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When an active bath behaves as an equilibrium one
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Active scalar baths consisting of active Brownian particles are characterized by a non-Gaussian velocity
distribution, a kinetic temperature, and a diffusion coefficient that scale with the square of the active velocity
v0. While these results hold in overdamped active systems, inertial effects lead to normal velocity distributions,
with kinetic temperature and diffusion coefficient increasing as ∼vα

0 with 1 < α < 2. Remarkably, the late-time
diffusivity and mobility decrease with mass. Moreover, we show that the equilibrium Einstein relation is
asymptotically recovered with inertia. In summary, the inertial mass restores an equilibriumlike behavior.

DOI: 10.1103/PhysRevE.109.024120

I. INTRODUCTION

A fluid in equilibrium can be characterized as a heat bath
in terms of temperature, viscous drag, and diffusivity, obeying
the Einstein relation [1]. Active Brownian particles (ABPs),
under certain conditions, can constitute a similar homoge-
neous and isotropic (as opposed to polar) active fluid, i.e.,
an active scalar fluid, in the presence of local energy dissi-
pation and self-propulsion [2–7]. A question that naturally
arises is to what extent such a fluid can be characterized
as an active heat bath, i.e., whether it satisfies some sort of
fluctuation-dissipation relation. The active nature of ABPs is
determined by the self-propulsion speed v0 and the orienta-
tional diffusivity of the heading direction Dr . This leads to a
persistent random motion for individual ABPs, in dimension
d , characterized by a late-time active diffusivity that scales as

v2
0

Dr d (d−1) . Nonequilibrium properties of active baths are often
probed in terms of tracer particle dynamics [8–11]. Early
experiments in a bacterial suspension showed enhanced active
diffusion of tracers [8,9]. A higher density reduces diffusiv-
ity in equilibrium [12] but increases it in a nonequilibrium
bacterial bath [8]. Various theoretical techniques were used to
obtain the impact of an active bath on tracer particles [13–21].
Recent works have characterized ABP systems in terms of
kinetic temperature, effective diffusivity, and viscous drag as
a function of changing activity [22–29]. While diffusivity and
kinetic temperature increase with activity, a nonmonotonic
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variation of viscous drag has been predicted [26]. At the
motility-induced phase separation (MIPS) of ABPs [30–32],
it was shown that the kinetic temperature could vary across
a steady-state system with low (high) temperature charac-
terizing the dense (dilute) phase [24]. However, it remains
unclear to what extent such a description can be developed
into a coherent self-consistent picture of active fluid, given,
e.g., the breaking of time-reversal symmetry and the absence
of equilibrium fluctuation dissipation.

Despite tremendous progress in the study of active
matter [2–6], until recently, relatively little attention was
paid to the impact of inertia on the active matter except
for [24,33–39]. One reason for this is the extremely short
time (≈100 ns) and length scales (angstrom) for the ballistic-
diffusive crossover in colloidal particles. However, for larger
active elements, including birds, fish, and animals on the
one hand, and artificial macrosized robots [40–42] on the
other hand, inertial effects can be substantial. This paper
considers a homogeneous and isotropic fluid of ABPs and
probes its active bathlike characteristics. A remarkable fact
emerges: not only transient behaviors but even asymptotic
properties, including the effective diffusivity, kinetic tempera-
ture, and mobility at the steady state, do depend on inertial
mass, in sharp contrast to a noninteracting ABP gas. Fur-
thermore, the strong non-Gaussian distribution of velocities
returns towards equilibriumlike Gaussian for large mass. Fi-
nally, with increasing mass, the deviation from the equilibrium
fluctuation-dissipation relation drops sharply. In summary,
while activity amplifies nonequilibrium features, increasing
the inertial mass brings the fluid back to equilibrium.

II. MODEL

We consider N ABPs of mass m, moment of inertia I , and
diameter σ moving in a two-dimensional rectangular box of
area Lx × Ly with periodic boundary conditions (thus, den-
sity ρ = N/LxLy). The particles self-propel in directions n̂i =
(cos θi, sin θi ) with force FA,i = γtv0n̂i. The heading direction,
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FIG. 1. Velocity distributions in the particle frame. Probability
distributions of velocity components (a) parallel P(v‖) and (b) per-
pendicular P(v⊥) to the heading direction at Pe = 100 for various
M values indicated in the common legend in (b). Similar to P(v‖),
non-Gaussian long tails disappear in P(v⊥) at high inertia. In both
plots, we compare the analytic distribution functions for noninteract-
ing particles using Eq. (2) at M = 0.01 (dashed line) and M = 5.0
(dot-dashed line).

i.e., θi, undergoes a long-time diffusion, leading to an effective
persistent motion. The inertial active dynamics evolve as

mv̇i = −γt vi + Fi + FA,i + γt

√
2Dt ηi(t ),

I θ̈i = −γr θ̇i + γr

√
2Dr ζi(t ), (1)

where Fi = −∇i
∑

j U (ri j ), the symbols ηi(t ) and ζi(t ) rep-
resent Gaussian white noises, and viscous drags associated
with translation and rotation are described by γt vi and γr θ̇i,
respectively. Interactions among particles are due to volume
exclusion effects modeled via the Weeks-Chandler-Anderson
potential: U (r) = 4ε[(σ/r)12 − (σ/r)6] + ε if the interparti-
cle separation r < rc = 21/6 σ and U (r) = 0 otherwise. The
units of length and energy are set by σ and ε, respectively. The
rotational diffusivity Dr can have a nonthermal active origin.
Inertial relaxations in translation and rotation take time scales
τI = m/γt and τd = I/γr . Beyond τd , diffusion in the heading
direction leads to a persistent motion with a bare persistence
time τp = 1/Dr , which sets the unit of time. Unless specified
otherwise, we assume that particles are in contact with a ther-
mal bath with Dt = 1.0 σ 2Dr , and a small and constant τd =
0.33τp [24]. We particularly focus on the impact of changing
activity in terms of the Péclet number Pe = v0/(Drσ ) and
that of the reduced mass using M = τI/τp. In order to fully
characterize the properties of a homogeneous active bath, we
fix the density to a low value, ρ = 0.1, corresponding to a
packing fraction 8%, such that the system does not phase
separate even in the overdamped limit [7].

III. RESULTS

An increase in Pe, as expected, drives the system away
from equilibrium. In Fig. 1, we show the change in velocity
distribution to reveal the impact of inertia. For this purpose,
we consider the two components of the velocity, in the head-
ing direction v‖ = v · n̂ and perpendicular to it v⊥ = (1 −
n̂n̂) · v. In two dimensions, v⊥ is a scalar. The distribution of
velocity components y = (v‖, v⊥) for noninteracting ABPs in
the small and large M limits has the following Gaussian form

FIG. 2. Pair distribution in the heading direction: (a) P(r‖) at
Pe = 100 and various M values indicated in the legend. The fore-aft
asymmetry decreases with increasing M. One gets a fully symmetric
distribution at equilibrium, as shown in (c). (b) Variation of asymme-
try parameter Ap as a function of Pe is shown for various M values
indicated in the legend. The black line connecting filled circles (•)
represents overdamped dynamics. (d) An approximate data collapse
is obtained for inertial systems using appropriate rescaling of (b).
The filled circles (•) correspond to overdamped dynamics. (e) The
variation of scale factors shown as a function of M. At large M, they
show approximate dependencies E ∼ M0.4 and F ∼ M0.6.

(see Appendix A):

P(y) =
√

M

2πD̃
e− M

2D̃
(y−y0 )2

. (2)

Here, y0 = (Pe, 0) and D̃ = 1 for small M � 1. For large
M � 1 one gets effective equilibriumlike behavior with y0 =
(0, 0) and D̃ = Deff where Deff = 1 + Pe2/2. At small M,
inertial lag is small. Despite that, P(v‖) for interacting ABPs
at M = 0.01 shows a long tail reaching v‖ < 0. This tail,
absent for noninteracting ABPs in Eq. (2), emerges due to
enhanced frontal collision in the heading direction and the
resultant inertial recoil. The asymmetry in collisions will be
scrutinized using a pair distribution function in Fig. 2. At
larger inertia, secondary back collisions become prominent,
symmetrizing the distribution to a Gaussian-like profile, e.g.,
at M = 5 (see Appendix A for more details). The difference
of Eq. (2) from numerical results is more subtle at M = 5.
Although the distribution is Gaussian, the free particle esti-
mate of Deff fails to capture the observed behavior (Fig. 1)
as for interacting ABPs Deff reduces with M (Fig. 3). The
P(v⊥) distribution also shows inertial restoration of equilib-
riumlike behavior [see Fig. 3(b)]. The long non-Gaussian tails
are observable at small M and disappear with an increase in
M. Bouncing backward and forward from neighboring parti-
cles at high inertia symmetrizes the distributions, rendering
them equilibriumlike shapes. Comparison with Eq. (2) plotted
with dashed lines highlights the difference in terms of the
non-Gaussian tails at small M and a significant reduction of
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FIG. 3. Plots of dimensionless kinetic temperature kBTkin = m〈v2〉/2ε, effective diffusivity Deff , and excess viscous drag (μ−1 − γt ) with
Pe at fixed M [legends in (a), (b), and (e)] and with M at fixed Pe [legends in (c), (d), and (f)]. The lines in (a) and (c) are fit with Eq. (C1). We use
�c ∼ Peα1 with α1 = 0.69, 0.66, 0.55, 0.67 for M = 0.01, 0.1, 1.0, 10 in (a) and �c ∼ Mα2 with α2 = 2.5, 0.20, 0.50 for Pe = 1, 10, and 100
in (c). The black dashed line in (a) shows Pe2 scaling expected for noninteracting ABPs. (b) Fits Deff ∼ Peαd with αd = 1.98, 1.43, 1.13, 1.17
at M = 0.01, 0.1, 1, 5 are shown. The two dashed lines indicate the upper and lower bounds of the scaling forms expected at small and large
inertia. (d) Fits Deff ∼ M−γd with γd = 0.27, 0.40, 0.78 for Pe = 1, 10, and 100. (e) For small M (M = 0.01), mobility is independent of Pe,
as expected. In general, (μ−1 − γt ) ∼ Peαμ with αμ = 0.04, 0.34, 0.46, 0.47 at M = 0.01, 0.1, 1, 10. The dotted line shows a Pe1/2 scaling. (f)
(μ−1 − γt ) ∼ Mγμ with γμ = 0.58, 0.69, 0.68 at Pe = 1, 10, 100.

Deff at large M. The impact of interaction manifests in
the pair-distribution function in the heading direction, i.e.,
the probability P(r‖) of finding a neighboring particle in
direction n̂ (see Fig. 2). Due to enhanced frontal collision,
more particles accumulate in front. Such accumulations in
front and associated depletion wakes have been analyzed re-
cently in overdamped dilute ABPs [43,44]. A peak in the
back appears due to secondary back collisions experienced by
inertial ABPs after frontal recoil. With increasing M, recoil
increases, reducing the frontal accumulation and increasing
the secondary collisions from the back—these affect the sym-
metrization of the pair distribution—restoring equilibriumlike
behavior.

The asymmetry in the pair distribution is quantified in
terms of the parameter Ap that measures the difference be-
tween the heights of the front and back peaks [Fig. 2(b)].
For fixed M, the asymmetry initially increases with Pe. For
overdamped systems (black solid line denoting M = 0), the
increase is followed by saturation in the absence of recoil. In
contrast, in the presence of inertia, after the initial increase, Ap

decreases with Pe. The data collapse in Fig. 2(d) shows that at
small Pe, the asymmetry increases with Pe as Ap ∼ Pe0.4 and
then decreases as Ap ∼ Pe−0.35. Such scaling properties are
common to all inertial ABPs. The increase is due to enhanced
frontal collisions associated with increased activity. The de-
crease is due to inertial recoil and is the reason behind the
restoration of equilibriumlike behavior.

Another way of measuring how far the system is from
equilibrium is given by the extent to which the equi-
librium Einstein relation is violated I = |Deff − μ kBTkin|,
where μ is the particle mobility and Tkin the so-called
kinetic energy [45,46]. Following a tracer particle dynam-
ics is a useful tool to characterize the properties of a
bath [13,14,16,17,20,21]. In the presence of translational fluc-
tuations, the impact of the activity on diffusivity at low Pe
gets overshadowed by the thermal bath, i.e., Dt . While these

effects can be subtracted out, for simplicity and intending to
understand the impact of the activity, we set Dt = 0 in the
following. From the late-time behavior of the mean-squared
displacements, we obtain the effective diffusivity Deff . The
kinetic temperature kBTkin is readily obtainable from the ve-
locity fluctuations. Using a separate numerical calculation of
the change in velocity 〈vx〉 of a test particle—that we consider
to be another ABP particle, identical to ones that constitute
the active fluid—under an external force fx, we obtain the mo-
bility μ = (∂〈vx〉/∂ fx ) fx=0 around the nonequilibrium steady
states of the ABPs. In the presence of an external force on the
test particle, a local statistical reorganization of other ABPs
follows. Such a reorganization depends on active speed and
inertia, resulting in the mobility variation. Using these, we
obtain the violation I.

In Fig. 3, we show the variations of kinetic temperature,
diffusivity, and mobility as a function of Pe and M. We use a
kinetic theory approach to develop an understanding of the
observed behavior (see Appendix C 1). In the presence of
interaction, the collision rate �c ∼ � Pe with � denoting the
collision cross section. For small mass, assuming soft recoil,
we can use Maxwell approximation to get � ∼ Pe−1[(M +
1)/M]1/2 [47]. At large mass, a hard-core approximation gives
� ≈ σ . In general, one may use �c ∼ Peα1 Mα2 with α1,2 > 0.
The mean-free time τ f = �/Pe with the mean-free path � ≈
1/ρ�. Thus, τ f can be expressed in terms of the collision
cross section as τ f ∼ (ρ�c)−1.

Using a recently derived expression for the dimensionless
free ABP kinetic temperature kBTkin= M〈v2〉

2ε
= Pe2

2
M

M+1 [48],
and including the observed decrease in kinetic tempera-
ture, we have the following phenomenological expression
(Appendix C1):

kBTkin = Pe2

2

M

M + 1 + A ρ�c
, (3)
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FIG. 4. The violation of equilibrium fluctuation dissipation I =
|Deff − μkBTkin|, a measure of how far the system is from equilibrium
as a function of Pe and M, is shown in (a) and (b), respectively. The
fixed values of M and Pe at which the calculations are performed
are denoted in legends of (a) and (b). I increases with Pe as Peαd ,
where αd = 2 (at M = 0.01) and αd = 1 (for M � 1) give the upper
and lower limits of the scaling form. At a given Pe, I decreases with
increasing inertial mass M.

that exhibits a good fit to numerical results (Fig. 3). In addi-
tion, the expression suggests a low kBTkin at higher density,
consistent with numerical observations in [24]. For free par-
ticles in two dimensions, the asymptotic active diffusivity
Deff = v2

0/2Dr = Pe2/2 and the inverse mobility μ−1 = γt

are independent of M. When collisions dominate, Deff ∼ � Pe.
Thus,

Deff ≈
{

1
ρ

Pe2
(

M
M+1

)1/2
, M � 1

1
ρσ

Pe, M � 1
. (4)

In general, Deff ∼ Peαd and Deff ∼ M−γd (Fig. 3). Equation (4)
sets bounds on the Pe dependence in the two limits of M,
showing good agreement with numerical results. Similarly,
using mobility μ = τ f /M, we find the following bounds on
the excess viscous drag:

μ−1 − γt ≈
{
ρM, M � 1
ρMσPe, M � 1 . (5)

In general [μ−1 − γt ] ∼ Peαμ and Mγμ . The numerical results
show 0 � αμ < 1 as per the bounds set in Eq. (5) (Fig. 3).
However, numerically obtained values of γd and γμ are not
well captured by Eqs. (4) and (5). For further details of the ki-
netic theory estimate, see Appendix C 1. Numerical estimates
of mobility and diffusivity are discussed in Appendixes D
and E. Moreover, the variations of the scaling exponents are
shown in Appendix F.

With the help of the above results, we find that the violation
I increases with Pe but decreases with M (Fig. 4). At small M,
using kinetic theory estimates Deff ∼ Pe2, kBTkin ∼ Pe2, and μ

independent of Pe, we get I = |Deff − μ kBTkin| ∼ Pe2, which
agrees approximately with the numerical results at M = 0.01.
In the other limit of large inertia, again using kinetic theory
estimates Deff ∼ Pe, kBTkin ∼ Pe2, and μ ∼ Pe−1, we get I ∼
Pe that again agrees approximately with numerical results at
M = 10.

Moreover, I decreases with M. This can be described in
terms of Deff ∼ M−γd and μ ∼ M−γμ and noting that kBTkin

saturates at large M. Thus, one gets I ∼ |M−γd − M−γμ |. With

Pe, γd increases from 0.27 to 0.78 while γμ remains between
0.6 and 0.7. Thus, I ∼ M−γμ with γμ = 0.58 at Pe = 1, and
I ∼ M−γd with γd = 0.78 at Pe = 100. These two scaling
forms are shown using dashed lines in Fig. 4(b), and they
capture the observed numerical results approximately.

In this paper, we kept a small and constant value for the
rotational inertial time τd . One impact of the increase in τd

can be an increase in the effective persistence time [49]. How-
ever, developing a detailed understanding of the impact of τd

requires a separate in-depth study.

IV. CONCLUSION

We have shown how the nonequilibrium properties of
an active fluid consisting of ABPs, at a density far away
from the onset of MIPS, behave as a function of activity
and inertial mass. While the departure from equilibrium gets
pronounced with increasing Pe, i.e., activity, we found that
inertial mass restores equilibriumlike properties. In particular,
we showed that the non-Gaussian velocity distributions, the
fore-aft asymmetry in the (heading-direction) pair distribu-
tion, and the absence of an Einstein fluctuation-dissipation
relation between diffusivity, mobility, and kinetic temperature
observed in active overdamped systems cross over to their
equilibrium counterparts with inertial mass. In short, we found
that the inertial recoil can effectively thermalize the active
fluid, beyond the single-particle orientational relaxation over
the inertial time scale. Remarkably, the late-time diffusivity
and mobility of the bath depend on inertial mass, in con-
trast to free ABPs. The effective diffusivity and temperature
grow with active velocity and decrease with inertial mass. In
contrast, effective mobility decreases with mass and activity.
Together, these findings show a reduction in the violation of
equilibrium fluctuation dissipation with increasing inertia. In
summary, inertia brings back equilibriumlike behavior in the
active fluid.
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APPENDIX A: VELOCITY DISTRIBUTIONS

1. Free particle velocity distributions

Velocity distributions of noninteracting ABPs at small and
large M limits are easy to find and have Gaussian profiles. At
small M, the heading direction remains unchanged over the
inertial relaxation time. Thus, velocity distributions in the free
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FIG. 5. Inertia brings back equilibriumlike features. The speed distributions in heading direction at Pe = 10 are shown for different masses
M = 0.01 in (a), M = 0.1 in (b), M = 1 in (c), and M = 5 in (d). In each plot, blue points (red line) represent the results for Dt = 1.0
(Dt = 0.0).

particle limit are

P(v‖) =
√

M/2π exp[−(M/2)(v‖ − Pe)2] (A1)

and

P(v⊥) =
√

M/2π exp[−M v2
⊥/2]. (A2)

As is shown in Fig. 1, these distributions fail to capture the
simulation results at M = 0.01, particularly the long non-
Gaussian tail due to frontal collisions reaching v‖ < 0 values.
In the large M limit, the heading direction can completely
lose persistence over inertial relaxation, and one can use an
effective equilibriumlike distribution:

P(v‖) =
√

M/2πDeff exp[−Mv2
‖/2Deff ] (A3)

and

P(v⊥) =
√

M/2πDeff exp[−Mv2
⊥/2Deff ] (A4)

with Deff = 1 + Pe2/2. While at M = 5, the numerical sim-
ulations do show Gaussian distributions, the difference from
numerical results is more subtle. The free particle estimate of
Deff fails to capture the observed behavior (Fig. 1). As shown
in Fig. 3, in the presence of interaction, Deff reduces with M.

Finally, we note that Eqs. (A1)–(A4) agree with numerical
simulations for free and inertial active Brownian particles in
the small and large M limits [48].

2. Inertial thermalization

As has been pointed out in the main text, with increasing
M, the velocity distribution gets thermalized due to collisions

and recoil. Here we supplement that finding with an indepen-
dent measure in which we compare the velocity distribution
in the heading direction in the presence (Dt = 1) and absence
(Dt = 0) of a thermal bath (Fig. 5). For small M, the two
distributions are significantly different from each other. With
increasing M, the distribution in the absence of thermal bath
starts to thermalize, aided by relatively faster orientational
relaxation of the heading direction during a slow inertial
relaxation, and primarily due to collisions from the front and
secondary collisions from back after the frontal recoil. As
a result, they start to come close to each other to merge at
M � 1.

APPENDIX B: PAIR DISTRIBUTION

In Fig. 6, we show the distribution of particles around a
test particle in its heading direction at Pe=1, 10, and 100
and inertia M = 0, 0.01, 0.1, 1. These distributions are used to
calculate the asymmetry parameter Ap presented in the main
text.

APPENDIX C: IMPACT OF INTERACTION—KINETIC
THEORY ESTIMATES

Here, we adopt a kinetic theory argument to obtain ap-
proximate estimates of the changes due to interaction [47].
The collision rate �c ∼ � Pe with � denoting the collision
cross section (a length scale in two dimensions), which can
be obtained by equating the kinetic and potential energies at
collision. Assuming a power-law form for interaction energy

FIG. 6. Probability distribution of particle separation of interacting neighbors projected along the heading direction P(r‖) at the system
density ρ = 0.1 for Pe = 2, 50, and 100. The results in (a) correspond to an overdamped system and in (b), (c), and (d) for an underdamped
system with M values = 0.01, 0.1, and 1.0, respectively. The common legend representing different Pe values is placed inside plot (d).
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FIG. 7. The mean velocity of a tagged particle in response to the external force Fx is shown for Pe = 1, 10, and 100 in (a) at M = 0.01, in
(b) at M = 0.1, in (c) at M = 1.0, and in (d) at M = 5. The slope of the corresponding linear fits at Fx = 0 gives mobility μ = limFx→0〈δvx〉/Fx .
By definition 〈δvx〉 = 0 at Fx = 0. For the sake of clear visualization, each curve for Pe = 10 and 100 is shifted upwards.

U (r) ∼ r−ν , and the free-particle estimate of kinetic tempera-
ture presented above, � ∼ Pe−2/ν[(M + 1)/M]1/ν . Thus,

�c ∼ Pe1−2/ν[(M + 1)/M]1/ν .

Within the Maxwell approximation [47], �c is independent
of Pe requiring ν = 2, i.e., � ∼ Pe−1[(M + 1)/M]1/2. Such
a soft-core approximation can work for relatively small mass
and slower recoil. For faster recoil at large mass, a hard-core
approximation gives � ≈ σ and thus �c ≈ σPe. In general,
one may use �c ∼ Peα1 Mα2 with α1,2 > 0.

1. Kinetic temperature

In the presence of interaction, kBTkin gets suppressed due to
collisions. This can be incorporated using the dimensionless
collision rate τp/τ f ∼ ρ�c such that kBTkin = Pe2

2
M

M+1+(τp/τ f ) .
Thus, we use the following phenomenological expression:

kBTkin = Pe2

2

M

M + 1 + A ρ�c
. (C1)

2. Diffusivity

Within the kinetic theory, assuming frequent collisions
over the persistence time τp, collisions mainly govern the
change in velocity direction. Thus one can write Deff ∼ � Pe,
where the mean free path � ∼ 1/ρ�, leading to

Deff ≈ 1

ρ
Pe1+2/ν

[
M

M + 1

]1/ν

(C2)

such that

Deff ≈ 1

ρ
Pe2

(
M

M + 1

)1/2

within Maxwell approximation at small M and

Deff ≈ 1

ρσ
Pe

independent of M at large M. These estimates qualitatively
agree with the Pe dependence of numerical results. However,
explanation of the detailed power-law dependencies Deff ∼
Peαd and M−γd observed from simulations remains outside the
scope of such simple explanation.

3. Mobility

Under external force F on a particle, its acceleration F/m
can increase the velocity for a duration τ f , the mean free
time before the next collision. Thus the drift velocity vd =
(F/m)τ f = μF with mobility μ = τ f /m. The equilibrium
bath provides an additional viscous friction coefficient γt .
Now for the active system τ f = �/Pe = 1/ρ�Pe. At small M,
using the soft-core Maxwell estimate �Pe = 1, we get

μ−1 − γt = M/τ f ≈ ρM (C3)

independent of Pe. At large M, the hard-core approximation
� = σ gives

μ−1 − γt = M/τ f ≈ ρM σPe. (C4)

This suggests, in general, that [μ−1 − γt ] ∼ Peαμ with 0 �
αμ < 1. The numerical results in Fig. 3(e) remain within these
bounds. However, the M dependence in Fig. 3(f) shows more

FIG. 8. Mean square displacement for Pe = 1, 5, 20, and 70 in (a) at M = 0.01, in (b) at M = 0.1, in (c) at M = 1.0, and in (d) at M = 5.
The common legend representing different Pe values is placed at the extreme right. These calculations are done for Dt = 0.
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complex power-law growth in the viscous drag [μ−1 − γt ] ∼
Mγμ unlike the linear estimate obtained from the above kinetic
theory estimates.

APPENDIX D: MOBILITY FROM SIMULATIONS

To measure mobility, we apply an additional force Fx on
the tagged particle and calculate its mean velocity along the
same direction 〈vx〉 for various Fx values. The mean velocity
〈δvx〉 = 〈vx〉|Fx>0 − 〈vx〉|Fx=0 as a function of Fx is shown
in Fig. 7. The slope of the linear fit for 〈δvx〉 vs Fx curve
near Fx = 0 gives mobility. In the overdamped regime M =
0.01, mobility does not show dependency on Pe as its value
is observed to be the same: μ ≈ 0.9 for Pe = 1, 10, and
100 Fig. 7(a). In the underdamped limit (M � 0.1), mobility
decreases with Pe [see Figs. 7(b)–7(d)].

APPENDIX E: MEAN-SQUARED DISPLACEMENT

In Fig. 8, we plot mean-squared displacement 〈r2〉 scaled
by time t for different M and Pe values. All of them show
ballistic to diffusive crossover at a time scale determined

FIG. 9. Scaling exponents γi and αi used in Fig. 4 are presented
as a function of Pe (a) and M (b), respectively. i = k, d, μ represent
exponents of kinetic energy, diffusion, and mobility.

by the orientational persistence of the heading direction, a
quantity that is kept constant in this paper. The asymptotic
diffusivities Deff = limt→∞〈r2〉/4t are obtained from these
graphs and used in the main text.

APPENDIX F: SCALING EXPONENTS

The variations of scaling exponents determining the Pe and
M dependence of kinematic temperature, effective diffusivity,
and mobility are shown in Fig. 9.
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