius R = 5d0. The mean-field theory predicts that this quantity
vanishes for R → ∞. (b) Probability distribution for the number of particles in a randomly chosen circular probe region of radius r0 = 1.75d0

for various Pe. (c) Probability distributions for the x-displacement �x of each species of particles within time τ = 0.25τB, at Pe = 50. The
dashed line indicates P(�x) ∝ e−(�xfree−�x)/�. For (b), (c), L‖ = 300d0.

where A is a constant, � is a characteristic length scale, which
is an estimate of the length by which a typical particle in a
TJC is held back by its temporary immobilization. (The value
of A presumably depends on how many particles participate in
TJCs.) As a simple method to obtain a characteristic trapping
time, we divide � by the characteristic velocity to obtain
τTJC = �/vfree.

To better interpret this timescale, suppose that particles
in TJCs stay there for an exponentially distributed time tTJC

with mean τTJC, during which time they do not move at
all parallel to the field. Their resulting displacement is then
�xfree − vfreetTJC. Assuming also that P(tTJC) ∝ e−tTJC/τTJC , the
tail of the displacement distribution is readily seen to be
Eq. (10) with � = τTJCvfree = τTJCd0Pe/τB.

However, this simple analysis neglects effects of the mea-
surement time window τ . In particular, the distribution of �x
is not sensitive to trapping times longer than τ . As a result, the
above argument tends to underestimate the trapping time. Fig-
ure 7(a) shows the resulting τTJC in the regime Pe ∈ [30, 70].
These results indicate that large measurement times τ can be
used to obtain robust estimates for the trapping time. Specifi-
cally, taking Pe = 50 and τ = τB, we obtained � = 5.4d0 from
the exponential fit and therefore have τTJC = 0.11τB. While
this is smaller than the Brownian time, it is significantly larger
than the time for a particle in a lane to move its own diam-
eter, which is τB/Pe ≈ 0.020τB. However, smaller τ results
in underestimates of the true τTJC, as expected, see Fig. 7(b).
Nevertheless, the resulting estimates of τTJC are all of a similar
order of magnitude; they also depend weakly on Pe, within the
range 30 < Pe < 70 where TJCs play a significant role.

D. Dynamics of mixing—the role of TJCs

We have shown that these driven systems are always mixed
in the limit of large systems and that the mixed state sup-
ports large TJCs. We now establish a connection between
these two results. We choose parameters such that the sys-
tem’s steady state is mixed but we initialize it in a demixed
state, so we can follow the mixing process. To collect good
statistics while maintaining a sufficiently large L⊥, we reduce
the aspect ratio to S = 1.25. Figure 8 shows time-dependent
composition profiles perpendicular to the drive for various
Pe. In the absence of driving (Pe = 0), mixing happens by

diffusion. To illustrate this, we fit the results to the (analytical)
solution of the diffusion equation ∂t 〈σ 〉 = Dy∂

2
y 〈σ 〉, using Dy

as a single fitting parameter (see Appendix D for details of
the fitting procedure). The fit is excellent. For Pe = 20, the
system still mixes readily: the diffusion equation still fits the

(a)

(b)

FIG. 7. (a) The characteristic trap time τTJC in units of τB at
different Pe number when TJCs are present with L‖ = 300d0. (b) The
characteristic trap time τTJC against measurement window τ of
system as in (a). The characteristic trap time τTJC converges with
sufficiently large measurement window τ .
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(a)

(d)

(b) (c)

FIG. 8. (a)–(c) Time evolution of the charge density profile, starting from a demixed state, for L‖ = 100d0 and S = 1.25. Symbols are
numerical results and dotted lines are fits to the diffusion equation, see Appendix D for details of the fitting procedure. (d) Time series,
highlighting a TJC that nucleates new lanes. We show a subsystem from large simulation with L‖ = 300d0 and Pe = 78.

data adequately but the value of Dy is larger, reflecting the
ELD [32,39].

However, for Pe = 60, the lifetime of the demixed state
is longer: the interface between the two domains is stable
on short timescales, because collisions between oppositely
charged particles tend to deflect them back into their own
domains. On longer timescales, mixing does occur, but the
mechanism is not diffusive, as signalled by systematic de-
viations from the diffusive theory in Fig. 8(c). In particular,
the composition inside the demixed domains relaxes more
quickly than diffusive mixing would predict, indicating that
a collective mechanism is disrupting the domains.

This mixing mechanism is illustrated in Fig. 8(d) and the
Supplemental Material movies 4,5 [42]: collisions near the
interface occasionally form TJCs which disrupt the flow and
mix the counterpropagating species. This initiates a period of
chaotic flow, which involves further TJCs and—eventually—
the creation of new stable lanes. This mechanism further
emphasizes the rich phenomenology of these nonequilibrium
systems.

To understand the absence of demixed states in large
systems, observe that increasing L‖ provides more locations
where TJCs can form, initiating the instability. This mech-
anism is intrinsic to the interface between the oppositely
moving domains: Appendix D shows that increasing L⊥ (at
fixed L‖) does not change the local behavior near the interface.
In other words, the absence of demixed states for large L‖
depends weakly on the aspect ratio of the system, since any
interface between counterpropagating domains is prone to
fragmentation via TJCs. Interfaces between oppositely driven
domains have been recently studied in Refs. [57,58], and
nucleation of lanes is also reminiscent of other complex flow
phenomena [59].

If the system is small enough that the steady state is fully
demixed, the mechanism of Fig. 8(d) can also operate in
reverse: four lanes can merge into two, via TJC formation

at the interface, see Fig. 9. However, for large systems, the
mixing (lane creation) events predominate.

IV. OUTLOOK

Lane formation for oppositely driven particles relies on
ELD, which tends to cause demixing, perpendicular to
the drive. We showed that this demixing is not a phase
transition—sufficiently large systems always remain mixed.
They also support large density fluctuations in the form of
TJCs, which exist over a wide range of Pe, and play an
important role in mixing, by destabilizing interfaces between
domains with oppositely driven particles. In this sense, the
complex patterns shown in Fig. 1 reflect a competition be-
tween ordering by ELD and mixing via TJCs. We look
forward to future work on such patterns. For example, the
possibility of system-spanning TJCs may be relevant for dy-
namical arrest in small systems [60]. Similar phenomena may
also be relevant for pattern formation in other nonequilibrium
systems, such as self-propelled particles or sheared fluids
[52,61–69], and the control of such patterns offers possibili-

FIG. 9. Time series, highlighting a TJC that causes coarsening
of two lanes. We show a subsystem from large simulation with L‖ =
150d0 and Pe = 80.
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ties for the design of directed self-assembly [40,70]. At higher
densities, we also anticipate an interesting interplay between
TJCs and crowding (jamming or glassy) behavior [71,72].
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APPENDIX A: MODEL AND SIMULATION DETAILS

We nondimensionalize the Langevin Eq. (1) using base
units d0, m, ε. The natural unit of time is t0 = d0

√
m/ε. Then

we define reduced quantities which are the particle position
r̃i = ri/d0, the Peclet number Pe = Ed0/(kBT ), the volume
fraction φ = Nπd2

0 /(4L‖L⊥), the reduced time t̃ = t/t0, the
reduced interaction energy Ũ = U/ε, the reduced friction
constant γ̃ = γ t0/m, the reduced temperature T̃ = kBT/ε,
and the aspect ratio of the simulation box L‖/L⊥. Recall that
the Brownian time is τB = d2

0 γ /(kBT ) = t0γ̃ /T̃ : this evalu-
ates to 103t0 for the parameters used in this paper.

The nondimensionalized Langevin equation is then

d2

dt̃2
r̃i = −γ̃

d

dt̃
r̃i − ∇̃iŨ + σiPe T̃ x̂ +

√
2γ̃ T̃ η̃i(t̃ ), (A1)

where η̃i is nondimensionalized Gaussian white noise with
mean zero and 〈η̃i,α (t̃ )η̃ j,β (t̃ ′)〉 = δi jδαβδ(t̃ − t̃ ′).

Simulations are performed in LAMMPS [44] with time
step δt = 5 × 10−4t0. For initialization, we either use disor-
dered or demixed initial conditions. For the disordered case,
we initialize N/2 red and N/2 blue particles with random
positions and simulate the equilibrium system (E = 0) for
102τB, after which the force E is introduced. For the demixed
case, we initialize N particles of a single type with random
positions and simulate the equilibrium system for 102τB. Then

we assign types to particles according to their y coordinates:
For yi ∈ [0, L⊥/2], we take σi = −1 and for yi ∈ [L⊥/2, L⊥]
we take σi = 1. Then we turn on the force E . As discussed in
the main text, the steady state of the system is independent of
whether disordered or demixed initialization is used, and all
measurements are taken in the steady state.

For Figs. 1–7 and 10–12, the steady-state measurements
are performed after simulation for at least 103τB, so the system
has relaxed to its steady state. We confirm the steady-state
behavior by comparing the simulations performed with both
disordered and demixed initial conditions. When the system
phase separates, the coarsening process is extremely slow as
the interfaces are smooth and stable. When Pe > 90, it takes
approximately 4 × 103τB for the system to reach complete
phase separation, and results are collected after this time.

APPENDIX B: DENSITY DEPENDENCE OF ψdem

We defined ψdem to characterize the steady-state behavior
of the system, perpendicular to the drive. In this section, we
investigate the density dependence of the steady-state behav-
ior. We do this by fixing the number of particles N and the
aspect ratio of the system S, while varying the system size. We
rescale the order parameter so results are comparable between
systems at different densities, specifically,

ψ̃dem = L‖L⊥
N

ψdem. (B1)

To justify this choice, note that a perfectly phase separated
state has charge density σ (r) = +ρ when y ∈ [0, L⊥/2), and
σ (r) = −ρ when y ∈ [L⊥/2, L⊥), one has

ψ̃dem ≈
〈∣∣∣∣ 1

N

∫
σ (r)e−ik∗·rdr

∣∣∣∣
〉

= 2

π
≈ 0.64, (B2)

which is independent of the total density.

(c)

(a) (b)

(d) (e)

FIG. 10. (a) ψ̃dem against Pe at different packing fraction φ for N = 2026. (b) Diagram showing the regime in which phase separation is
observed (ψ̃dem � 0.6) for N = 2026. (c)–(e) ψ̃dem against Pe at different system sizes for φ = 0.25, 0.31, 0.39, respectively.
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(a) (b)

FIG. 11. (a) Density fluctuation χ̃ − χ̃ eq against Pe at N = 2026 with R̃ = 5 for various packing fractions. (b) Density fluctuation χ̃ − χ̃ eq

against Pe at L‖ = 150d0, L‖ = 300d0 with R̃ = 5, 10. The mean-field curve is shown with ṽ0 = 1 (see Appendix C 3).

Simulation results are shown in Fig. 10. Panels (a) and
(b) show data for a system of N = 2026 particles. We iden-
tify phase-separated states as those with ψ̃dem > 0.6, and we
determine the phase boundary (black line) in Fig. 10(b) by
identifying Pe closest to ψ̃dem = 0.6. We emphasize that this
“phase boundary” was computed by varying the box size with

(a)

(b)

FIG. 12. (a) Dependence of hρ,ρ (r) on r = (x, y). (b) The
density-density correlation function hρ,ρ (0, y) and hρ,ρ (x, 0). The
inset is the difference hρ,ρ (0, y) − hρ,ρ (x, 0). The sign of hρ,ρ (0, y) −
hρ,ρ (x, 0) suggests Hρ,ρ > 0 in the mean-field theory. For both
(a) and (b), L‖ = 150d0 and Pe = 20.

N = 2026; results will be different for systems with different
numbers of particles. One sees that phase separation occurs
across a range of concentrations φ. At low concentrations
φ � 0.05, particle collisions are rarer, which reduces the ELD
effect and suppresses laning and phase separation. The ten-
dency towards laning is nonmonotonic in φ, consistent with
previous work [35]. Figures 10(c)–10(e) show finite-size scal-
ing results for the order parameter at three different densities
within the laning regime. In all cases, the Pe required for phase
separation increases with N , indicating that sufficiently large
systems will always remain mixed for any given Pe.

For larger concentrations φ > 0.4, we observe different
qualitative behavior, where neither laning nor phase sepa-
ration takes place. Instead the system forms macroscopic
domains of the two species whose sizes and shapes fluctuate
in time, as they flow past each other. This regime brings even
further computational challenges associated with the time re-
quired to converge to a steady state, and the ability to control
finite size effects, so we do not address it here. (These aspects
were already challenging for the results presented here at
lower density, but our extensive simulations have allowed us
to control them.)

APPENDIX C: GENERALIZED COMPRESSIBILITY χ̃

1. Dependence on density

In the main text, we showed the behavior of generalized
compressibility χ̃ for φ = 0.35. In Fig. 11(a), we show in
the laning regime the behavior of χ̃ for different packing
fractions is the same. It grows at low Pe due to the formation
of TJCs and it plateaus at intermediate Pe, corresponding to
the coexsitence of TJCs and lanes at intermediate Pe. At large
Pe, χ̃ drops at large Pe, corresponding to the demixing of the
particles and disappearance of TJCs.

From Fig. 11(a), we also observe that higher packing frac-
tion corresponds to higher χ̃ across all Pe regimes when TJCs
are present. The behavior is intuitive: at higher packing frac-
tions, particles become more packed when moving in opposite
directions and form larger TJCs.

We also note the drop in χ̃ at high Pe corresponding to
demixing is density dependent: higher packing fraction re-
quires higher Pe to demix. The behavior is consistent with
the density dependence of the order parameter as shown in
Fig. 10(a).
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2. Dependence on cutoff R

In the main text, we defined χ̃ in terms of the density fluc-
tuations of the system. In equilibrium systems, this χ̃ is related
to the compressibility (defined in terms of dependence of the
volume on the applied pressure). In these nonequilibrium sys-
tems, there is no relation between χ̃ and responses to applied
pressure, so we refer to it as a generalized compressibility.

To parameterize the cutoff in Eq. (8), we nondimensional-
ize as R̃ = R/d0. For the main text, we take R̃ = 5 to reduce
numerical uncertainties. In Fig. 11(b), we show that the be-
havior of χ̃ depends weakly on this cutoff. There is a small
increase on increasing R̃ from the tails of hρ,ρ but the robust
qualitative feature is that χ̃ increases strongly with Pe, satu-
rates at a plateau, and then decreases.

3. Mean-field analysis

We describe here the mean-field prediction for density-
density correlations, see also Fig. 6(a) of the main text. From
Ref. [33], one obtains the hydrodynamic (or singular) part of
the density-density correlation function which we denote as
hs

ρ,ρ (x, y). This hydrodynamic correlation is valid on large
length scales but it misses effects of particle packing, for
example, one has hs = 0 for the equilibrium case Pe = 0 (al-
though, of course, h �= 0 in this case). Hence, we subtract the
equilibrium part of χ̃ when comparing the numerical results
with the theory.

The singular part of the correlation function in two spatial
dimensions can be obtained from Ref. [33] as

hs
ρ,ρ (x, y) = Pe1/2 Hρ,ρ

|x|3/2

(
Pe y2

D|x| − 1

)
exp

(
− Pe y2

2D|x|
)

, (C1)

where Hρ,ρ and D are constants that are fully determined by
the parameter ṽ0 that was discussed in Sec. III B 3. We always
have D > 0; for ṽ0 � 1.3, then Hρ,ρ > 0 while for larger ṽ0

we have Hρ,ρ < 0.
We integrate the singular part of the density correlation

function to get the singular part of the generalized compress-

ibility, χ̃ s
mf = ρ

∫
|r|<R hs

ρ,ρ (r)dr. We obtain

χ̃ s
mf = ρHρ,ρ

√
Pe

∫ R

0

∫ √
R2−x2

0

[
1

x3/2

(
Pe y2

2Dx
− 1

)

× exp

(
−Pe y2

2Dx

)]
dydx. (C2)

Integrate y by parts, and make the change of variable u = x/R
to simply the integral:

χ̃ s
mf = −ρHρ,ρ

√
Pe/R

∫ 1

0

√
1 − u2

u3/2
exp

[
Pe R

2D

(
u − 1

u

)]
du.

(C3)

This final integral is easily computed numerically. Moreover,
the argument of the exponential is always negative, so one
easily sees that χ̃ s

mf → 0 as the cutoff R → ∞. Fig.ure 11(b)
shows the R dependence of results from simulation, showing
that χ̃ increases weakly with R, contrary to this prediction.
(Agreement is not expected here because the mean-field the-
ory does not capture large density fluctuations such as TJCs.)

For a more detailed analysis, Fig. 12 shows the behavior
of hρ,ρ for Pe = 20. In particular, we show the behavior along
the axes r = (x, 0) and r = (0, y). For the latter case, Eq. (C1)
predicts that the hydrodynamic part of the correlation is ex-
ponentially small but the numerical results show a small but
positive contribution that decays slowly at large scales. (We
attribute this to TJCs that are extended along the y direction,
which are not accounted for by mean-field theory.) Since
hρ,ρ (x, 0) < 0 at large distances while hρ,ρ (0, y) > 0, the best
chance for agreement with Eq. (C1) is to take Hρ,ρ > 0, in-
dicating ṽ0 < 1.3. The mean-field results are obtained with
ṽ0 = 1, however, this leads to χ̃ s

mf < 0, see Fig. 11(b) (recall
also that this χ̃ s

mf → 0 for large R).

APPENDIX D: EVOLUTION OF INTERFACE

In this section, we describe how we fit the time evolution
of the interface within demixed state described in the main
text. We provide evidence that the nondiffusive behavior of the
time evolution of the interface at the high Pe regime depends
weakly on the shape of the simulation box.

FIG. 13. The charge density profiles for systems with different aspect ratios near the interface at t = 25τB, 75τB, 125τB for Pe = 60 with
L‖ = 100d0.
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FIG. 14. The charge density profiles with different aspect ratios, varying Pe with L‖ = 100d0.

1. Fitting for diffusive interface profile

For small Pe, we expect the mixing for domains of red and
blue particles to be described by the diffusion equation,

∂t 〈σ (y, t )〉 = Dy∂
2
y 〈σ (y, t )〉, (D1)

where Dy is a lateral diffusion constant. The initial condition
is (for 0 � y < Ly)

〈σ (y, 0)〉 =
{

1 0 � y < L⊥/2
−1 L⊥/2 � y < L⊥.

(D2)

Since we consider a system with periodic boundary condi-
tions, we extend the function 〈σ (y, t )〉 to include all values
of y and seek periodic solutions, such that 〈σ (y + L⊥, t )〉 =
〈σ (y, t )〉 for all y, t . The corresponding solution to Eq. (D1)
can be represented as

〈σ (y, t )〉 =
∞∑

k=−∞

[
erf

(
y − kL⊥√

4Dyt

)
− erf

(
y − 2k−1

2 L⊥√
4Dyt

)]
.

(D3)
For 0 < y < L⊥ and moderate values of t , the contributions
from large values of k are negligible, so it is practical to trun-
cate the sums. In fact, for the relatively short times considered
here, it is sufficient to approximate

〈σ (y, t )〉= erf

(
y√

4Dyt

)
− erf

(
y − 1

2 L⊥√
4Dyt

)
+ erf

(
y − L⊥√

4Dyt

)
,

(D4)

since all other contributions are small for 0 � y < L⊥. This
form gives the fits shown in Fig. 8.

2. Interface mixing at different box shapes

We explain in the main text that TJCs form at the inter-
face between demixed red and blue domains, which causes
the demixed state to break down in large systems. As addi-
tional supporting evidence for this mechanism, we simulated
systems with different aspect ratios: L‖ = 100d0 and L⊥ =
40d0, 60d0, 80d0, 100d0 at Pe = 50, 60, 70. This is the regime
where diffusive mixing does not apply, and TJCs play an
important role.

In Fig. 13, we show the time evolution of the inter-
face profile at Pe = 60 and the mechanism described is
consistent at different time steps. Each interface profile is
averaged over at least 20 simulations and the error bar for
the density profile is taken to be the standard error of the
average.

The mixing effect depends very weakly on L⊥, except for
the smallest value (L⊥ = 40d0), which is small enough that
a single TJC can affect the whole domain and is no longer
localized near an interface. For the larger systems, this in-
dicates that the mixing can be interpreted as an instability
of a single interface between red and blue, initiated by a
TJC.

Finally, Fig. 14 shows snapshots of the interface profile at
Pe = 50, 60, 70: the nondiffusive mixing mechanism is con-
sistently observed across this range.
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