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The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of
the matter therein, e.g., as liquidlike and gaslike, however, suggest “supercritical boundaries.” Here we provide
a mathematical description of these phenomena by revisiting the Yang-Lee theory and introducing a complex
phase diagram, specifically a four-dimensional (4D) one with complex T and p. While the traditional 2D phase
diagram with real temperature T and pressure p values (the physical plane) lacks Lee-Yang (LY) zeros beyond
the critical point, preventing the occurrence of criticality, the off-plane zeros in this 4D scenario still induce
critical anomalies in various physical properties. This relationship is evidenced by the correlation between the
Widom line and LY edges in van der Waals, 2D Ising model, and water. The diverged supercritical boundaries
manifest the high-dimensional feature of the phase diagram: e.g., when LY zeros of complex T or p are projected
onto the physical plane, boundaries defined by isobaric heat capacity Cp or isothermal compression coefficient
KT emanates. These results demonstrate the incipient phase transition nature of the supercritical matter.
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I. INTRODUCTION

The supercritical behavior in real systems plays a crucial
role in both fundamental research and emerging applications.
For example, supercritical water not only subtly shapes our
planet but also serves as an ecologically benign solvent in
chemical reactions and waste management [1–3]. Starting
from Cagniard de la Tour, studies of supercritical matter had
greatly expanded our comprehension of states of matter since
the 1820s [4–14]. To illustrate the continuity of the gaseous
and liquid states in the supercritical region, Andrews estab-
lished the concepts of critical temperature (T ) and pressure
(p) [5]. Van der Waals (vdW) continued this topic by revealing
the equation of state in his real gas model, which inherently
suggests the lack of phase transition beyond the critical point
[6]. Since then, the supercritical matter was usually introduced
as a single phase [15–17].

However, the emergence of “supercritical boundaries”
challenges this conventional understanding [18–23]. By ex-
amining the maxima of the isobaric heat capacity Cp, one
can separate the supercritical region, e.g., as liquidlike and
gaslike subregions beyond the vaporization critical point
[20,24,25]. Not surprisingly, boundaries defined by dynamics
such as transverse oscillations of the particles are also spotted
[21–23,26–28]. While crossover phenomena serves as alter-
natives to phase transition, different boundaries represented
by the Widom line (the line of maximum correlation length),
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the Frenkel line (the line where the oscillatory motion ceases),
and the Fisher-Widom line [29] (the line where the oscillatory
decay in the radial distribution function becomes present)
emerge [18,19,21,30], contrasting the single boundary in the
phase transition region which encapsulates all critical behav-
iors. Notably, even the definition using Widom line leads to
different evaluations by the maxima of Cp and the isother-
mal compression coefficient KT , respectively. This disparity
calls for delving deeper into the structure of supercritical
region, aiming to interpret the macroscopically invisible phase
boundaries, multiple supercritical boundaries, and crossover
phenomena in this region [31–33].

To do this, it is imperative to reveal its mathematical struc-
tures. Similar achievements have been reached by Lee and
Yang in interpreting phase transition and criticality. In two
milestone articles [34,35], they found that the behaviors of
zeros of the grand partition function, i.e., Lee-Yang (LY) zeros
for the complex external magnetic field (chemical potential),
determine the phase transition of the 2D Ising model (2D lat-
tice gas). The nonanalytical changes in state functions of the
system such as magnetization happen only when complex LY
zeros fall onto the real axis in the thermodynamic limit. Fisher
generalized LY’s theory to the canonical ensemble and defined
Fisher zeros for the complex temperature (T ) [36]. Now it is
customary to analyze the phase transition phenomena using
such LY or Fisher zeros, with applications extending to the
studies of their experimental measurements [37,38], nonequi-
librium problems [39,40], protocols of quantum simulators
[41–44], and dynamical quantum phase transitions [45,46].
Recent studies of quantum chromodynamics models demon-
strate a correlation between the LY zeros and the crossover
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behavior [47,48]. Heuristically, one can understand the super-
critical boundaries by establishing theoretical and numerical
connections between the supercritical behaviors and the com-
plex LY zeros in realistic condensed matter systems.

Without losing generality, we use two typical thermody-
namic state functions (which can also be viewed as fields,
as will be explained later) T and p and consider zeros in the
T -p phase diagram. A complex space x̃ of T → T̃ = T + iτ
and p → p̃ = p + iζ is employed. By analytic continuation,
the partition function can be represented in terms of complex
zeros corresponding to T̃ or p̃ perspectives, as

Z (T̃ , p̃) = Zp̃(T̃ ) = egp̃(T̃ )
∞∏

k=1

(1 − T̃ /T̃ ∗
p̃,k )

= ZT̃ ( p̃) = egT̃ ( p̃)
∞∏

l=1

(1 − p̃/p̃∗
T̃ ,l ), (1)

where T̃ ∗
p̃,k is the k-th nonzero root for Zp̃(T̃ ) = 0 at given p̃

and p̃∗
T̃ ,l

is defined similarly; please see Appendices A and B
for details. For an ordinary T -p phase diagram, the physical
plane consists of the real axes of T and p. Here, due to the
dependency of T̃ ∗

p̃,k on p̃ and p̃∗
T̃ ,l

on T̃ , T̃ ∗
p̃ , and p̃∗

T̃
manifest

a unified cluster of zeros in a 4D complex space C2. When
taking physical values of T (p), i.e., their real values, p̃∗

T̃ =T
(T̃ ∗

p̃=p) returns to LY (Fisher) zeros. Acknowledging that zeros
in the physical plane (real T and p) locate phase boundaries
and critical points, we emphasize here that zeros outside the
physical plane are of crucial importance and responsible for
the anomalies in the supercritical region.

Using this 4D complex phase diagram, we investigate the
supercritical phenomena. Different from the traditional sce-
nario, the high-dimensional space with extra imaginary axes
allows for a comprehensive description of the physical prop-
erties. We found the extreme line for each response function
exactly corresponds to its closest LY zeros to the physical
plane, i.e., the LY edges. For the simplest cases, the maxima
of the isobaric heat capacity Cp (isothermal compression co-
efficient KT ) as the response function to changed T (p), show
close coincidence with the T (p) edges of the same cluster
of zeros. Through a 3D complex phase diagram with one of
the imaginary axes contracted, visible insights into the super-
critical behavior can be depicted. Distinct zeros dominate on
each side of the edge, resulting in different properties on the
two sides of the supercritical region. These zeros present good
illustration of phase transitions and crossovers, which offers
us an intuitive tool to consolidate critical and supercritical
matter.

This paper is organized as follows. In Sec. II, we explain
the methods we used for calculating the thermodynamic prop-
erties and LY zeros in the vdW model, 2D Ising model, and
water. How the complex phase diagram and LY zeros in it
can be used to describe the thermodynamic properties of the
supercritical region is explained in Sec. III. Then, we provide
extensive discussions on the meaning and implications of
this concept in Sec. IV. The conclusion is drawn in Sec. V.
For the reader’s convenience, the paper is also supplemented
with three Appendices which clarify some finer theoretical
and technical details. With such an arrangement, we hope

a complete explanation of the theoretical and computational
findings and their implications can be conveyed by us to a
wide range of audience, so that a route toward a unified picture
of phase and phase transition for both the phase transition and
the supercritical regions appears clear, within the framework
of Yang-Lee (YL) theory.

II. METHODS

To demonstrate the universal nature of the complex phase
diagram and its connection to supercritical behaviors, our
analysis proceeded along two fronts. First, we consider model
systems, represented by the vdW and 2D Ising models, where
the partition function and LY zeros are analytically tractable.
Second, we tackle more realistic systems, exemplified by wa-
ter with TIP4P interactions, where the LY zeros are evaluated
from molecular dynamic (MD) simulations. We adopted the
Widom lines as the representative supercritical boundaries,
since their evaluations only depend on basic thermodynamic
properties, such as volume and enthalpy. Specifically, we
conduct calculations of their thermodynamic properties and
estimate the Widom line by extreme lines of Cp and KT (or
κT ) for each system.

A. vdW model

1. Thermal properties and extreme lines

The vdW model is the simplest real gas model where
particles interact and occupy finite volumes. Its equation of
state is written as[

p

pc
+ 3

(V/Vc)2

](
V

Vc
− 1

3

)
= 8T

3Tc
, (2)

where (pc,Vc, Tc) is the critical point of vdW fluid. We take it
to be (1,1,1) for convenience.

In order to derive thermodynamic properties and determine
supercritical boundaries, we start from analytical formulas of
free energy and its derivatives. The Gibbs free energy is given
by

G(T, p)

= −T

[
C + 3

2
ln T + ln

(
V − 1

3

)
+ 9

8TV
− 3pV

8T

]
.

(3)

The enthalpy H is

H = G + T S = G − T

(
∂G

∂T

)
p

= −T 2

[
∂

∂T

(
G

T

)]
p

= 3

2
T − 9

8V
+ 3pV

8
. (4)

The isobaric heat capacity reads

Cp =
(

∂H

∂T

)
p

= 3

2
+ 4TV 3

4TV 3 − (3V − 1)2
. (5)

The volume V is the partial derivative of G to pressure p, as

V =
(

∂G

∂ p

)
T

, (6)
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FIG. 1. The curves of isobaric heat capacity Cp and isothermal
compression coefficient KT for the vdW model in the supercritical
region. (a) Cp along isobars, with the peaks of Cp marked with circles.
(b) KT along isotherms, with the peaks of KT marked with circles.
The extreme value vanishes when T = 1.07 or higher. In both (a) and
(b), the lines with peaks, displayed from left to right, correspond to
the legends from top to bottom.

whose expression as a function of (T, p) will be given later,
as in Eq. (9). And the isothermal compression coefficient is
given by

KT = −
(

∂V

∂ p

)
T

= (3V − 1)2V

6[4TV 3 − (3V − 1)2]
. (7)

With those formulas, we can analytically locate Cp and
KT extreme lines along isotherms and isobars, respectively.
This is done by solving ∂Cp/∂T = 0 and ∂KT /∂ p = 0. For
the other kinds of extreme lines, see analytic expressions in
Ref. [49]. Below the critical point, the two extreme lines
converge to a single coexistence line, manifesting the phase
boundary of gas and liquid. This can also be calculated
through Maxwell’s construction [50]. The results for super-
critical region are shown in Fig. 1. We note that KT extreme
lines vanish at T ∼ 1.07 [see Fig. 1(b)]. It implies the compe-
tition between the LY zeros terms and the other analytic terms,
please see discussions later in Appendix C.

2. Density of zeros

Following the idea of Lee and Yang [34,35], we shall ana-
lytically extend the domain of the Gibbs free energy function
to the complex space, as G(T, p) → G(T̃ , p̃), where the tilde
is for complex variables. We note that the zeros of partition
function are equivalent to the singularities of the Gibbs free
energy. From Eq. (3), we see that the singularities of G come
from three cases: (i) singularities of V (T̃ , p̃), (ii) T = 0, and
(iii) V = 1/3 or 0. The volume V satisfies the cubic equation

V 3 −
(

1

3
+ 8T

3p

)
V 2 + 3

p
V − 1

p
= 0. (8)

The latter two cases for the singularities of G correspond
to trivial zeros at T = 0 or p = ∞ according to Eq. (8).
Therefore, we only consider the first case, i.e., singularities
of V (T̃ , p̃).

The analytical expression of the complex Gibbs free en-
ergy in Eq. (3) requires V (T̃ , p̃), which can be obtained from
Eq. (8). It has two complex roots and one real root. We retain

the latter one since it is the only physical solution, reading as

V = A + 3

√
Q +

√
D + 3

√
Q −

√
D, (9)

where

A = 1

9

(
1 + 8T

p

)
,

Q = A3 − 3A

2p
+ 1

2p
,

D = A3

p
− 3A2

4p2
− 3A

2p2
+ 1

p3
+ 1

4p2
. (10)

Without losing generality and for convenience, we choose
the branch of the square root function to be

√
z =√|z| exp (iArg[z]/2), where Arg[z] ∈ [−π/2, 3π/2). For the

cubic-root function, we always adopt its real root, i.e., when
z = a (a ∈ R and a > 0), 3

√
z = 3

√
a; when z = −a, 3

√
z =

− 3
√

a. Accordingly, we perform the continuation as

3
√

z =
{

3
√|z| exp (iArg[z]/3), Re[z] � 0

3
√|z| exp {i(Arg[z] + 2π )/3}, Re[z] < 0

. (11)

With this choice of branches, the cubic root function under-
goes a discontinuity if the complex path of z crosses the
imaginary axis. Hence, the loci of V ’s—as well as G’s—
singularity can be written as

{(T̃ , p̃) | Re[Q(T̃ , p̃) +
√

D(T̃ , p̃)] = 0 or

Re[Q(T̃ , p̃) −
√

D(T̃ , p̃)] = 0}. (12)

In principle, LY zeros can be located according to Eq. (12).
In this paper, we adopt a different path from directly using

Eq. (12). But we note that they are completely equivalent. This
is enabled by putting Eqs. (9)–(11) to Eq. (3) and monitor-
ing the discontinuity of the Gibbs free energy. According to
Ref. [35], similarly to the electrostatic potentials, continuous
and linear-distributed zeros is the source of the discontinuity
of the derivative of the Gibbs free energy on the complex
plane. Therefore, using the analogy of the Gaussian theorem,
the density of LY zeros ρ(x̃) satisfies[

∂ (G/T )

∂ x̃

]
x̃0+

−
[
∂ (G/T )

∂ x̃

]
x̃0−

= eiα · 2πρ (̃x0), (13)

where α is the angle between the zero line and the imaginary
axis. When the derivative ∂ (G/T )/∂ x̃ is continuous at x̃0,
ρ(x0) = 0; otherwise, one get finite magnitude, ρ(x0) �= 0.
The results are shown in Fig. 2.

B. Two-dimensional Ising model

We use the square 2D Ising model with ferromagnetic
interaction J > 0, which was the model Lee and Yang em-
ployed in the initial paper of LY zeros [34,35]. Here we briefly
summarize the results since its zeros has been well studied
previously [51–56].

For a periodic 2D Ising lattice with L × L spins, the Hamil-
tonian reads

H = −h
∑

i

si − J
∑
〈i, j〉

sis j, (14)
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FIG. 2. The derivatives’ singularity of complex free energy term
G/T and LY zeros for the vdW fluid, calculated using Eq. (3) and
(13). (a) The modulus of the derivative of G/T to temperature T ,
plotted on the complex T plane when the pressure p = 1.1. (b) The
loci and density distribution of T zeros under the same conditions of
(a). (c) The modulus of the derivative of G/T to pressure p, plotted
on the complex p plane when the pressure T = 1.02. (d) The loci and
density distribution of p zeros under the same conditions of (c). For
visual convenience, the symmetrized lower half complex planes are
not shown.

where si = ±1, h is the magnetic field, and 〈i, j〉 represents
for neighboring interactions. One could reduce the problem to
an exact diagonalization of a screw building-up of length L.
The partition function is written in terms of a transfer matrix
T and further its eigenvalues, as

Z (β, h) = Tr{TL} =
2L∑
j=1

λL
j . (15)

Here T is a 2L × 2L matrix,

T = [2 sinh(2βJ )]L/2V3V2V1 (16)

being the product of three matrices,

V1 =
L∏

i=1

e�Xi , V2 =
L∏

i=1

eβJZiZi+1 , V3 =
L∏

i=1

eβhZi ,

(17)

where tanh � = e−2βJ , and

Xi = I ⊗ I ⊗ · · · ⊗ σx ⊗ · · · ⊗ I ⊗ I

Zi = I ⊗ I ⊗ · · · ⊗ σz ⊗ · · · ⊗ I ⊗ I, (18)

with I being the identity 2 × 2 matrix, and σx, σz being the
Pauli matrices on position i = 1, . . . , L.

We use an 8 × 8 lattice, and take J = 1 without losing
generality. Given the partition function Z (β, h), we calculated
the exact LY zeros by searching its β and h zeros. Besides, the
free energy can be immediately calculated as the logarithm of
partition function. Accordingly, heat capacity C and suscep-
tibility χ as the derivatives of free energy, and hence Widom
lines, are determined.

C. TIP4P water

As an example to treat realistic systems, here we show
how to calculate supercritical properties and LY zeros by MD
simulation of water.

1. Simulation details

We performed molecular dynamics in a periodic cubic box
containing 216 water molecules with an initial density of
∼ρ = 1 g/cm3. We use the TIP4P/2005 model [57], with the
cutoff length of both the LJ potential and Coulomb potential
set as 10 Å. The long-range Coulomb interaction is treated by
particle-particle particle-mesh solver. The simulations are run
in the NPT ensemble, with an integration time step 1 fs. We
control T by the Nosé-Hoover thermostat [58,59] and p by the
Parrinello-Rahman barostat [60,61], both with the damping
time 200 fs. All the simulations are run using LAMMPS [62]
(version 17Nov16) compiled with Intel C++ Compiler 16
and Intel MPI 5.1.

For the phase transition region, we performed the sim-
ulations for a mesh of configurations p = 50–100 atm and
T = 675–700 atm. We use a typical sampling duration of 1 ns,
and a finer one of 5 ns for the vicinity of the phase transition
point.

For the supercritical region, we simulated for isobars with
pressures pn = 120 + 10n atm (n = 1, . . . , 16) to obtain Cp.
For each p, the simulated T ranges from 600 K to 900 K,
with spacing �T = 5 K. For each (T, p), we first equilibrate
the system for 0.1 ns and then execute runs of 1 ns. To locate
the Cp maxima and the T zeros more accurately, we execute
runs of 5 ns at the vicinity of each Cp peak, with finer spacing
�T = 1 K.

To obtain κT , we simulated for isotherms with temperatures
Tn = 700 + 5n K (n = 1, . . . , 16). Since we have known the
Cp extreme line from the isobars, we execute runs of 2 ns only
in the region nearby the extreme lines, e.g., pressure from p =
150 atm to p = 176 atm for isotherm T = 730 K, and �p =
2 atm. To better locate κT maxima, we enact runs of 10 ns in
a smaller vicinity of the κT peaks.

2. Extreme lines

We locate the extreme lines of Cp and κT directly from the
sampling data of enthalpy and volume. We have

Cp =
(

∂H

∂T

)
p

= 〈H2〉 − 〈H〉2

kBT 2
,

κT = − 1

V

(
∂V

∂ p

)
T

= 〈V 2〉 − 〈V 〉2

kBTV
. (19)
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FIG. 3. The simulated isothermal heat capacity Cp and isobaric
compressibility κT of TIP4P water according to Eq. (19). (a) Cp along
isobars from p = 175 to 400 atm, where Cp for p = 300 atm and
higher are shown in the magnified inset. (b) κT along isotherms from
T = 730 to 810 K, where κT for T = 770 K or higher are shown in
the magnified inset.

Here we use κT instead of KT to characterize the response of
volume to pressure and estimate the Widom line. This is due
to the fact that KT of water decays rapidly across from liquid
to gas, making it difficult to determine their peaks and hence
Widom line, while κT has better behavior in the supercritical
region.

The results are shown in Fig. 3. Similarly to the vdW case,
the nonzero analytic part would take over for configurations
far away from the critical point. When T is higher than 790 K,
the extreme value of κT becomes insignificant with a smooth
crossover and limited supercritical behavior. Please see
Appendix C for more details.

3. Calculation of discrete zeros

Here we developed an approximate method for calculating
LY zeros based on MD results at (T0, p0). This is done by
estimating the density of states using the probability distribu-
tion of enthalpy H and volume V . By discretizing the partition
function into polynomials, we could derive T or p zeros.

Typical extensive quantities distribute continuously, while
we approximately describe them as discrete levels, e.g.,

ρ(H )dH → ρ[H ∈ [Hk, Hk+1)]�H = ρk�H, (20)

where ρ is the density of states and the enthalpy is discretized
by NH bins with bin size �H , as Hk = H0 + k�H . In the
meantime, this can be derived from the partition function, via

gk�H = 1

Z (T, p)

∫ Hk+1

Hk

e−βHρ(p, H )dH

≈ 1

Z (T, p)

−1

β
e−βH

∣∣∣∣Hk+1

Hk

ρ(p, (Hk + Hk+1)/2)�H

∼ 1

Z (T, p)

−1

β
e−βHk ρk (p)�H. (21)

Based on this, one can perform MD simulations at (T0, p0)
and extract information about ρk (p0) from the observed prob-
ability distribution gk , via

ρk (p0) ∼ gk (T0, p0)eβ0Hk , (22)

FIG. 4. The histograms of enthalpy H and corresponding dis-
tributions of T zeros for TIP4P water, sampled on the Widom
line at p0 = 160 atm and T0 = 726 K. [(a)–(c)] The sampled his-
tograms of enthalpy distribution, plotted with bin width �H =
50, 20, and 10 kcal/mol, respectively. [(d)–(f)] LY zeros expressed
by y zeros of partition function [Eq. (23)] at each �H (50, 20, and
10 kcal/mol). The unit circles are marked out for visual guidance.
[(g)–(i)] LY zeros of temperature T at each �H . The LY edges are
marked with red dots.

where β0 = 1/(kBT0) and gk (T0, p0) the enthalpy histogram
sampled at (T0, p0). Here we neglect the common coeffi-
cients since only relative coefficients affect the zeros of the
polynomials.

Considering the T zeros at fixed p0, the partition function
can also be given in form of gk (T0, p0), as

Zp0 (T ) =
∫

H
e−βHρ(p0, H )dH

→
NH∑
k=1

ρk (p0)�He−β(H0+k�H )

∼ e−βH0

NH∑
k=1

gk (T0, p0)eβ0Hk [e−β�H ]k

∼
NH∑
k=1

a′
k[e−β�H ]k =

NH∑
k=1

ak[e−(β−β0 )�H ]k . (23)

We ignore the common coefficient e−βH0 outside the summa-
tion in the third line since it is always nonzero throughout
the complex plane. The zeros of argument y = e−(β−β0 )�H

[Figs. 4(d)–4(f)] can be directly solved by polynomials with
the coefficients ak ∼ gk (T0, p0) [Figs. 4(a)–4(c)], and thus T
zeros can be located [Figs. 4(g)–4(i)].
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With performed MD simulations, the p zeros at fixed T0

can be calculated similarly as

ZT0 (p) ∼ e−β0 pV0

NV∑
k=1

fk (T, p0)eβ0 p0V [e−β0 p�V ]k

∼
NV∑

k=1

b′
k[e−β0 p�V ]k =

NV∑
k=1

bk[e−β0(p−p0 )�V ]k, (24)

where fk (T0, p0) the sampled volume histogram, b′
k ∼

fk (T0, p0)eβ0Hk and bk ∼ fk (T0, p0).
The bin size would affect the results of T zeros, as shown in

Fig. 4. With the bin size �H varying from 50 to 10 kcal/mol
[Figs. 4(a)–4(c)], the zeros of y = e−(β−β0 )�H become denser
in the complex plane of y [Figs. 4(d)–4(f)]. However, there is
no significant change for the zeros of T near the real axis when
converting to the complex plane of T [Figs. 4(g)–4(i)]. The
more detailed distribution with a smaller bin size makes the
farther T zeros available for us. However, too small bin size
would bring noise of distribution, which is harmful for the
accuracy. In our calculation, we choose �H = 20 kcal/mol
and �V = 500 Å3 to locate the zeros of T and p on the
complex plane.

III. RESULTS

A. vdW model

By utilizing the singular properties of G(T̃ , p̃) in the com-
plex plane, we have calculated the density of zeros (DOZ) of
the partition function Z of vdW model (Fig. 2). For each p
or T , the points with nonzero DOZ converge to a line, with
sharp LY edge [Figs. 5(a) and 5(b)]. As expected beyond the
critical point, the LY edges are no longer on the real axis, but
move into the complex plane. Combined with the previously
analyzed response of Cp and KT (Fig. 1), we also noticed
that the p edges are intimately related to the maxima (not
singularities) of KT [Figs. 5(a) and 5(c)], so do those of the T
edges and the maxima of Cp [Figs. 5(b) and 5(d)]. With p (T )
edges become farther from the real axis, the KT (Cp) maxima
become less sharper at almost coincident locations.

To demonstrate these in details, we quantify the geometric
relationship between the response functions and LY zeros
using 3D plots in Figs. 6(a) and 6(b). The x−y plane is the
physical plane with real p and T and the one used in conven-
tional phase diagrams, while the z axis represents imaginary
p or T . The KT or Cp extreme line shows apparent corre-
spondence to the line of p or T edges, respectively. The
correspondence arises from the nature of the response func-
tion itself: The KT extreme line corresponds to p edges as
it is the second order derivative of G with respect to p, and
similarly the Cp extreme line corresponds to T edges. Com-
bining these, we present the complex p̃−T̃ phase diagram in
Fig. 6(c), focusing solely on the LY edges. The unified phase
boundary branches beyond the critical point, as different KT

and Cp extreme lines in x−y plane [in Fig. 6(c)]. Remarkably,
these extreme lines largely overlap with the projected trajecto-
ries of the LY edges, with small deviation due to contributions
from nonedge zeros with large density [inset of Fig. 6(c)]. It is
by retaining complex LY zeros rather than only the real ones

FIG. 5. Lee-Yang zeros and response functions of vdW fluid in
the supercritical region. The density of zeros (DOZ, represented by
the depth of color) ρ(x̃) at C2 as 2D slices is displayed at (a) T =
1.00, 1.01, . . . , 1.04 Tc and (b) p = 1.0, 1.1, . . . , 1.4 pc, with LY
edges marked with black dots and identical lower half planes hid-
den. The associate thermal properties are also shown: (c) isothermal
compression coefficient KT and (d) isobaric heat capacity Cp in
corresponding colors, respectively, with their maxima marked in
circles. Panels (a)–(d) are recombined from Figs. 2(d) and 2(b) and
Figs. 1(b) and 1(a), respectively. The location where the response
function KT or Cp reach its maximum is very close to the projection
of the corresponding LY edge with the same color on the real axis.

that the complex phase diagram embodies the full statistical
information.

One fascinating but intricate fact about the supercriti-
cal matter is that there are different boundaries, defined by
different thermodynamic properties. This is intrinsic to the
high-dimensional feature of the LY zeros. When the closest
zeros are on the physical plane, this point overrides the others
and all properties show maxima at the same place. But when
zeros are away from the physical plane, there can be different
edges emanating from the same cluster of zeros corresponding
to different physical properties. As a result, the correspond-
ing extreme lines appear at different places. These exactly
describe the behavior of LY edges and response functions
in Fig. 6(c), where the seemingly two edges curves are 3D
projections from a unified 4D zero cluster. The supercritical
region is no longer a “no transition’s land” since we can see
how the complex LY edges determine the phase diagram. In
this view, one can interpret supercriticality as a phase transi-
tion in the complex phase diagram and an incipient one in the
physical plane.

B. Two-dimensional Ising model

Here the complex phase diagram of an 8 × 8 2D ferromag-
netic Ising model is demonstrated in Fig. 7. Except for almost
coincident phenomena, it is worth noting that the coexistence
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FIG. 6. The complex T̃ - p̃ phase diagram of the van der Waals
model around the critical point. The 3D projection of DOZ with
(a) Im[T ] axis contracted and (b) Im[p] axis contracted. Cp and KT

maxima and T - and p edges are in dark blue and bold black lines, and
they locate in-plane and out-of-plane, respectively. The real plane of
the phase diagram is painted blue, and the symmetrized lower half
space is hidden. (c) The Lee-Yang edges corresponding to T [out of
T -p plane, the red (left) line] and p [out of T -p plane, the blue (right)
line] are plotted in the 4D complex phase diagram, with an imaginary
z axis of both T and p. The edges terminate at the critical point and
converge to the same coexistence line in the physical plane. While in
the supercritical region, one witnesses different edges in the complex
plane and hence different extreme lines of Cp [in T -p plane, the red
dashed (left) line] and KT [in T -p plane, the blue dashed (right) line]
in the physical plane. The inset shows a close connection between
the projection of edges and the Widom line, with the latter estimated
by Cp and KT maxima.

line in the phase diagram of the Ising model is parallel to the
β axis [25]. Consequently, there are two extreme lines of heat
capacity C originated from the critical point, which conforms
to the symmetry of system on external magnetic field h. Both
of the branches correspond well with the projection of the β

zeros onto the real plane. This further corroborate our findings
in vdW model.

C. TIP4P water

Apart from the idealized vdW and Ising models, these traits
of the complex phase diagram have also been observed in
molecular dynamics simulations of realistic water systems.
Based on MD results and the method for calculating LY zeros
in Sec. II C 3, we have obtained the response of Cp and κT

(Fig. 3), and the T zeros [Figs. 4(g)–4(i)] and p zeros of TIP4P

FIG. 7. (a) The complex β̃-h̃ phase diagram of 2D Ising model,
where β = 1/T . (b) The projection of edge zeros to the real plane.
The specific heat C (in the β-h plane, aquamarine line with sym-
metrized two branches) almost coincides with the trajectory of
β edges (out of the β-h plane, blue line with symmetrized two
branches), so does the susceptibility χ (in the β-h plane, light red
line with single branch) with h edges (out of the β-h plane, red line
with single branch).

water. Here we plot the p and T zeros, along with the κT and
Cp together in Fig. 8. Similarly to the vdW case, the location
κT or Cp reach its maximum is also close to the corresponding
LY edge.

The complex phase diagram of water is given in Fig. 9(a).
It is evident that the T -/p edges branch from the coincident
transition points and gradually move away from the physical
plane [Fig. 9(a)], and manifest similar correspondences to
extreme lines with vdW results [Fig. 9(c)]. The consistency in
findings across different models and treatments underscores
the efficacy of the complex phase diagram.

The simulating system size of 216 molecules might in-
duce a finite-size effect. Due to this, zeros cannot approach
the real axis within the critical region [Fig. 9(b)]. Besides,
the simulation of 4096 molecules gives critical point pc =
145 atm, Tc = 640 K [24], about 80 K lower than our results.
We note that elaborate works that consider larger size [24] and
other types of transition like the liquid-liquid phase transition
[19] might improve the results quantitatively; however, the
conclusions should not be affected.
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(atm)(K)))

FIG. 8. LY zeros and edges calculated from MD simulations of
the TIP4P water. From left to right: the triangle, star, circular point,
diamond, and square marks correspond to (a) complex p zeros at
T = 675 to 775 K, with blue marks indicating the p edge of each T .
(b) Complex T zeros at p = 50 to 250 atm, with red marks indicating
the T edge of each p. (c) Plot of the corresponding isothermal com-
pressibility coefficient κT with pressure, at temperatures T = 675 to
775 K. (d) Corresponding isobaric heat capacity Cp with tempera-
ture, at pressures p = 50 to 250 atm. The location κT or Cp reach its
maximum is also close to the corresponding LY edge.

IV. DISCUSSIONS

A. Complex phase diagram: Determination of phases
by zero structure

The complex phase diagram employed should evoke a re-
visit for the determination of “phase.” By definition, a phase
is a state which is physically distinct and uniform or that can
coexist with common boundaries [63]. Practically in experi-
ments or molecular simulations, phases are determined in the

FIG. 9. Complex phase diagram of water using the TIP4P model.
(a) The complex T̃ - p̃ phase diagram, where the critical point is deter-
mined to be approximately at Tc ∼ 720 K and pC ∼ 150 atm. (b) The
side view and (c) the top view of this complex phase diagram. Due to
the finite-size effect, LY zeros below the critical point approach real
axis instead of being exactly onto them. Throughout, the Lee-Yang
edges corresponding to T and p are labeled with solid marks in red
and blue, while the maximum of Cp and κT are labeled with hollow
marks in red and blue, respectively.

viewpoint of phase transition: finding a physical path of tran-
sition from one to another, i.e., two phases are distinguished
only when abrupt changes occur as real thermal fields vary.
While in the viewpoint of LY zeros, “a phase” means unique
analytic behaviors within a potential produced by zeros, where
the geometric relationship between the location of the sys-
tem’s state and the cluster of zeros dominates. While these two
perspectives converge when there are real zeros, the traditional
one falls short in the supercritical region. Here crossover
replaces phase transition, leading to critical anomalies and
inconsistent extreme lines instead of singularities and con-
sistent phase boundaries. The LY zeros perspective, however,
remains robust by providing zero determined complex phase
diagram as a unified picture underlying phase transition and
crossover.

To elucidate this, we use the electrostatic analogy pro-
posed by Lee and Yang. Taking the logarithm of Eq. (1)
and replacing the summation over the discrete zeros with the
integral of the (DOZ) ρ(x̃), the energetic state function can be
written as [64]

F (x) ∼ − 1

β
ln Z (x) ≈ − 1

β

∫
C

ρ(x̃) ln(x − x̃)dx̃, (25)

where x can be either T or p. This expression is exactly the
form of a 2D Coulomb potential φ produced by a circular
cylinder with surface charge density ρ(x) per unit area. It
means the behavior of order parameter � and susceptibility
χ of the response function can be perceived equivalently from
electric field ε and its gradient ε′. The cases of phase transition
and crossover are intuitively the analogies of fully screen-
ing potential with a closed shell of zeros [Fig. 10(a)] and a
flux leakage with cuts in this shell [Fig. 10(b)], respectively.
Crossover is the consequence that the field produced by zeros
leaks from one phase to another, with strength determined by
the cut size (the closest distance of zeros to the physical plane)
and the distance to the cut.

B. Physical accessibility of zeros

Considering the purely mathematical origin of zeros, one
might wonder if the complex fields corresponding to LY ze-
ros and the complex diagram are physically accessible. We
note that the LY zeros can be obtained either numerically
or experimentally [37–41,56,65–67]. There are primarily two
categories of methods to detect LY zeros: (1) the direct detec-
tion of zeros and (2) inferring zeros through postprocessing of
original experimental or simulation data.

The protocol for direct detection was first proposed in
Ref. [38], and was initially realized in Ref. [37]. This is done
by measuring the quantum coherence of a probe spin cou-
pled to an Ising-type bath, where the evolution of the former
relates to complex LY zeros [37,38]. This method was later
combined with universal quantum computers to overcome
numerical difficulties in classical computations, enabling zero
detection in a scalable manner as hardware improves [41].
Not only for LY zeros in spin systems but also Fisher
zeros corresponding to complex T̃ were observed as dynam-
ical vortices involving fermionic atoms in a driven optical
lattice [39,67].
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FIG. 10. A pair of schematics of the electrostatic analogies of LY
zeros to (a) phase transition and (b) crossover. (a) Below the critical
point, LY zeros (analogous to charges, both in gray solid line) could
distribute uniformly on the unit circle. This keeps the reduced ener-
getic state function F/T (analogous to the electric potential φ, both in
blue dashed line) a constant inside it and drives F/T (or φ) decrease
outside it, accompanied by a sharp change at the intersection point in
order parameter � and susceptibility χ (analogous to electric field ε

and field gradient ε ′, in green and brown dashed lines, respectively).
While (b) in the supercritical region, the shell is cut and LY zeros or
charges terminate at the edges (red points). F/T , �, and χ (φ, ε, and
ε ′) manifest continuous changes and finite maxima in the vicinity of
the edges. The different tendencies on both sides of the edges indicate
a crossover of the original two phases.

It would be easier to infer zeros mathematically. The
closest few zeros to the real axis can be extracted via the
high-order cumulant method, which is accessible in both
molecular simulations and experiments [40,65,66]. This
method is often used to identify phase transition in finite
system. It was first proposed in Ref. [40] to tackle trajectory
phase transition in glass models, and later to other phase
transitions, including experimental study of quenched phase
transition in Ref. [39], molecular zipper in Ref. [66], and
Bose-Einstein condensation in Ref. [65]. In the meantime,
full zeros can be derived from factorizing partition function,
albeit with reduced accuracy. For the first time, Binek derive
zeros via analyzing isothermal magnetization data of FeCl2

in Ref. [56]. As shown in Sec. II C 3, we discretized the
density of states and obtained an approximated polynomial
as the partition function. The results could be improved by
combining better sampling methods for density of states.

Besides these methods, we look forward to new experimen-
tal techniques to detect the complex phase diagram.

C. Implications of complex phase diagram

Complex fields can also reveal extra degrees of free-
dom within the scope of several emerging phenomena, such
as the dynamical quantum phase transition (DQPT), non-
Hermitian physics, and nonequilibrium statistics [45,46,68–
74]. For example, Heyl et al. suggested a connection between
the thermodynamic phase transition and real-time evolution
problems by introducing a complex effective temperature as
β ∼ it , revealing DQPT as the nonanalytical behavior at tem-
poral zeros t∗ after quench [45,46]. The complex interactions
as the coupling of the complex intensive field and real exten-
sive quantities also indicate the non-Hermitian nature of open
quantum systems [68–71,74].

Concerning metastability, Langer developed a theory us-
ing the analytical continuation of the free energy [75–78].
In contrast to the conventional scenario, complex free en-
ergy is required in his theory. We note this would be
an immediate conclusion of the complex phase diagram:
The free energy can be complex for thermal configura-
tions assigning complex fields. Besides, the well-known
interpretation of imaginary part of energy as lifetime also
applies for metastability. The evolution of a non-Hermitian
system, i.e., complex Hamiltonian H = Re[H] + iIm[H], is
written as

eiHt = e−Im[H ]t eiRe[H ]t , (26)

where the decay factor explicitly depends on the imaginary
part Im[H].

Not only metastable but also other nonequilibrium states
might find its position in our complex phase diagram, while
they can never be accessed in the real phase diagram. We
referred to the experiments which detected “hidden phase”
using infrared pulses or terahertz fields in our discussion
[72,73]. In these experiments, the typically forbidden ferro-
electric phase in strontium titanate can be transiently induced
by infrared pulses or terahertz fields. Here the oscillating
field drives the system out of equilibrium and hence out
of real phase diagram. In another example, metamagnetic
anomalies might also be interpreted as accumulated results
that oscillating fields access configurations of complex phase
diagram [79,80]. We anticipate a unified picture containing
both equilibrium and nonequilibrium phenomenon stands on
the complex phase diagram.

D. The p-V phase diagram and hidden configurations

In studies of the phase diagram, the choice of the axes
favors thermal fields, such as T and p. One of the main
reasons is that these fields are external variables, which are
independent of the observed system. Such treatment is as-
sociated with constant external field ensembles, such as the
isothermal and isobaric ones. However, there are hidden con-
figurations of the system which is not well defined and hence
cannot be accessed by fixing external fields. For example, the
coexisting state is hidden in the T -p phase diagram. While
most (T, p) configurations of a vdW fluid correspond to a
certain volume V , there exists a coexistence region below the
critical point where V abruptly changes at transition pressure,
i.e., a single (T, p) configuration corresponds to a set of
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FIG. 11. The p-V phase diagram of vdW fluids in the vicinity
of the critical point. Three isotherms are plotted in green lines, and
the coexistence line is plotted with Maxwell’s construction. Inside
the coexistence line, there is a mixture state of liquid and gas, where
metastable states exist outside the spinodal lines. Outside the coexis-
tence line, there is a continuous crossover from liquidlike to gaslike.
The κT and Cp extreme lines and the projections of the p and T edges
to the physical p-V plane are plotted and used as a boundary of the
fluid region.

states with different V s, as shown in Fig. 11. This implies
the limited power of using the conventional real T -p phase
diagram.

However, as discussed above, the complex phase diagram
might be able to describe metastable and nonequilibrium
phases and hence includes these coexistence configurations.
From the left branch to the right branch of coexistence line,
the configurations conforming to vdW equation of state are
known as superheated liquid, unstable one inside spinodal
line, supercooled vapor. It will be interesting to discover them
using the complex phase diagram while deeper insights await
future studies.

V. CONCLUSION

The YL theory offers fundamental insights into phase tran-
sition, particularly highlighting the complex characteristic of
zeros. But its theoretical value is sometimes underestimated
due to concerns regarding that zeros have to approach a
real axis for a phase transition to occur, or that the com-
plex character of zeros hinders a closer look and more
accessible reaches. In this paper, we present a concept of
complex phase diagram of higher dimensions than the con-
ventional one used, which contains full information of T
and p zeros. Our work emphasizes the intrinsic role of com-
plex zeros in determining observable phenomena in the real
plane, e.g., the supercritical anomalies of thermal responses
in Cp and KT (or κT ), and the different supercritical bound-
aries. With these, we conclude by saying that the complex
zeros stand firmly in physics which merit further experi-
mental explorations with the state of the art of measuring
techniques.
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APPENDIX A: REQUIREMENTS FOR THE
FACTORIZATION OF PARTITION FUNCTION

In the original paper, Lee and Yang factorize the grand
partition function of the 2D lattice gas model (or equivalently
the 2D Ising model) as a product of zeros terms of chemi-
cal potential (magnetic field). Since the number of atoms N
is always an integer, the partition function as exp[−βμ · N]
is exactly a polynomial of y = exp[−βμ] with complex ze-
ros ỹ∗ = exp[−βμ̃∗], where βμ is the chemical potential.
According to the fundamental theorem of algebra, this polyno-
mial is well established to factorize as the acknowledged form.
Fisher suggested a similar treatment to temperature T , known
as “Fisher zeros” T̃ ∗, without proof. However, it is nontrivial
to directly extend LY’s idea to arbitrary intensive fields. In
general, their conjugated extensive quantities are not integers,
i.e., for Fisher zeros the extensive quantity energy is real in
comparison with the LY zeros where the extensive quantity
N is an integer and hence the partition function is no longer
a polynomial. We note that the partition function is required
to be an entire function so that Weierstrass’s factorization
theorem can be used to factorizing generalized zeros including
Fisher zeros. This is valid when system fulfill certain though
physical prerequisites, as shown below.

We consider a general system of monoatomic gas with
number of atoms N . To describe its microstates and thermo-
dynamic properties, we use an extensive quantity AN = A(N )
and its conjugated field φA. Using the ensemble theory, the
partition function Z is simply the summation of the exponen-
tial factors over all possible microstates, as

ZN (φA) =
∑

all possible microstates

e−βAN ·φA . (A1)

For convenience, we use β = 1 in the following. Introducing
the complex field φ̃A = φA + iϕA (or simply φ̃ = φ + iϕ), the
complex partition function is constructed, as

ZN (φ̃) =
∑

all possible microstates

e−AN ·φ̃ . (A2)

The extensive quantity should be proportional to the system
size, as AλN ∼ λAN , λ ∈ Z+ when the system is enlarged λ

times. In fact, the interfacial terms or long-range interactions
for nonperiodic system would bring deviations from this. Here
we mainly concern the bulk terms in the thermodynamic limit
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or suppose the periodic boundary condition. The following
assumptions are made about the nature of the system:

(1) The particles have hard cores so that a system with
finite size can contain only finite atoms. Or simply, the density
of particles is finite in the thermodynamic limit. This is also
assumed by Lee and Yang in Ref. [34].

(2) The normalized density of states (or probability distri-
bution density of states) p(AN ) decays much faster than e−N .
Lee and yang assumed the interaction has a finite range so that
they need not consider infinite A. Here we generalize this.

(3) For any N , the averaged contribution of a single
atom to the extensive quantity is nowhere negatively infinite,
as limN→∞{AN/N} = a �= −∞. The assumption that u(r) is
nowhere minus infinity in Ref. [34] is a special case for
energy.

The second assumption can in principle be interpreted that
there should be no infinite characteristic scale in physical
system. On the one hand, pN (A → ∞) → 0; otherwise, the
infinite A contributes significantly. On the other hand, if a
system of scale N0 contains all its physics, then the density
of states of an enlarged system can be viewed as multiple
replicas of scale N0. The normalized density of states is given
by convolution products, as

p(AλN0 ) =
∑

∑λ
i=1 AN0 ,i=AλN0

λ∏
i=1

p(AN0,i ). (A3)

Consequently,

lim
λ→∞

|p(AλN0 )|1/λ → 0. (A4)

According to the third assumption, {An/n} where n =
1, . . . ,∞ is a bounded sequence. Consequently, it has a lower
boundary a0 that An/n � a0, ∀n. Whilst the upper boundary
seems unnecessary due to the negative exponential factor and
hence insignificant statistical contribution. It should be noted
that this condition is associated with the first assumption.
If it is not true, e.g., interactions between particles can be
negatively infinite, then more and more even infinite particles
will be attracted to the system. This is contradictory to the
restriction of hard cores.

Considering the distribution of A, the partition function in
Eq. (A2) is written as

ZN (φ̃) =
∞∑

k=1

nN,k exp[−φ̃ · AN,k], (A5)

when AN takes discrete values AN,k , where ∀i < j, Na0 <

AN,i < AN, j , and by

ZN (φ̃) =
∫ ∞

Na0

ρN (AN )e−φ̃·AN dAN , (A6)

when A distributes continuously. Here nN,k and ρN (AN ) are the
degeneracy of state and the density of state, respectively. Not-
ing that a constant is reducible in ensemble statistics, we shall
normalize them as the probability distribution function pN,k or
pN (AN ), which satisfy

∑
k pN,k = 1 or

∫ ∞
Na0

pN (AN )dAN = 1,

respectively. To demonstrate that ZN (φ̃) is an entire function
is equivalent to check if ZN (φ̃) is holomorphic with arbitrary

φ̃ value. We shall show the proof for the discrete case in
Eq. (A5). The continuous case for Eq. (A6) has a similar logic.

First, let us consider the case when the system is of fi-
nite size N . When there are finite levels of Ak , ZN (φ̃) is a
finite sum of exponential functions and is obviously an entire
function. Otherwise, there are infinite levels of Ak . Note that
the exponential factor is always positive and decreases with
increasing AN,k , the absolute summation of terms in ZN (φ̃)
equals |ZN (φ̃)|, satisfying

|ZN (φ̃)| =
∞∑

k=1

∣∣pN,k exp[−|φ̃ · AN,k]
∣∣

=
∞∑

k=1

pN,k exp[−Re[φ̃] · AN,k]

�
∞∑

k=1

pN,k exp[−Re[φ̃] · AN,1]

= exp[−Re[φ̃] · AN,1] = | exp[−φ̃ · AN,1]|. (A7)

Since exp[−φ̃ · AN,1] is a typical entire function whose radius
of convergence is infinite, ZN (φ̃) also converges absolutely
according to the comparison test. Thus, for finite N , ZN (φ̃) is
holomorphic in the whole complex plane and is also an entire
function.

Then we consider the case in the thermodynamic limit
N → ∞. Note that Eq. (A5) can be rewritten in argument
y = exp[−φ̃], as

lim
N→∞

ZN (φ̃) = lim
N→∞

∞∑
k=1

pN,kyAN,k

= lim
λ→∞

∞∑
k=1

pλN0,kyAλN0 ,k

∼ lim
λ→∞

∞∑
k=1

pλN0,kyλAN0 ,k . (A8)

It turns to prove that the polynomial-like series is convergent
in the complex plane. According to preliminary assumptions,
this is true since the coefficient and the index satisfies

lim
λ→∞

|pλN0,k|
1

λAN0 ,k = lim
λ→∞

{|pλN0,k|
1
λ }1/AN0 ,k = 0. (A9)

Combining these, the partition function is proved to be an
entire function both for finite system size and in the ther-
modynamic limit. Finite lower bound for the corresponding
extensive quantity and fast decayed density of states are im-
portant for this to hold true, which is always fulfilled for the
realistic system.

Thus, the partition function ZN (φ̃) of almost all ensembles
can be represented as a possibly infinite product involving
its zeros. Weierstrass’s factorization theorem claims the ex-
istence of an entire function g and a sequence of integers {pi}
such that ZN (A) can be factorized, as

Z (φ̃) = φ̃meg(φ̃)
∞∏

k=1

Epi

(
φ̃

ψ∗
i

)
, (A10)
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where ψ∗
i are the zeros, m = 0 since Z (φ̃ = 0) �= 0, and Ep(z)

takes the form of

Ep(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − z, p = 0

(1 − z) exp

[
p∑

k=1

zk

k

]
, p > 0.

(A11)

Physical interests are mainly on the zeros, underlying which
the critical behaviors and anomalies occur. Therefore, we ex-
tract the nonzero terms including eg(φ̃) and exponential terms
of Ep(φ̃/ψ∗

i ) into an analytic function and rewrite it in forms
of zeros, as

Z (φ̃) = eh(φ̃)
∞∏

k=1

(
1 − φ̃

ψ∗
k

)
, (A12)

where the form of eh(φ̃) is used to indicate that this part is
analytic and never takes zero values.

APPENDIX B: FACTORIZATION WITHIN
MULTIPLE FIELDS

Equation (A12) shows the factorization when there is a
single field. However, realistic system is described by mul-
tiple fields, such as T and p. Z (T, p) can only be factorized
according to T and p, respectively. To the best of our knowl-
edge, there is no factorization theorem for multiple variables.
However, this problem can be convert to the above case.
One can perform factorization by one field variable when
the other field variables are fixed. That is, the multivariable
function f (x1, . . . , xn) becomes a function of x1 when fixing
(x2 = x′

2, x3 = x′
3, . . . , xn = x′

n), as F (x1)|x′
2,x

′
3,··· ,x′

n
. If F (x1)

takes zero value at x∗
1 , then f (x1, . . . , xn) takes zero value at

(x∗
1, x′

2, x′
3, . . . , x′

n), as

f (x∗
1,x

′
2, x′

3, · · · , x′
n) = F (x∗

1 )|x′
2,x

′
3,··· ,x′

n
= 0. (B1)

Here the dependency of x∗
1 on (x2, . . . , xn) is expressed by

x∗
1 = g(x2, x3, . . . , xn). (B2)

Therefore, one can factorize f as

f (x1, x2, . . . , xn) ∼
∏

g

(x1 − g(x2, x3, . . . , xn)). (B3)

For the simplest case of Z (T, p), one can scan the zeros slice
by slice, i.e., varying p and derive zeros corresponding to
complex T for each fixed p and vice versa. In so doing, we
factorized the partition function by p zeros or T zeros, as
Eq. (1) in the main text. The high-dimensional nature of zeros
is manifested by assembling zeros in these slices to a unified
distribution in complex space of multiple field.

APPENDIX C: THE TERMINATION OF EXTREME LINES

According to the rigorous factorization formula Eq. (A12),
there are two terms in Z (x̃) which contribute differently to
free energy. Being always nonzero, the exponential part eh(x̃)

contributes to the properties of the system but never induces
singularity, while the product related to zeros

∏
(1 − x̃/x∗)

induces singularity. For instance, considering a single temper-
ature field x̃ = T and T zeros, the free energy writes

F (T ) ∼ − 1

kBT
ln[Z (T )]

= − 1

kBT

[
h(T ) +

∑
l

ln[T − T̃ ∗
l ]

]

= − 1

kBT

[
h(T ) +

∫
C

ρ(T̃ ∗) ln[T − T̃ ∗]dT̃ ∗
]
, (C1)

where the summation over all zeros in the second terms is
equivalently rewritten as an integral over the density of zeros.
The specific heat is given by

C = − T
∂2F

∂T 2

= 2

kBT 2

[
h(T ) +

∫
C

ρ(T̃ ∗) ln[T − T̃ ∗]dT̃ ∗
]

− 2

kBT

[
h′(T ) +

∫
C

ρ(T̃ ∗)

T − T̃ ∗ dT̃ ∗
]

+ 1

kB

[
h′′(T ) −

∫
C

ρ(T̃ ∗)

(T − T̃ ∗)2
dT̃ ∗

]
. (C2)

We ignore the contribution from the continuous part in the
main text since we focus on phase transition and crossover
region therein. Especially when the distance between the po-
sitions of thermal configurations and zeros |x − x̃∗| is small,
the thermal properties are mainly determined by the latter term
related to zeros.

However, the first term turns more significant for regions
far away from phase boundary and critical point, where the
distance |T − T̃ ∗| is large. While the contribution related to
the density of zeros would quickly decay with increasing
|T − T̃ ∗|, the contribution related to h(x) and its derivatives
are independent of this. Consequently, it would be difficult
even no longer able to perceive critical anomalies induced by
zero-related terms. This corresponds to the termination of the
extreme lines. In the main text, we have shown the numerical
results of vdW and water to verify this theoretical proposal.
As shown in Fig. 1, the maximum values of KT cannot be
distinguished when T > 1.07, and the maximum values of Cp

gradually become insignificant for higher ps, too. The similar
conclusion could be found for water in Fig. 3, where the κT

peak become insignificant for T > 800 K.
It should be noted that above formula works for thermo-

dynamic properties, and thus the termination behaviors are
explained for the Widom lines. However, it remains unclear
whether dynamic properties and dynamic supercritical bound-
aries conform to the same law. It was reported that Frenkel
line continues without a bound on the phase diagram [81,82].
In principle, one can address this by constructing a dynamic
ensemble with proper extensive and intensive dynamic quanti-
ties [83]. But it might be a difficult theoretical work to connect
the statistical results of dynamics to thermodynamic zeros,
which awaits further studies.
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