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We consider a discrete-time random walk on a one-dimensional lattice with space- and time-dependent
random jump probabilities, known as the beta random walk. We are interested in the probability that, for a
given realization of the jump probabilities (a sample), a walker starting at the origin at time t = 0 is at position
beyond ξ

√
T/2 at time T . This probability fluctuates from sample to sample and we study the large-deviation

rate function, which characterizes the tails of its distribution at large time T � 1. It is argued that, up to a
simple rescaling, this rate function is identical to the one recently obtained exactly by two of the authors for the
continuum version of the model. That continuum model also appears in the macroscopic fluctuation theory of
a class of lattice gases, e.g., in the so-called KMP model of heat transfer. An extensive numerical simulation of
the beta random walk, based on an importance sampling algorithm, is found in good agreement with the detailed
analytical predictions. A first-order transition in the tilted measure, predicted to occur in the continuum model,
is also observed in the numerics.

DOI: 10.1103/PhysRevE.109.024122

I. INTRODUCTION

The macroscopic fluctuation theory (MFT) [1] provides
a coarse-grained continuum description of the fluctuations
of the density and current [2] for a broad class of discrete
stochastic systems in one dimension with a diffusive scaling
at large time. One important example is the symmetric exclu-
sion process, where particles perform symmetric jumps onto
neighboring unoccupied sites on a lattice. Another example
is the Kipnis-Marchioro-Presutti (KMP) model [3], a lattice
model where each site has an energy and whose dynamics is
described by a random exchange of energy between neigh-
bors. Upon introduction of an asymmetry or a driving, such as
in the asymmetric exclusion process [4], the diffusive scaling
breaks down above some scale, and the large-scale behavior
of the model is usually described by the Kardar-Parisi-Zhang
(KPZ) universality class [5]. It was shown that there is a natu-
ral crossover from the MFT to the so-called weak noise theory
(WNT) of the KPZ equation as the asymmetry is increased [6].

The MFT and the WNT allow us to reduce the calcula-
tion of the large deviations of density and current to solving
a system of two coupled nonlinear differential dynamical
equations, with prescribed boundary conditions both at initial
and final time. Recently, starting with the WNT for the KPZ
equation [7–9], exact solutions to these systems were obtained
[6,10–14]. This was achieved by using the close connection of
these systems to the nonlinear Schrödinger equation (NLS),
or to the derivative NLS equation (DNLS), and extending the
inverse scattering methods of Refs. [15–17] to mixed-time
boundary conditions. Another largely equivalent method used
exact closure schemes [11,14]. This allows one to compute
large deviations for observables such as the integrated current
or of the position of a tracer.

Here we will focus on the case where the MFT takes the
form of a linear stochastic equation for a space-time coarse-
grained density field qη(y, τ )

∂τ qη(y, τ ) = ∂2
y qη(y, τ ) − ∂y[

√
2η(y, τ )qη(y, τ )], (1)

where η(y, τ ) is a standard space-time Gaussian white noise. It
was proved in Ref. [18] that at large time the large deviations
for the discrete KMP model are identical to those of the
continuum stochastic model (1). At large time the dynami-
cal action associated to model (1) is controlled by a saddle
point, and the corresponding saddle-point equations define
the MFT for this model. These MFT equations were studied
in a number of works [1,11,19–29]. We noted in Ref. [6]
an interesting connection to a continuum model of diffusion
in a time-dependent random environment, previously consid-
ered in Refs. [30–35]. Indeed, Eq. (1) can also be seen as
the Fokker-Planck equation for the probability distribution
function (PDF) qη(y, τ ) of the position y(τ ) at time τ of a
particle convected by the random field η(y, τ ), described by
the Langevin equation

dy(τ )

dτ
=

√
2η[y(τ ), τ ] + χ (τ ), (2)

where χ is a standard white noise in time. The subscript in qη

emphasizes that it depends on the realization of the random
field η, i.e., the sample. In Ref. [6] (see also Refs. [10,13])
we solved the MFT equations and derived the large-time
large-deviation function associated to qη for the continuum
model (1), with applications to diffusion of extremes in
time-dependent continuum random media. This solution was
obtained by inverse scattering methods on a nonlinear sys-
tem interpolating between the DNLS and NLS equations. We
also obtained the same result by performing the large-time
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FIG. 1. Lattice representation of the beta random walk.

expansion of an exact Fredholm determinant formula obtained
in Ref. [31] using the Bethe ansatz.

It is thus natural to investigate whether the MFT associated
to (1) can describe a discrete model of a random walk in a
random environment (RWRE). The natural example that we
will consider here is the so-called beta random walk, intro-
duced and studied in Ref. [36]. This model was later studied
in relation to the KPZ equation in Refs. [30,31,34,35,37–39].
In the present paper we will first argue that the large-time
large-deviations tails for the beta polymer are indeed identical,
up to some simple rescaling that we can predict, to those of
the continuum model. Next, we will perform an extensive
numerical study of these large deviations for the beta random
walk, using an importance sampling algorithm, to test our
analytical predictions.

The outline is as follows. In Sec. II we define the model of
the beta random walk, introduce the observables of interest,
and define the associated large-deviation rate functions. In
Sec. III we sketch the argument, which allows us to relate the
large deviation of the discrete model to those of the continuum
model. In Sec. IV we explain the numerical method used
here, notably the importance sampling method, which allows
us to explore the deep tails of the large-deviation regime. In
Sec. V we give the main numerical results and discuss how
they compare to the analytical predictions.

II. MODEL AND OBSERVABLES

The model of the beta random walk is defined as follows
[36]. One defines first the environment or sample, by choosing
for each x ∈ Z and t ∈ N a variable wx,t ∈ [0, 1]. The wx,t

are chosen as i.i.d. random variables taken from the beta
distribution with parameters α, β > 0 and density

P (w) = 	(α + β )

	(α)	(β )
wα−1(1 − w)β−1. (3)

One now considers a particle at position X (t ) ∈ Z, which
starts at the origin at time zero, X (0) = 0, and which performs
a random walk defined by the following transition probabili-
ties (see Fig. 1):

P (X (t + 1) = x + 1|X (t ) = x) = wx,t

P (X (t + 1) = x − 1|X (t ) = x) = 1 − wx,t . (4)

We will denote by 〈X (t )〉w, or more simply 〈X (t )〉 the
mean position in a given sample, and by · · · the averages over
samples. It is easy to see that the sample averaged bias and dif-
fusion coefficient, defined as 〈X (t )〉 = v̄t and 〈X (t )2〉c = D̄t
are equal to

v̄ = 2〈w〉 − 1 = α − β

α + β
, D̄ = 4αβ

(α + β )2
. (5)

One can show that at large time the typical walk in a typical
sample is also characterized by the same bias and diffusion
coefficient. We will choose from now on α = β, i.e., v̄ = 0
and D̄ = 1.

Since at large time the typical motion is diffusive [36] we
will be interested in the following probability, which will be
our observable:

Z = Zξ (T ) = P

(
X (T )√

T/2
> ξ

)
, (6)

where ξ is an asymmetry parameter (here chosen positive ξ �
0), which describes how the position of the random walker
deviates from its mean in a given sample. Keep in mind that Z
is a random variable with respect to the sample. We will thus
be interested in the PDF’s of Z with respect to the sample,
denoted P(Z ), equivalently of H = ln Z denoted (abusively)
as P(H ). At large time T they are expected to take the large-
deviation forms

P(Z ) ∼ e−√
T 
̂RW

ξ (Z ) (7)

P(H ) ∼ e−√
T 
RW

ξ (H ) (8)

and we will determine the rate functions 
̂RW
ξ (Z ) and


RW
ξ (H ), both through an analytical argument, and through

extensive numerics.

III. ANALYTICAL PREDICTIONS

A. Continuum model observables

One can define a similar observable for the continuum
model (1) and (2), namely

Z̃ = Z̃ξ (T̃ ) =
∫ +∞

ξ
√

T̃
dy qη(y, T̃ ) = P

(
y(T̃ )√

T̃
> ξ

)
, (9)

where the particle is at the origin at time zero, y(0) = 0. Note
that here and below the tilde variables are associated to the
continuum model. We have shown in Ref. [6] that at large time
the PDF’s of Z̃ and H̃ = ln Z̃ take the large-deviation forms

P(Z̃ ) ∼ e−
√

T̃ 
̂ξ (Z̃ ) (10)

P(H̃ ) ∼ e−
√

T̃ 
ξ (H̃ ) (11)

and we have obtained the analytical expressions of the rate
functions 
̂ξ and 
ξ , which will be recalled below. These
were obtained by considering the following generating func-
tion, which takes the large-deviation form at large time:

e−z̃
√

T̃ Z̃ ∼ e−
√

T̃ �ξ (z̃). (12)

The two rate functions are related by a Legendre transform.
Indeed one has

�ξ (z̃) = min
Z̃∈[0,1]

[zZ̃ + 
̂(Z̃ )]. (13)

In Ref. [6] we obtained the expression of �ξ (z̃) by two
different methods, one of them will be recalled in the next
section. From it we obtained the rate functions 
̂ξ and 
ξ

through Legendre inversion. The explicit formula for these
rate functions will be given in Sec. III E.
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B. Main prediction

Our main prediction is that the discrete model is described
by the same rate functions as the continuum one, up to some
scale factors, hinting to a form of universality. More precisely
we claim that


̂RW
ξ (Z ) = α√

2

̂ξ (Z ), 
RW

ξ (H ) = α√
2

ξ (H ) (14)

and

�RW
ξ (z) = α√

2
�ξ

(
z̃ = z

√
2

α

)
. (15)

We will now explain the origin of this prediction. To this aim
we first need to recall one method to obtain the rate function
�ξ in the continuum. Next we show how an extension of the
same method for the discrete case leads to the predictions
above.

C. Fredholm determinant method for the continuum model

In Ref. [31] a mathematically well-posed version of the
continuum model, called the sticky Brownian motion, was de-
fined. An exact formula was derived for the Laplace transform
of the PDF of Z̃ for any T̃ , ξ in terms of a (complicated)
Fredholm determinant. For u � 0 one has (Theorem 1.11 in
Ref. [31])

e−uZ̃ξ (T̃ ) = Det(I − Ku)|L2(C), (16)

where the kernel Ku(v, v′) acts on functions defined on a
contour C in the v complex plane, where C is a positively
oriented circle centered at R with radius R. The kernel reads

Ku(v, v′) = 1

2iπ

∫
1/2+iR

πus

sin πs

g(v)

g(v + s)

ds

s + v − v′ , (17)

where the function g(v) is

g(v) = gc(v) := eξ
√

T̃ ψ0(v)+T̃ ψ1(v)	(v), (18)

where ψ0,1 denote polygamma functions (see Ref. [6], Supple-
mental Material Sec. X for more details and correspondence
of conventions).

In Ref. [6], Supplemental Material Sec. X, we have studied
in detail the large time limit T̃ � 1 of the kernel Ku (17)
and of the Fredholm determinant (16) when u is scaled as
u = z̃

√
T̃ for the continuum model (recalling that here the

observation time in the continuum model is denoted by T̃ ).
From (12) and (16) this provided an independent method to
obtain the rate function �ξ (z̃). The important point is that we
showed there that the only relevant quantity is the asymptotic
form at large T̃ of the function g(v) under the rescaling

v = w
√

T̃ . (19)

More specifically one finds that this asymptotic form reads
[Ref. [6], Supplemental Material Eqs. (S206)–(S210)]

ln gc(v) =
√

T̃ (φ(w) + (w + ξ ) ln
√

T̃ )

+ χ (w) − 1
2 ln(

√
T̃ ) + o(T̃ ), (20)

where we defined

φ(w) = 1

w
− w + (w + ξ ) ln(w)

χ (w) = 1

2w2
− ξ

2w
+ 1

2
ln(2π/w), (21)

where we corrected a misprint in the last term in Ref. [6]. The
knowledge of φ(w) in this asymptotic form then allows us to
obtain the explicit form of �ξ (z̃) in Eq. (A2), see Ref. [6],
Supplemental Material Sec. X for details. In particular, sub-
dominant terms such as χ (w) are irrelevant.

D. Discrete to continuum universality

To obtain the rate functions for the discrete beta random
walk model, we can consider, similarly to (12), the generating
function associated to the observable Z = Zξ (T ), which takes
the form at large time

e−z
√

T Z ∼ e−√
T �RW

ξ (z). (22)

One method to obtain �RW
ξ (z) is to use the result from

Ref. [36], which we now recall. Reference [36], Theorem
1.13, gives an exact formula for the Laplace transform (22)
of the PDF of Z for any T, ξ in terms of a (complicated)
Fredholm determinant. For u � 0 one has

e−uZξ (T ) = Det(I − Ku)|L2(C), (23)

where the kernel Ku(v, v′) acts on functions defined on a
contour C in the v complex plane, where C is a positively
oriented circle centered at R � 0 with radius R + ε so that
0 < ε � min(1, α + β ). The kernel has the same form as for
the continuum case, namely

Ku(v, v′) = 1

2iπ

∫
1/2+iR

πus

sin πs

g(v)

g(v + s)

ds

s + v − v′ (24)

except that now for the beta random walk one has

g(v) = gRW(v)

=
(

	(v)

	(α + v)

) T −ξ

√
T
2

2
(

	(α + β + v)

	(α + v)

) T +ξ

√
T
2

2

	(v),

(25)

where we recall that from now on we restrict to the case
β = α.

It is interesting to note that there is a way to obtain the
continuum model from the discrete one, by taking the limit
α → 0. Indeed if one sets

T = 2T̃ /α2 (26)

one has, with the same value of ξ

lim
α→0

gRW(v) = gc(v). (27)

This corresponds to the convergence of the discrete random
walk to the continuum one, which can be expressed as the
convergence [31]

αX (2α−2τ ) →
α→0

y(τ ) (28)
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recalling that X (t ) corresponds to position in the beta random
walk with index α, and y(τ ) to the position of the particle in
the continuum model (2).

However, this is not what we are interested in here. Instead
we want to keep α fixed and take the time T of the beta ran-
dom walk to be large. We now argue that it leads to the same
large-deviation rate functions as for the continuum model, up
to the rescaling (26).

Since the form of the kernel is quite similar in both cases,
to obtain the asymptotics of Ku in (24) and of the Fredholm
determinant (23) for the beta random walk, in the limit T →
+∞ with u = z

√
T , we also only need to study the large

time limit of the function gRW(v) under the same rescaling
(19). Although we are working here for an arbitrary fixed α,
we will choose the correspondence between the discrete and
continuous time as in (26). Let us use the expansion at large v

vb−a 	(a + v)

	(b + v)
= 1 + (a − b)(a + b − 1)

2v
+ (a − b − 1)(a − b)(3b2 + 6ab − 5b + a(3a − 7) + 2)

24v2
+ O

(
1

v3

)
(29)

for any a, b = O(1). Let us consider (25) with β = α, express
it as a function of T̃ using (26), and insert the rescaling (19).
In the large T̃ limit one finds

ln gRW(v) =
√

T̃ (φ(w) + (w + ξ ) ln
√

T̃ )

+ χRW(w) − 1
2 ln(

√
T̃ ) + o(T̃ ) (30)

with

χRW(w) = (1 − 2α)

(
1

2w2
− ξ

2w

)
+ 1

2
ln(2π/w) (31)

and the function φ(w) being identical to the one for the con-
tinuum model in (21).

Thus, in the large time limit we can identify Z = Z̃ , i.e.,
the two random variables

Zξ (T ) ≡ Z̃ξ (T̃ ) (32)

and identify separately each sides of (22) and (12), respec-
tively, which leads to

z
√

T ≡ z̃
√

T̃ (33)

√
T �RW

ξ (z) =
√

T̃ �ξ (z̃), (34)

which, using the correspondence between continuum and dis-
crete time in (26), finally leads to the prediction (14) and (15)
for the rate function of the beta random walk.

E. Explicit formula for the rate functions

We now recall the analytical prediction from Ref. [6] for
the rate functions of the continuum model. Since Z = Z̃ and
H = H̃ , see section above, we use below only the notations
Z and H in place of Z̃ and H̃ . The rate function 
̂ξ (Z ) is
obtained from the parametric representation


̂ξ (Z ) = �ξ (z) − z̃Z,

Z = � ′
ξ (z̃), (35)

where �ξ (z̃) for ξ � 0 is given by

�ξ (z̃) = −−
∫
R

dq

2π

Li2
[
z̃
(
iq − ξ

2

)
e−q2− ξ2

4
]

(
iq − ξ

2

)2 , (36)

where the principal value is required only for ξ = 0.
We now consider here only the case ξ = 0 where for any

real value of z̃, the dilogarithm in the integrand of (36) does

not have any branch cut on the real axis for q. This expression
for the rate function �ξ=0(z̃) then allows us to obtain 
̂ξ=0(Z )
for any Z ∈ [0, 1]. From this one obtains the rate function

ξ=0(H ) = 
̂ξ=0(Z ) by the simple change of variable H =
ln Z for any H � 0. This is summarized in Table I.

The case ξ > 0 is more involved and is given in the Ap-
pendix A 2. However, one can give for any ξ the typical value

Ztyp = Z = � ′
ξ (0) = 1

2
Erfc

(
ξ

2

)

and the variances of the PDF’s P(Z ) and P(H ) for the contin-
uum model [6]

Z2
c = 1

4
√

2π T̃
e−ξ 2/2 (37)

H2
c = 1√

2π T̃
e−ξ 2/2

[
Erfc

(
ξ

2

)]−2

. (38)

The corresponding variances for the beta random walk at large
time are obtained by the correspondence T̃ = α2

2 T .

IV. METHODS

Next, we describe our numerical approaches. In Sec. IV A,
we first state how we obtain, for each given sample ω =
{wx,t }, as drawn from the beta distribution (3), the quantities
Z according to (6) and therefore H = ln Z . We are interested
in the distributions P(Z ) and P(H ). In Sec. IV B we explain
how we achieve this over a large range of the support down to
very small probability densities such as 10−50 or even smaller.

A. Random walk on a lattice

For each of the samples ω = {wx,t }, corresponding to the
probabilities (4) to move left and right, we calculate the prob-
ability Q(X |t ) of reaching site X at step t . For this purpose we
apply a dynamic programming, i.e., transfer matrix, approach

TABLE I. Case ξ = 0.

Interval of H Interval of z̃ H = 
ξ (H ) =
H ∈ R− z̃ ∈ R ln � ′

0(z̃) �0(z̃) − z̃� ′
0(z̃)
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by calculating

Q(0|0) = 1

Q(X |0) = 0 for X �= 0

Q(X |t + 1) = wX−1,t Q(X − 1|t )

+(1 − wX+1,t )Q(X + 1|t ) (39)

for t = 0, 1, . . . , T − 1. For a walk of T steps, these proba-
bilities can be calculated in O(T 2) time. This allows one to
obtain the cumulative probability R of being right of some
point X by simply summing

R(X |T ) =
∑
X ′>X

Q(X ′|T ), (40)

which is achieved in O(T ) steps, which is negligible com-
pared to the O(T 2) steps to compute the (half) transfer matrix
Q(X |t ). The value Z of (6) we are interest in is obtained by

Z = R(
√

T/2 ξ | T ), (41)

where we round
√

T/2 ξ to the next lowest integer. Note that
for small values of ξ , not all values of the matrix Q(X |t )
contribute. But even for ξ = 0, where walks contribute, which
reach X = T/2 and return to X = 0, one needs half of Q.
Thus, the total computation time is always O(T 2). The cor-
responding value of H is obtained simply by H = ln(Z ). Note
that H is completely determined by the sample ω, so we can
write H = H (ω).

B. Introduction to importance sampling

For the purpose of the introduction of the idea of impor-
tance sampling, we retain some elements of the presentation
made in Ref. [40]. In principle one could obtain an estimate
of the probability distribution P(H ) numerically from direct
sampling. For this, one generates many disorder samples
and calculates H = ln Z for each one according to Eq. (41).
Then the distribution is estimated by the suitably normalized
histogram of the values of H . Nevertheless, this limits the
smallest probabilities, which can be resolved to the inverse of
the number of samples, hence reaching probabilities as small
as 10−50 is strictly impossible. Therefore, a different approach
is required.

To estimate P(H ) for a much larger range, where proba-
bility densities as small as 10−50 may appear, we use a more
powerful approach, called importance sampling as discussed
in Refs. [41,42]. This approach has been successfully applied
to many problems in statistical physics and mathematics to
obtain the tails of distributions arising in equilibrium and
nonequilibrium situations [43–52]. The idea behind impor-
tance sampling is to sample the different disorder samples
with an additional bias exp[−θH (ω)] where θ is an adjustable
parameter interpreted as a fictive temperature. If θ > 0 the
samples with a negative H become more likely, conversely
if θ < 0 the samples with a positive H are favored. Now, it is
not possible to sample the disorder samples ω directly when
the bias is included. For this reason, a standard Markov-chain
Monte Carlo simulation is used to sample according to the
biased distribution [53,54]. Here, one has a disorder sample
ω as current configuration of the Markov chain, and the con-
figurations change only slightly from step to step. In detail,

at each step of the Markov chain, a new disorder sample ω∗
is proposed by replacing on the current sample ω a certain
fraction r of the random numbers ω = {wx,t } by new random
numbers, which are drawn according to Eq. (3). The new
disorder sample is then accepted with the usual Metropolis-
Hastings probability

pMet = min
{
1, e−θ[H (ω∗ )−H (ω)]

}
, (42)

otherwise the old configuration is kept [55]. By construction,
the algorithm fulfils detailed balance and is ergodic, since
within a sufficient number of steps, each possible sample may
be constructed. Thus, in the limit of infinitely long Markov
chains, the distribution of biased disorder samples will follow
the probability

qθ (ω) = 1

W (θ )
Pdis(ω)e−θH (ω), (43)

where Pdis(ω) is the original disorder distribution, i.e., the
product of the beta distributions for all disorder values, and
W (θ ) = ∑

ω Pdis(ω)e−θH (ω) is the normalization factor. Note
that W (θ ) also depends on the walk length T because of
finite-size effects. W (θ ) is generally unknown but can be de-
termined, see below. The output of this Markov chain allows
one to construct a biased histogram Pθ (H ). In order to get the
correct empirical probability density P(H ) one should unbias
the result such that

P(H ) = eθHW (θ )Pθ (H ). (44)

Hence, the target distribution P(H ) can be estimated, up to a
normalization constant W (θ ). For each value of the parameter
θ , a specific range of the distribution P(H ) will be sampled
and using a positive (respectively, negative) parameter allows
one to sample the region of a distribution at the left (respec-
tively, at the right) of its center.

For suitably chosen sets of temperature values θ , the ranges
of support for neighboring densities Pθi (H ) and Pθi+1 (H ) will
overlap. Since after rescaling with W (θi ) and W (θi+1), respec-
tively, they must be equal to P(H ). Thus, in particular they
have to be in equal to each other, up to statistical fluctuations,
for those values of H where they overlap. This allows one
to determine ratios W (θi )/W (θi+1) for all neighboring pairs
of temperatures, and finally all absolute values W (θi ) through
the overall normalization of P(H ), for details and examples
see Appendix B and Refs. [41,42]. Most accurately, the deter-
mination of the normalization factors can be achieved using
the multihistogram approach [56], see also the convenient tool
of Werner [57].

V. COMPARISON OF THE THEORETICAL PREDICTIONS
WITH THE SIMULATIONS

We now compare the theoretical predictions of Sec. III with
the numerical simulations of the finite-time random walks on
a lattice, for various values of ξ . We insist on the fact that the
comparison will be done without any fitting parameter.

A. Presentation of the simulations

The numerical simulations were run for walks of length
T ∈ {64, 128, 256, 512, 1024}, the largest lengths only for
some cases. Most of the walks are for distribution parameter
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FIG. 2. Equilibration of the Markov chain: Measured value of H
as function of the number tMC of Markov steps for the case ξ = 5,
T = 128 and sampling temperature θ = −1000. A negative temper-
ature shifts the distribution to larger than typical values. The shift is
the stronger the larger |θ | is chosen, because the bias e−θH becomes
more different from 1. This value of θ corresponds to the very upper
tail of the distribution, which is hardest to reach. Two initial starting
configurations ω resulting in very different initial values of H were
chosen: one just typical random one, and one where wx,t = 0.999 for
all values (top). The inset enlarges the top part.

α = 1, which corresponds to a uniform U (0, 1) distribution,
but in the beginning we also show some simple sampling
results for other values of α, which indicate the universality
with respect to α subject to simple scaling of the number
of steps. We have evaluated the cumulative distribution of
positions for several values of the asymmetry parameter ξ =
{0, 1, 2, 3, 4, 5}.

 0.001
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 0.1

 1

 10  100  1000  10000

σ2

Tα2/2 

ξ=0 α=1
α=2
α=4
α=6

analytics

FIG. 3. Variance σ 2 of the distribution P(H ) for different values
of α, as a function of the scaled parameter T̃ = α2T

2 where T is
the number of steps of the beta random walk. It is compared to the
analytical prediction (45) (solid line).
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FIG. 4. The variance σ 2 scaled by the expected limiting behavior,
as function of step size T . The prediction 1/

√
2π from (45) is also

shown.

For the large-deviation simulations, we have to make sure
that the Markov chain is equilibrated. This can be confirmed
by running the Markov chain for very different initial config-
urations of the sample ω. Extreme samples where all entries
ωx,t are close to 0, or all values are close to 1, correspond to
extreme values of H . An impression of the convergence of the
Markov chain is obtained monitoring H (tMC) as a function of
the number tMC of Monte Carlo steps and observing where
these values agree within fluctuations for different initial con-
figurations of ω, see Fig. 2. Evidently, the equilibration is
obtained rather quickly, within few thousand MC steps.

B. Variance for the case ξ = 0

First, we consider the probability distribution P(H ) as ob-
tained by simple sampling for ξ = 0 and several values of the
distribution parameter α. We determine its variance σ 2 = H2

c

as a function of the total length of the random walk T , up to

10-50

10-40

10-30

10-20

10-10

100

-25 -20 -15 -10 -5  0

P(
H

)

H

T=128

ξ=0
ξ=3
ξ=5

FIG. 5. Distribution P(H ) for walk length T = 128 and three
values of the asymmetry parameter ξ .
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FIG. 6. Rate functions 
(H ) and 
(Z ) for walk length T = 128 and various values of the asymmetry parameter ξ = {0, 1, 2, 3, 4, 5}. The
lines show our analytical predictions for T → ∞.

T = 2048. Our analytical prediction at large T is, see (37)

σ 2 � 1√
2π T̃

� 1√
2π

√
2

α2T
. (45)

In Fig. 3 we show the variance σ 2 as a function of the scaled
time parameter T̃ = α2T

2 . As visible, the data points fall nicely
on one line, proving the universality with respect to α.

To see how well the expected limiting behavior (45)
is reached, we plot in Fig. 4 the combination σ 2T̃ 1/2 =
σ 2(α2T/2)1/2. For all considered values of α, a convergence
to the expected value 1/(2π )1/2 is visible. The convergence
seems to be faster for smaller values of α, i.e., for more flat
step distributions of the samples ω.

C. Distribution P(H )

The distribution of H is shown in Fig. 5 for T = 128 and
three values of the asymmetry parameter ξ . As visible, with
the large-deviation approach, here small probabilities such as

10−50 are reached. For increasing values of ξ , the probability
of a walk ending beyond ξ

√
T/2 will decrease, which is

reflected by a shift of the distribution P(H ) to more negative
values of H . For a more detailed analysis and comparison
with the analytic results, we consider from now on the rate
functions.

D. Rate functions

We will now test the analytical prediction (14) for the
rate functions 
RW

ξ (H ) and 
̂RW
ξ (Z ) defined in Eqs. (7)

and (8) (where the rate functions on the right-hand side of
(14) are given in Sec. III E and Appendix A). Note that
in this numerical section we simplify notations and denote

(H ) ≡ 
RW

ξ (H ) and 
(Z ) ≡ 
̂RW
ξ (Z ). These rate functions

are shown in Fig. 6 for walk length T = 128 and all consid-
ered values of the asymmetry parameter ξ = {0, 1, 2, 3, 4, 5}.
Note that a value of 
 close to 20 corresponds for T = 128 to
a probability e−√

128×20 ≈ 5 × 10−99.
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FIG. 7. Rate function 
(Z ) for various walk lengths T = {64, 128, 256, 512} and 1024, for the cases ξ = 0 (left, only up to T = 512) and
ξ = 5 (right). The lines show the analytical results, respectively. The insets enlarge the regions I ∈ [0.3, 0.35] (left) and Z ∈ [0.4, 0.6] (right).
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FIG. 8. Extrapolation of the rate function for ξ = 5 to infi-
nite walks lengths T → ∞ by showing the numerical result of

(Z ) as function of 1/T for a fixed value of Z = 0.5 and T =
{64, 128, 256, 512, 1024}. The top line shows the result of a fit
according to Eq. (46). The horizontal line indicates the analytic
asymptotic value for 
(Z = 0.5).

For small values of ξ already a good agreement between
finite-T numerical data and analytical results is visible. Nev-
ertheless, for values such as ξ = 4 and ξ = 5 substantial
deviations are visible. For this reason, we have performed
numerical simulations for the two extreme cases of the asym-
metry ξ = 0 and ξ = 5 for various lengths of the walk T =
{64, 128, 256, 512}, and even T = 1024 for ξ = 5. The re-
sults for 
(Z ) are shown in Fig. 7. For the case ξ = 0
basically all results agree, the limiting behavior is already
visible for short walk length T . For ξ = 5 a clear convergence
to the analytical result is visible. The fact that the finite-T
corrections are stronger for larger values of ξ reminds one of

the different convergence speeds within the central limit theo-
rem: The properly rescaled sum of random numbers attains a
Gaussian shape near the typical values, corresponding to small
values of ξ here, much faster than in the tails, corresponding
to large values of ξ .

We have also performed a heuristic extrapolation by fitting
the behavior as function of T , for a fixed value of Z , to a power
law according to


(Z, T ) = 
∞
Z + aZ T −bZ , (46)

i.e., with fitting parameters 
∞, a and b, which may depend
on Z . An example for such a fit is shown in Fig. 8. As visible,
the extrapolated value is compatible with the analytical result.

E. Nonconvexity of �(Z) and first-order transition

A remarkable prediction of Ref. [6] is that for the con-
tinuum model the rate function 
̂ξ (Z ) in (14) is nonconvex
for ξ >

√
8. This results in a first-order phase transition in

its Legendre transform [i.e., �opt (z) defined in (A11)] associ-
ated to a tilted version of P(Z ) [see definition below and in
Eq. (A13)]. For a detailed discussion see Appendix A 3, and
for an illustration of the first-order transition see Fig. 10. We
thus predict that the same property holds for the beta random
walk, as we will now confirm.

We find that for large enough values of ξ , the numerical
rate function 
(Z ) for the random walk exhibits a non-
monotonic curvature, which is already visible in Fig. 6. This
leads to the appearance and disappearance of maxima in the
tilted distribution P(Z ) exp[−z(T/2)1/2Z], depending on the
choice of z. We recall that α = 1 here, hence this factor is
also exp(−zT̃ 1/2Z ), corresponding to (A13) for the contin-
uum model. Our prediction is thus that at large T and for
ξ >

√
8, P(Z ) exp[−z(T/2)1/2Z] should exhibit two peaks

for z ∈ [zc1, zc2] given in (A7). For ξ = 5 this corresponds to
z ∈ [−216.5,−13]. The two peaks should become of same
height for z = z∗ given in (A15), which for ξ = 5 evaluates to
z∗ � −17.84.
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FIG. 9. (Left) Distributions P(Z ) rescaled with the factor exp(−z(T/2)1/2Z ). For intermediate values of z, the distribution is observed
to exhibit two peaks, as predicted. The inset shows the dependence of the scaling value z∗ where the two peaks attain the same height as
function T and a fit to a shifted power law, see text. The horizontal line shows the predicted value z∗ � −17.84. (Right) For very negative
values of z � zc1(T ), one observes that the first peak close to Z = 0 is suppressed. The inset illustrates the convergence to the predicted value
zc1 = −216.5 at large T , which is included as horizontal line.
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In the numerical results, we indeed observe that, for not
too negative values of z, the rescaled rate functions exhibits
a peak close to Z = 0, see left of Fig. 9 the case z = −12.
For intermediate values of z, a second peak appears, see the
case z = −14. This is consistent with our analytical prediction
recalled above that a second peak should appear for z � −13.
This peak becomes slightly more pronounced when increasing
the number T of steps (not shown), and much more pro-
nounced when decreasing the value of z.

For each value of T , there is a value z∗(T ) where both
peaks exhibit the same height. The inset of left of Fig. 9 shows
z∗(T ) together with a fit to a power law z∗(T ) = z∗

∞ + a∗T −b∗
,

which results in z∗
∞ = −17(1), which is well compatible with

the predicted value z∗ � −17.84.
For very negative values of z, the first peak disappears,

see right of Fig. 9. The value of z above which this happens,
which we predict to be zc1 = −216.5, is observed to be indeed
very negative for small values of T , about z = −1150 for
T = 128 and increases when increasing T , to about z = −320
for T = 1024. When fitting zc1(T ) to a heuristic power law
of the form zc1(T ) = z∞

c1 + azT −bz we obtain a limiting value
z∞

c1 = −312(50), which is in rough agreement, i.e., within two
σ , with the limiting value zc1 = −216.5 (see inset).

The behavior of the numerically determined tilted PDF of
Z is thus in agreement with the prediction, and the first-order
transition in �opt (z) results when the second peak becomes
higher than the first one (see Appendix A 3).

VI. CONCLUSION AND OUTLOOK

To summarize we have studied analytically and numeri-
cally the beta random walk, a discrete time random walk on Z
with beta distributed time-dependent i.i.d. jump probabilities
with parameter α. We have focused on the probability Z that
a walk starting from the origin is at large time T at position
to the right of X = ξ

√
T/2 for a given ξ > 0. We have deter-

mined analytically and numerically the law of large deviations
of the observable Z . We have first predicted that the large-
deviation rate function of the beta random walk is identical,
up to a scale factor involving α that we determined, to the one
of the continuum model for diffusion in random media, which
we recently obtained analytically (and is ξ dependent). This
prediction was based on the large time asymptotic analysis
of an exact Fredholm determinant formula, which exists for
both the discrete and the continuum problem. The prediction
holds for any value of the parameter α, hence it hints at some
universality in the large-deviation rate functions. Proving this
prediction rigorously remains an open question for mathe-
maticians.

In the absence of a rigorous proof, we performed a numeri-
cal test of this prediction. We used a large-deviation sampling
approach to measure the PDF P(Z ) for various values of α

and ξ . We were able to measure the PDFs over many decades
down to values as small as 10−100 and below. We obtained
an accurate determination of the rate function and observed
convergence at large T to the predicted analytical value. In
addition, for a deeper investigation of the system properties
beyond the overall shape of the distributions, we observed
a first-order transition in the rate function �opt (z), which
manifests itself as multiple peaks in the tilted PDF of Z , as

FIG. 10. For ξ = (0, 1, 2, 3, 4, 5) we plot the derivative rate
function � ′(z) from Table II as a function of z, with � ′(+∞) = 0
and � ′(−∞) = 1 (all the branches are shown). For ξ > ξ1 and
z ∈ [zc1, zc2] the function is multivalued (see text). (Inset) First-order
transition: at z = z∗ such that the areas of the two shaded regions
become equal to the value of (the optimal) � ′

opt (z) [see definition in
(A14)] from one branch to the other, shown here for ξ = 4.

predicted in Ref. [6]. Our numerical results are thus also a
confirmation of the predictions obtained in that work. The
numerical methods used here should be useful to study the
large-deviation regime for various models of diffusion of the
extremal particle in a cloud of many random walkers [58].
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APPENDIX A: ANALYTICAL RESULTS

We recall in this Appendix the analytical result of Ref. [6]
for the continuum model for arbitrary ξ � 0. To simplify
notations in this Appendix all subscripts ξ are implicit and
z̃ is denoted z. We also recall that Z = Z̃ and H = H̃ , hence
we use only the notations Z and H in place of Z̃ and H̃ .

The rate functions 
̂(Z ) = 
(H ) (with H = ln Z) is ob-
tained quite generally from the parametric representation


̂(Z ) = �(z) − zZ,

Z = � ′(z). (A1)

While the rate function 
̂(Z ) is well defined and single val-
ued, for general ξ > 0, �(z) may have several branches. This
can be seen in Fig. 10 where in some cases one value of z
corresponds to one or three values of Z = � ′(z).
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TABLE II. Determination of the jump function �(z) in the different phases in the case ξ � 0. One has zc = − 2
ξ
eξ2/4 � 0 and the points

z = zc1 and z = zc2 are turning points, which depend on ξ . In the interval z ∈ [zc1, zc2], the function �(z) is multivalued (i.e., it has several
branches) due to these turning points. The definition of �� is given in (A4).

ξ 0 � ξ � ξ1 ξ1 � ξ � ξ2 zc1 < zc2 < zc ξ2 � ξ zc1 < zc < zc2

�(z) =
{

0, zc < z
�1(z), z < zc

⎧⎪⎪⎨
⎪⎪⎩

0, zc < z
�1(z), zc1 < z < zc

�2(z), zc1 < z < zc2

�3(z), z < zc2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, zc < z
�1(z), zc1 < z < zc

�2(z), zc1 < z < zc

�2(z) − �1(z), zc < z < zc2

�3(z) − �1(z), zc < z < zc2

�3(z), z < zc

Below, we first explain how to compute �(z) and its
various branches, and then we explain how to perform the
Legendre inversion. Finally we discuss the multivaluation and
the first-order transition of the optimal �opt (z), see Fig. 10.

1. How to compute �(z)

One first defines

�0(z) = −−
∫
R

dq

2π

Li2
[
z
(
iq − ξ

2

)
e−q2− ξ2

4
]

(
iq − ξ

2

)2 . (A2)

The general formula for �(z) takes the form

�(z) = �0(z) + �(z), (A3)

where �0(z) is the same integral as in (A2). Note that we
compute �0(z) numerically using the default POLYLOG func-
tion in Mathematica together with the NINTEGRATE routine for
integration (with in some cases a branch cut on the integration
contour dealt automatically by Mathematica). The convention
�(z) = 0 defines the main branch of �(z). The other branches
and the form of �(z) as a function of ξ and z are shown in
Table II. Note that for z � 0 one has �(z) = 0.

The jump functions ��(z) for � = {1, 2, 3}, which appear
in this table are defined as follows. First one has

��(z) = �̂[p�(z, ξ )], (A4)

where

�̂(p) = 1

ξ

[
− (ξ 2 + 2)[ln(ξ ) − ln(ξ + 2p)]

+ 2p(p − ξ ) − 4p

ξ + 2p

]
. (A5)

The p�(z, ξ ) are the real roots of the equation for p

e−p2+ ξ2

4 + z

(
p + ξ

2

)
= 0. (A6)

The behavior of these roots is as follows.

Let us define zc = − 2
ξ
e

ξ2

4 . For zc � z � 0, there is always
one positive zero to (A6) denoted p1 = p1(z, ξ ). For z < zc,
the zeros of (A6) are all negative and their number is

(1) for 0 < ξ < ξ1 = √
8, there is one zero p1(z, ξ );

(2) for ξ1 < ξ and z ∈]zc1, zc2[ there are three zeros
p1(z, ξ ) > p2(z, ξ ) > p3(z, ξ ). The zeros degenerate, i.e.,
p1 = p2 for z = zc1 and p2 = p3 for z = zc2, which define
zc1, zc2. For z > zc2, there is only one zero p1(z, ξ ). For z <

zc1, there is only one zero p3(z, ξ ).
Note that zc1 < zc2 < 0, with zc1 = zc2 at ξ = ξ1, and their

explicit expression and dependence on ξ is given for ξ > ξ1 =√
8 by

zc1 = − 1
2 e

1
8 (ξ (ξ+

√
ξ 2−8)+4)(ξ −

√
ξ 2 − 8)

zc2 = − 1
2 e

1
8 (ξ (ξ−

√
ξ 2−8)+4)(ξ +

√
ξ 2 − 8). (A7)

Note that zc and zc2 become equal at the value ξ = ξ2 with

ξ2 = −2

√
2

−2W−1
( − 1

2
√

e

) − 1
W−1

(
− 1

2
√

e

)

� 3.13395, (A8)

where W−1 is the Lambert function [59].

2. Inversion of Legendre transform

Defining the critical height Hc = ln � ′
0(zc), the rate func-

tion 
(H ) is given by the parametric representation displayed
in Table III for ξ � ξ1 = √

8.
For ξ1 < ξ � ξ2 it is given by the parametric representation

displayed in Table IV where we have defined

Hc1 = ln[� ′
0(zc1) + �′

1(zc1)] = ln[� ′
0(zc1) + �′

2(zc1)],

Hc2 = ln[� ′
0(zc2) + �′

2(zc2)] = ln[� ′
0(zc2) + �′

3(zc2)].

(A9)

TABLE III. Case 0 < ξ � ξ1.

Interval of H Interval of z H = 
(H ) =
H � Hc zc � z ln � ′

0(z) �0(z) − z� ′
0(z)

0 > H > Hc zc > z ln[� ′
0(z) + �′

1(z)] �0(z) + �1(z) − z[� ′
0(z) + �′

1(z)]
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TABLE IV. Case ξ1 < ξ � ξ2.

Interval of H Interval of z H = 
(H ) =
H � Hc zc � z ln � ′

0(z) �0(z) − z� ′
0(z)

Hc < H � Hc1 zc1 � z < zc ln[� ′
0(z) + �′

1(z)] �0(z) + �1(z) − z[� ′
0(z) + �′

1(z)]
Hc1 < H � Hc2 zc1 < z � zc2 ln[� ′

0(z) + �′
2(z)] �0(z) + �2(z) − z[� ′

0(z) + �′
2(z)]

Hc2 < H < 0 zc2 > z ln[� ′
0(z) + �′

3(z)] �0(z) + �3(z) − z[� ′
0(z) + �′

3(z)]

For ξ2 < ξ it is given by the parametric representation
displayed in Table V where we have defined

Hc10 = ln[� ′
0(zc1) + �′

1(zc1)],

Hc11 = ln[� ′
0(zc) + �′

2(zc)],

Hc20 = ln[� ′
0(zc2) + �′

2(zc2) − �′
1(zc2)],

Hc21 = ln[� ′
0(zc) + �′

3(zc)]. (A10)

3. Multivaluation and first-order transition

To interpret the S-shape form of � ′(z) shown with all its
branches in Fig. 10, we recall the definition of the optimal
�(z) defined as

�opt (z) = min
Z∈[0,1]

[
̂(Z ) + zZ]. (A11)

It has the property that its derivative obeys

� ′
opt (z) = 〈Z〉z, (A12)

where 〈Z〉z is the expectation value for large T̃ of the random
variable Z under the z-dependent tilted measure

P(Z )e−
√

T̃ zZ ∼ e−
√

T̃ (
̂(Z )+zZ ). (A13)

The key point is that for ξ > ξ1 the function 
̂(Z ) has a
concave part [6]. As a consequence, for z ∈ [zc1, zc2] the tilted
measure (A13) develops three extrema at Zj (z) = eHj (z), so-
lutions of 
̂′(Z ) = −z. They lead to the three branches of
� ′(z) = Zj (z). The optimal �opt (z) is determined by the ab-
solute minimum in (A11) (which corresponds to the absolute

maximum in the tilted PDF of Z) hence it is given by

�opt (z) = min
j=1,2,3

[
̂(Zj ) + zZ j] (A14)

and the optimal j switches from j = 1 to j = 3 at z = z∗(ξ )
where z∗ is the solution of

�1(z∗) = �3(z∗). (A15)

It is also the point given by an equal area law on the curve
� ′(z), as in standard magnetization versus field curve for a
first-order phase transition, see Fig. 10 (inset). The points Z =
{Z1, Z3} are stable whereas Z = Z2 is unstable. The optimal
rate function �opt (z) thus exhibits a first-order transition. This
type of transition occurs in other large-deviation problems
[60].

APPENDIX B: TECHNICAL DETAILS OF THE
IMPORTANCE SAMPLING ALGORITHM

To sample a wide range of values of H , one chooses a
suitable set of parameters {θ−Nn , θ−Nn+1, . . . , θNp−1, θNp}, Nn

and Np being the number of negative and positive parameters,
to access the large-deviation regimes (left and right). The
normalization constants W (θi ) are obtained by first computing
the histogram using direct sampling, corresponding to θ = 0.
Then for θ+1, one matches the right part of the biased his-
togram with the left tail of the unbiased one and for θ−1, one
matches the left part of the biased histogram with the right tail
of the unbiased one. Similarly one iterates for the other values
of θ and the corresponding relative normalization constants
can be obtained. In the end the full distribution is normalized
to result in a total probability of one.

TABLE V. Case ξ2 < ξ .

Interval of H Interval of z H = 
(H ) =
H � Hc zc � z ln � ′

0(z) �0(z) − z� ′
0(z)

Hc < H � Hc10 zc1 � z < zc ln[� ′
0(z) + �′

1(z)] �0(z) + �1(z) − z[� ′
0(z) + �′

1(z)]
Hc10 < H � Hc11 zc1 < z � zc ln[� ′

0(z) + �′
2(z)] �0(z) + �2(z) − z[� ′

0(z) + �′
2(z)]

Hc11 < H � Hc20 zc < z � zc2 ln[� ′
0(z) + �′

2(z) − �′
1(z)] �0(z) + �2(z) − �1(z) − z[� ′

0(z) + �′
2(z) − �′

1(z)]
Hc20 < H � Hc21 zc � z < zc2 ln[� ′

0(z) + �′
3(z) − �′

1(z)] �0(z) + �3(z) − �1(z) − z[� ′
0(z) + �′

3(z) − �′
1(z)]

Hc21 < H < 0 zc > z ln[� ′
0(z) + �′

3(z)] �0(z) + �3(z) − z[� ′
0(z) + �′

3(z)]

024122-11



HARTMANN, KRAJENBRINK, AND LE DOUSSAL PHYSICAL REVIEW E 109, 024122 (2024)

[1] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Macroscopic fluctuation theory, Rev. Mod. Phys. 87,
593 (2015).

[2] B. Derrida, Non equilibrium steady states: Fluctuations and
large deviations of the density and of the current, J. Stat. Mech.
(2007) P07023.

[3] C. Kipnis, C. Marchioro, and E. Presutti, Heat flow in an exactly
solvable model, J. Stat. Phys. 27, 65 (1982).

[4] B. Derrida, An exactly soluble non-equilibrium system: The
asymmetric simple exclusion process, Phys. Rep. 301, 65
(1998).

[5] C. A. Tracy and H. Widom, Asymptotics in ASEP with step
initial condition, Commun. Math. Phys. 290, 129 (2009).

[6] A. Krajenbrink and P. Le Doussal, Crossover from the macro-
scopic fluctuation theory to the Kardar-Parisi-Zhang equation
controls the large deviations beyond Einstein’s diffusion, Phys.
Rev. E 107, 014137 (2023); See also arXiv:2204.04720.

[7] A. Krajenbrink and P. Le Doussal, Inverse scattering of the
Zakharov-Shabat system solves the weak noise theory of the
Kardar-Parisi-Zhang equation, Phys. Rev. Lett. 127, 064101
(2021).

[8] A. Krajenbrink and P. L. Doussal, Inverse scattering solution of
the weak noise theory of the Kardar-Parisi-Zhang equation with
flat and Brownian initial conditions, Phys. Rev. E 105, 054142
(2022).

[9] L.-C. Tsai, Integrability in the Weak Noise Theory, Transac-
tions of the American Mathematical Society (AMS, Providence,
2023).

[10] E. Bettelheim, N. R. Smith, and B. Meerson, Inverse scattering
method solves the problem of full statistics of nonstationary
heat transfer in the Kipnis-Marchioro-Presutti model, Phys.
Rev. Lett. 128, 130602 (2022).

[11] A. Grabsch, A. Poncet, P. Rizkallah, P. Illien, and O. Bénichou,
Exact closure and solution for spatial correlations in single-file
diffusion, Sci. Adv. 8, eabm5043 (2022).

[12] K. Mallick, H. Moriya, and T. Sasamoto, Exact solution of
the macroscopic fluctuation theory for the symmetric exclusion
process, Phys. Rev. Lett. 129, 040601 (2022).

[13] E. Bettelheim, N. R. Smith, and B. Meerson, Full statistics
of nonstationary heat transfer in the Kipnis-Marchioro-Presutti
model, J. Stat. Mech. (2022) 093103.

[14] A. Grabsch, P. Rizkallah, A. Poncet, P. Illien, and O. Bénichou,
Exact spatial correlations in single-file diffusion, Phys. Rev. E
107, 044131 (2023).

[15] A. Shabat and V. Zakharov, Exact theory of two-dimensional
self-focusing and one-dimensional self-modulation of waves in
nonlinear media, Zh. Eksp. Teor. Fiz. 61, 118 (1971) [Sov. Phys.
JETP 34, 62 (1972)].

[16] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,
The inverse scattering transform-Fourier analysis for nonlinear
problems, Stud. Appl. Math. 53, 249 (1974).

[17] D. J. Kaup and A. C. Newell, An exact solution for a deriva-
tive nonlinear Schrödinger equation, J. Math. Phys. 19, 798
(1978).

[18] L. Bertini, D. Gabrielli, and J. L. Lebowitz, Large deviations
for a stochastic model of heat flow, J. Stat. Phys. 121, 843
(2005).

[19] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Current fluctuations in stochastic lattice gases, Phys.
Rev. Lett. 94, 030601 (2005).

[20] B. Derrida and A. Gerschenfeld, Current fluctuations in one
dimensional diffusive systems with a step initial density profile,
J. Stat. Phys. 137, 978 (2009).

[21] V. Lecomte, A. Imparato, and F. van Wijland, Current fluc-
tuations in systems with diffusive dynamics, in and out of
equilibrium, Prog. Theor. Phys. Suppl. 184, 276 (2010).

[22] P. L. Krapivsky and B. Meerson, Fluctuations of current in
nonstationary diffusive lattice gases, Phys. Rev. E 86, 031106
(2012).

[23] L. Zarfaty and B. Meerson, Statistics of large currents in the
Kipnis-Marchioro-Presutti model in a ring geometry, J. Stat.
Mech. (2016) 033304.

[24] T. Bodineau and B. Derrida, Distribution of current in nonequi-
librium diffusive systems and phase transitions, Phys. Rev. E
72, 066110 (2005).

[25] J. Tailleur, J. Kurchan, and V. Lecomte, Mapping nonequilib-
rium onto equilibrium: The macroscopic fluctuations of simple
transport models, Phys. Rev. Lett. 99, 150602 (2007).

[26] P. I. Hurtado and P. L. Garrido, Spontaneous symmetry breaking
at the fluctuating level, Phys. Rev. Lett. 107, 180601 (2011);
A. Prados, A. Lasanta, and P. I. Hurtado, Nonlinear driven
diffusive systems with dissipation: Fluctuating hydrodynamics,
Phys. Rev. E 86, 031134 (2012); C. Gutiérrez-Ariza and P. I.
Hurtado, The kinetic exclusion process: A tale of two fields,
J. Stat. Mech. (2019) 103203.

[27] M. A. Peletier, F. H. J. Redig, and K. Vafayi, Large deviations
in stochastic heat-conduction processes provide a gradient-flow
structure for heat conduction, J. Math. Phys. 55, 093301 (2014).

[28] O. Shpielberg, Y. Don, and E. Akkermans, Numerical study of
continuous and discontinuous dynamical phase transitions for
boundary-driven systems, Phys. Rev. E 95, 032137 (2017).

[29] A. Poncet, A. Grabsch, P. Illien, and O. Bénichou, Generalized
correlation profiles in single-file systems, Phys. Rev. Lett. 127,
220601 (2021).

[30] P. Le Doussal and T. Thiery, Diffusion in time-dependent ran-
dom media and the Kardar-Parisi-Zhang equation, Phys. Rev. E
96, 010102(R) (2017).

[31] G. Barraquand and M. Rychnovsky, Large deviations for sticky
Brownian motions, Electron. J. Probab. 25, 1 (2020).

[32] G. Barraquand and M. Rychnovsky, Random walk on nonnega-
tive integers in beta distributed random environment, Commun.
Math. Phys. 398, 823 (2023).

[33] D. Brockington and J. Warren, The Bethe ansatz for sticky
Brownian motions, Stoch. Proc. Appli. 162, 1 (2023).

[34] D. Brockington and J. Warren, At the edge of a cloud of Brow-
nian particles, arXiv:2208.11952.

[35] S. Das, H. Drillick, and S. Parekh, KPZ equation limit of sticky
Brownian motion, arXiv:2304.14279.

[36] G. Barraquand and I. Corwin, Random-walk in beta-distributed
random environment, Probab. Theory Rel. Fields 167, 1057
(2017).

[37] I. Corwin and Y. Gu, Kardar-Parisi-Zhang equation and large
deviations for random walks in weak random environments,
J. Stat. Phys. 166, 150 (2017).

[38] T. Thiery and P. Le Doussal, Exact solution for a random walk in
a time-dependent 1D random environment: The point-to-point
Beta polymer, J. Phys. A: Math. Theor. 50, 045001 (2016).

[39] G. Barraquand and P. Le Doussal, Moderate deviations for
diffusion in time dependent random media, J. Phys. A: Math.
Theor. 53, 215002 (2020).

024122-12

https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1088/1742-5468/2007/07/P07023
https://doi.org/10.1007/BF01011740
https://doi.org/10.1016/S0370-1573(98)00006-4
https://doi.org/10.1007/s00220-009-0761-0
https://doi.org/10.1103/PhysRevE.107.014137
https://arxiv.org/abs/2204.04720
https://doi.org/10.1103/PhysRevLett.127.064101
https://doi.org/10.1103/PhysRevE.105.054142
https://doi.org/10.1103/PhysRevLett.128.130602
https://doi.org/10.1126/sciadv.abm5043
https://doi.org/10.1103/PhysRevLett.129.040601
https://doi.org/10.1088/1742-5468/ac8a4d
https://doi.org/10.1103/PhysRevE.107.044131
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1063/1.523737
https://doi.org/10.1007/s10955-005-5527-2
https://doi.org/10.1103/PhysRevLett.94.030601
https://doi.org/10.1007/s10955-009-9830-1
https://doi.org/10.1143/PTPS.184.276
https://doi.org/10.1103/PhysRevE.86.031106
https://doi.org/10.1088/1742-5468/2016/03/033304
https://doi.org/10.1103/PhysRevE.72.066110
https://doi.org/10.1103/PhysRevLett.99.150602
https://doi.org/10.1103/PhysRevLett.107.180601
https://doi.org/10.1103/PhysRevE.86.031134
https://doi.org/10.1088/1742-5468/ab4587
https://doi.org/10.1063/1.4894139
https://doi.org/10.1103/PhysRevE.95.032137
https://doi.org/10.1103/PhysRevLett.127.220601
https://doi.org/10.1103/PhysRevE.96.010102
https://doi.org/10.1214/20-EJP515
https://doi.org/10.1007/s00220-022-04536-1
https://doi.org/10.1016/j.spa.2023.04.015
https://arxiv.org/abs/2208.11952
https://arxiv.org/abs/2304.14279
https://doi.org/10.1007/s00440-016-0699-z
https://doi.org/10.1007/s10955-016-1693-7
https://doi.org/10.1088/1751-8121/50/4/045001
https://doi.org/10.1088/1751-8121/ab8b39


PROBING THE LARGE DEVIATIONS FOR THE BETA … PHYSICAL REVIEW E 109, 024122 (2024)

[40] A. K. Hartmann, A. Krajenbrink, and P. Le Doussal, Probing
large deviations of the Kardar-Parisi-Zhang equation at short
times with an importance sampling of directed polymers in
random media, Phys. Rev. E 101, 012134 (2020).

[41] A. K. Hartmann, Sampling rare events: Statistics of local se-
quence alignments, Phys. Rev. E 65, 056102 (2002).

[42] A. K. Hartmann, Large-deviation properties of largest compo-
nent for random graphs, Eur. Phys. J. B 84, 627 (2011).

[43] A. Engel, R. Monasson, and A. K. Hartmann, On large deviation
properties of Erdos-Rényi random graphs, J. Stat. Phys. 117,
387 (2004).

[44] A. K. Hartmann, Calculation of partition functions by mea-
suring component distributions, Phys. Rev. Lett. 94, 050601
(2005).

[45] C. Monthus and T. Garel, Probing the tails of the ground-
state energy distribution for the directed polymer in a random
medium of dimension d = 1, 2, 3 via a Monte Carlo procedure
in the disorder, Phys. Rev. E 74, 051109 (2006).

[46] S. Wolfsheimer and A. K. Hartmann, Minimum (free-) energy
distribution of RNA secondary structures: Entropic and thermo-
dynamic properties of large deviations, Phys. Rev. E 82, 021902
(2010).

[47] T. A. Driscoll and K. L. Maki, Searching for rare growth factors
using multicanonical Monte Carlo methods, SIAM Rev. 49, 673
(2007).

[48] N. Saito, Y. Iba, and K. Hukushima, Multicanonical sampling of
rare events in random matrices Phys. Rev. E 82, 031142 (2010).

[49] A. K. Hartmann, S. N. Majumdar, and A. Rosso, Sampling frac-
tional Brownian motion in presence of absorption: A Markov
chain method, Phys. Rev. E 88, 022119 (2013).

[50] A. K. Hartmann, High-precision work distributions for extreme
nonequilibrium processes in large systems, Phys. Rev. E 89,
052103 (2014).

[51] G. Claussen, A. K. Hartmann, and S. N. Majumdar, Convex
hulls of random walks: Large-deviation properties, Phys. Rev.
E 91, 052104 (2015).

[52] T. Dewenter, G. Claussen, A. K. Hartmann, and S. N.
Majumdar, Convex hulls of multiple random walks:
A large-deviation study, Phys. Rev. E 94, 052120
(2016).

[53] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in
Statistical Physics (Clarendon Press, Oxford, 1999).

[54] D. P. Landau and K. Binder, A Guide to Monte Carlo Sim-
ulations in Statistical Physics (Cambridge University Press,
Cambridge, 2000).

[55] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller,
and E. Teller, Equation of state calculations by fast computing
machines, J. Chem. Phys. 21, 1087 (1953).

[56] A. M. Ferrenberg and R. H. Swendsen, Optimized Monte Carlo
data analysis, Phys. Rev. Lett. 63, 1195 (1989).

[57] P. Werner, A Software Tool for “Gluing” Distributions,
arXiv:2207.08429.

[58] J. B. Hass, A. N. Carroll-Godfrey, I. Corwin, and E. I. Corwin,
Anomalous fluctuations of extremes in many-particle diffusion,
Phys. Rev. E 107, L022101 (2023).

[59] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E.
Knuth, On the Lambert W function, Adv. Comput. Math. 5, 329
(1996).

[60] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

024122-13

https://doi.org/10.1103/PhysRevE.101.012134
https://doi.org/10.1103/PhysRevE.65.056102
https://doi.org/10.1140/epjb/e2011-10836-4
https://doi.org/10.1007/s10955-004-2268-6
https://doi.org/10.1103/PhysRevLett.94.050601
https://doi.org/10.1103/PhysRevE.74.051109
https://doi.org/10.1103/PhysRevE.82.021902
https://doi.org/10.1137/050637662
https://doi.org/10.1103/PhysRevE.82.031142
https://doi.org/10.1103/PhysRevE.88.022119
https://doi.org/10.1103/PhysRevE.89.052103
https://doi.org/10.1103/PhysRevE.91.052104
https://doi.org/10.1103/PhysRevE.94.052120
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevLett.63.1195
https://arxiv.org/abs/2207.08429
https://doi.org/10.1103/PhysRevE.107.L022101
https://doi.org/10.1007/BF02124750
https://doi.org/10.1016/j.physrep.2009.05.002

