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A generalized one-dimensional telegrapher equation associated with an intermittent change of sign in the
velocity of a Kac’s flight has been proposed. To solve this random differential equation, we used the enlarged
master equation approach to obtain the exact differential equation for the evolution of a normalized positive
distribution. This distribution is associated with a generalized finite-velocity diffusionlike process. We studied
the robustness of the ballistic regime, the cutoff of its domain, and the time-dependent Gaussian convergence.
The second moment for the evolution of the profile has been studied as a function of non-Poisson statistics
(possibly intermittent) for the time intervals �i j in the Kac’s flight. Numerical results for the evolution of sharp
and wide initial profiles have also been presented. In addition, for comparison with a non-Gaussian process at
all times, we have revisited the non-Markov Poisson’s flight with exponential pulses. A theory for generalized
random flights with intermittent stochastic velocity and in the presence of a force is also presented, and the
stationary distribution for two classes of potential has been obtained.
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I. INTRODUCTION

One hundred years ago, the great mathematician Norbert
Wiener presented a fundamental work that was the origin of
stochastic calculus [1]. In this manner, the Wiener’s process
was the starting point to write the path integral representation
for the general description of the Brownian motion, and so it
was also the inspiration for Feynman’s path integral in quan-
tum mechanics [2,3]. We refer to Kac’s work for a historical
account of the Wiener integral [4] and its physical applications
in diffusion processes [5].

A pioneer path integral approach, in the context of hyper-
bolic diffusion [6–11], was presented by Kac to introduce
a simple representation of the solution of the telegrapher’s
equation (TE) [12]. In fact, Kac was able to find the solution
of the TE as a path integral in terms of the Poisson process.
That is, the hyperbolic diffusion in one dimension can be
represented as the space motion produced by binary changes
(sign) in the stochastic velocity. The key ingredient in this
description was to characterize statistically the time intervals
(�i, j ≡ {ti, t j}) when the velocity is constant in the random
flight. Therefore, Kac proved that when the time intervals
�i, j are subordinated to the Poisson statistics, the transport
turns out to be characterized by the Cattaneo-Fick hyperbolic
diffusion. A generalization of Kac’s idea has also recently
been presented in [11]. An important problem related to Kac’s
approach is the study of a finite-velocity diffusion in the
presence of a force (generalized overdamped Smoluchowski
approach). This problem was recently tackled by finding the
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stationary state [13,14]. The time-dependent solution in the
presence of a force (overdamped limit) can be represented as
a generalized Kac’s path integral [15].

The telegrapher process has also recently been generalized
with the aim of considering the motion of particles subject to
collisions that produce direction changes [16]. Also the tele-
graph process has been wrapped onto a non-Euclidean space
(a circle) [17], and for studying the coalescence phenomenon,
a family of interacting particles, each one governed by a
generalized integrated telegraph process, has been proposed
[18].

A Poisson-Kac process with intermittent stochastic veloc-
ity (noise) has several real-world applications. One example
is in the modeling of biological systems, such as the spread
of infectious diseases and intermittent locomotion [19]. The
Poisson-Kac process is also used to describe the evolution of
the disease over time, while the intermittent noise represents
random events, such as outbreaks or fluctuations in disease
transmission. Another application is in the modeling of inter-
mittent financial systems [20]. The Poisson-Kac process with
intermittent stochastic velocity can be used to analyze the
behavior of asset prices and capture unpredictable events in
markets, such as bursts of high volatility or abrupt changes in
trends. Additionally, this type of process is used in solid-state
physics to describe phenomena like the transport of charged
particles in disordered media, where the intermittent noise
represents interaction with random fluctuations in the medium
[21,22].

In biology, hyperbolic diffusion has been used to study
the propagation of bacteria [11]. In fact, the common E.
Coli mimics the run-and-tumble motion, i.e., the transport
is composed of an alternating mixing of runs (the agent
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propels itself) and tumbles (changing at random the direc-
tion of propagation) [23–26]. The so-called run-and-tumble
process, using Levy jump statistics, allows to include the
intermittence phenomenon, which has been detected in mo-
tion patterns of biological species [27–29]. Transport analysis
in terms of different time-tumble statistics is a fundamental
problem to be studied (distribution of the running times).
The present work can be framed in a run-and-tumble one-
dimensional (1D) picture, where the particle changes the
velocity sign with non-Poisson time statistics allowing inter-
mittence phenomena.

Here we have analyzed a random flight in terms of different
statistics for the random time intervals �i j characterizing the
velocity changes (sign). Exact analytical result is presented.
As a by-product, we study how robust the ballistic motion is
in terms of the statistic of time intervals �i j . In addition, a
theoretical approach concerning a particle in the presence of a
force and driven by intermittent noise has also been presented.
Then, the exact stationary distribution has been found for
different types of potential.

The organization of this paper is as follows: In Sec. II
we have revisited the random flight model. In the case when
the stochastic velocity is a Gaussian white noise, the Wiener
process is recovered. If the velocity is a Markovian binary
noise (dichotomic process), a TE is recovered for the evolu-
tion of the probability distribution function (PDF). While if
the velocity is a general binary non-Markovian noise (pos-
sibly intermittent), the evolution of the PDF is a partial
differential equation of fourth order. All these conclusions
are obtained in an exact manner by solving a random dif-
ferential equation with Markovian coefficients (the enlarged
master equation approach [22,30,31]). In addition, and for
comparison, we have revisited Poisson’s flight to show a non-
Gaussian diffusionlike process having a ballistic regime at
short times. In Sec. III we have solved the second moment for
the evolution of the PDF when the statistic of time intervals
�i j is non-Poisson, and also for the non-Markovian Poisson’s
flights (all-time non-Gaussian process). In Sec. IV we have
shown numerical results for the evolution of the PDF, of our
generalized TE, for different initial conditions, and we have
studied its time-dependent Gaussian convergence. In Sec. V
a general formulation for a random flight in the presence
of a force is presented, and the stationary state is found for
stable and unstable potentials. Finally, conclusions are intro-
duced in Sec. VI. Appendixes are dedicated to mathematical
details concerning Poisson’s flight, the enlarged master equa-
tion approach, the intermittent binary noise, the Green-Kubo
theorem applied to our random flight process, and Gaussian
invariants.

II. RANDOM FLIGHTS

A. The functional approach

The diffusion process can be stated in terms of the funda-
mental Wiener’s differential dW , which is written in terms of
a Gaussian white noise ε(t ) in the form dW = ε(t )dt . This re-
lation can also be written as a stochastic differential equation
(SDE) dW/dt = ε(t ). This SDE can also be interpreted as a
random flight. Therefore, a generalized diffusion process can

be expressed in terms of the SDE [2,21,22]:

dx

dt
= ξ (t ), t ∈ (0,∞), x ∈ (−∞,+∞); x(0) = x0, (1)

where x(t ) is the position of the particle and ξ (t ) is a generic
stochastic velocity characterized by its functional Gξ ([k(•)]);
see Appendix A. Therefore, the complete Kolmogorov hier-
archy for the set of n− times PDF of the process x(t ) can be
written by Fourier inversion of the functional [22]. In particu-
lar, when the characteristic functional of the noise is Gaussian,
Gξ ([k]) = exp −1

2

∫ ∞
0 k(t )2dt , the complete hierarchy of n −

times PDF of the process x(t ) can be obtained and corre-
sponds to the Wiener process (see Appendix A 1). In the limit
tn − tn−1 → 0 the path integral representation is recovered
[2,3]. Many noises have well-known functionals; therefore,
all the information for a generalized diffusion process can
immediately be inferred using the functional approach; for
example, the Levy flight [32], the Poisson flight [33], etc. [34].
We note that this theory is very suitable when the generic
noise ξ (t ) is non-Markovian and the functional Gξ ([k]) is
known; see Appendix A for a non-Markovian Poisson’s flight
example. We remark that solving a SDE with generic non-
Markovian noise demands an infinite Terwiel series expansion
(or functional series approach) for the calculation of the
PDF [15].

B. The master equation approach

In the particular situation when the noise ξ (t ) in (1) is
Markovian, it is possible to work out the mean value of
the random differential equation associated with its distri-
bution using the enlarged master equation approach (EME)
[22,30,31]. In the present paper, we will use this technique to
work out the evolution equation of the 1 − time PDF—in an
exact way—for a binary stochastic velocity [the noise ξ (t ) in
1]. Note that the “dichotomic” noise does not have a closed ex-
pression for its functional [34]; putting a dichotomic noise in
(1) corresponds to Kac’s flight with Poisson time increments
�i j ; see the next section.

We will also apply the EME approach in Sec. II D to work
out an intermittent (non-Markovian) binary stochastic noise
in (1), characterized by a biexponential waiting-time for the
time increments �i j . In Refs. [31,35,36] we have shown that a
binary noise with a biexponential renewal waiting-time can be
written as a Markov process using an embedded fourth-state
process.

C. Kac’s flights

Kac solved the problem (1) in a very elegant way [12]
considering that the particle moves with random velocity ±v.
However, an elementary collision could change the direc-
tion of the velocity while keeping the module constant. In
other words, the stochastic velocity can be written as ξ (t ) =
(−1)N (t )v,∀t � 0, where N (t ) is a Poisson process. Then, the
TE was obtained for the PDF of the variable x.

In this section, we tackle this problem using the EME tech-
nique for a Markov binary noise ξ (t ) [22,30,31]. By defining
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velocity-conditional distributions P±(x, t ) and using (1), we
can write the EME (see Appendix B),

∂t P+(x, t ) = −∂xvP+(x, t ) − aP+(x, t ) + aP−(x, t ), (2)

∂t P−(x, t ) = +∂xvP−(x, t ) + aP+(x, t ) − aP−(x, t ). (3)

Here we have used the fact that the binary noise ξ (t ) has
an exponential stationary correlation function: 〈ξ (t1)ξ (t2)〉 =
exp[−|t1 − t2|/τ ] and a = 1/2τ . Adding and subtracting
these equations, we get

∂t P(x, t ) = −v∂xQ(x, t ), (4)

∂t Q(x, t ) = −v∂xP(x, t ) − Q(x, t )/τ, (5)

where P(x, t ) ≡ P+(x, t ) + P−(x, t ) is the PDF [correspond-
ing to averaging over all realizations of the noise ξ (t ); see
(B5)], and Q(x, t ) = P+(x, t ) − P−(x, t ) is proportional to a
current. So, by combining (4) and (5), it is simple to obtain
the TE for P(x, t ):[

∂2
t + 1

τ
∂t − v2∂2

x

]
P(x, t ) = 0, τ−1 = 2a, (6)

where τ−1 is the rate of energy loss and v is the finite-
velocity propagation in a diffusionlike process. This equa-
tion can be solved with initial conditions (ICs) P(x, t )|t=0

and ∂t P(x, t )|t=0 consistent with the initial conditions for
P±(x, t = 0). We note that this is the evolution equation ob-
tained by Kac using Poisson time increments �i j for the
random changes in the velocity sign. The novelty of our work
will be to use the EME approach to tackle a non-Markovian
binary noise ξ (t ) (possibly intermittent) in (1).

D. The generalized Kac’s flights

Consider now a non-Markovian (biexponential) binary
stochastic velocity (noise) in (1), i.e., vξ (t ) = ±v,∀t � 0
(where v is the amplitude of the noise). Therefore, we charac-
terize the time intervals �i j with a biexponential waiting-time
function [31,35,36]:

ϕ(�i j ) = αpe−α�i j + βqe−β�i j , (7)

where p + q = 1 and the parameters fulfill α, β, p, q � 0
(with probability p the rate is fixed to be α, while with
probability q the rate is β). In this manner, keeping track of
fourth-states, {ξ±

α,β}, the embedded process turns out to be
Markovian [35]; see Appendix C.

We note that the key ingredient in Kac’s approach is a
Poisson statistics for the time intervals when the velocity is
constant in the random flight. This corresponds to an expo-
nential waiting-time function which is recovered from (7) in
the case α = β.

The current model has the advantage that when p 	 q and
α 	 β, the statistics for time intervals �i j will be intermittent,
while in the limit α → β, the stochastic process ξ (t ) goes to
the Markovian binary noise (dichotomic process—associated
with a Poisson statistics).

Ordering the set of states as {ξ+
α , ξ+

β , ξ−
α , ξ−

β }—our fourth
state Markov (biexponential) binary noise—we can introduce
auxiliary conditional-velocity functions: {P±

α,β}. Then using

the notation P̃ = {P+
α , P+

β , P−
α , P−

β }, we can write the EME,
see Appendix B, as

∂t P̃ = A · P̃ + H · P̃, (8)

with

A =

⎛
⎜⎜⎝

−v∂x 0 0 0
0 −v∂x 0 0
0 0 v∂x 0
0 0 0 v∂x

⎞
⎟⎟⎠, (9)

H =

⎛
⎜⎜⎝

−α 0 αp βp
0 −β αq βq
αp βp −α 0
αq βq 0 −β

⎞
⎟⎟⎠, (10)

where H is the master Hamiltonian for the biexponential bi-
nary noise [note that now we need four levels to characterize
a “Markovian” binary noise ξ (t )] [31,35]. We remark that the
name “master Hamiltonian” has nothing to do with the classic
Hamiltonian matrix. The matrix H is written in terms of the
transition probability matrix, and diagonal terms appear due
to the normalization constraint on the probability at all times.

Introducing the basis P = P+
α + P+

β + P−
α + P−

β , Q =
P+

α + P+
β − P−

α − P−
β , M = P+

α − P+
β − P−

α + P−
β , N = P+

α

− P+
β + P−

α − P−
β , and after a little bit of algebra, it is possible

to rewrite (8) in the form

∂t P = −v∂xQ, (11)

∂tQ = −v∂xP + (β − α)M − (α + β )Q, (12)

∂tM = −v∂xN − (pα + qβ )M − (pα − qβ )Q, (13)

∂tN = −v∂xM − (qα + pβ )N − (qα − pβ )P. (14)

These equations must be solved while providing ICs for the
auxiliary functions,

P(x, t )|t=0, Q(x, t )|t=0, M(x, t )|t=0, N (x, t )|t=0, (15)

consistent with the IC for P±
α,β (x, t )|t=0.

Solving Eqs. (11)–(14) for P we can obtain a differential
equation for the evolution of the PDF P(x, t ):

0 = ∂4
t P + f0,3∂

3
t P + f0,2∂

2
t P + f0,1∂t P

+ f2,0∂
2
x P + f4,0∂

4
x P + f2,2∂

2
x ∂2

t P + f2,1∂
2
x ∂t P. (16)

This is a fourth-order partial derivative equation (in time and
space), where the coefficients are

f0,3 = 2(α + β ),

f0,2 = 2(α + β ) + (β2 p + α2q + αβp2 + αβq2 + α2 pq

+ β2 pq + 3αβ ),

f0,1 = 2(αβ2 p2 + α2βq2 + α2βpq + αβ2 pq),

f2,0 = v2(αβ − αβp2 − αβq2 − α2 pq

− β2 pq − β2 p − α2q),

f4,0 = v4,

f2,2 = −2v2,

f2,1 = −(αpv2 + βpv2 + αqv2 + βqv2 + αv2 + βv2).
(17)
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By construction, the generalized TE (16) with coefficients
(17) fulfilling the conditions {α, β, v2} > 0, 1 � p � 0, q =
1 − p admits a normalized positive solution P(x, t ) at any time
t > 0, if it is a PDF for the IC P(x, t )|t=0.

In particular, we will be interested in the solution for an ini-
tially nonmoving symmetric pulse at the origin, P(x, t )|t=0 =
δ(x) [see Sec. IV for a general P(x, t )|t=0 = f (x)]. Then, in
the Fourier representation F[· · · ],

P̂(k, t ) ≡ F[P(x, t )] =
∫ +∞

−∞
eikxP(x, t )dx,

we obtain the initial conditions

F[P(x, t )]|t=0 = 1, ∂tF[P(x, t )]|t=0 = 0,

∂tF
[
∂2

x P(x, t )
]∣∣

t=0 = 0,

∂2
t F[P(x, t )]

∣∣
t=0 = −v2k2,

F
[
∂2

x P(x, t )
]∣∣

t=0 = −k2,

∂3
t F[P(x, t )]

∣∣
t=0 = (α + β )v2k2. (18)

The solution for the PDF in the Laplace L[· · · ] and Fourier
representation is denoted as

P̂(k, s) = L[P̂(k, t )] =
∫ +∞

0
e−st P̂(k, t )dt .

To simplify the notation, we use g(s) ≡ L[g(t )]. Then, we
write

P̂(k, s) = N1(k, s)

D1(k, s)
, (19)

where

N1(k, s) = v2(α + β + s)k2 + (βp + αq + s)(2αβ(p + q)

+ s(α + β + αp + βq) + s2)

and

D1(k, s) = v4k4 + v2(α2(p + 1)q − 2αβqp + β2 p(q + 1)

+ 2s(α + β ) + 2s2)k2 + s(βp + αq + s)(2αβ

+ s(α + β + αp + βq) + s2). (20)

Alternatively, we can use the change of parameters α =
1/2τ1 and β = 1/2τ2 to rewrite P̂(k, s) in terms of the
timescales {τ1, τ2}.

1. The Poisson-Kac limit (ordinary TE)

For τ1 = τ2 = τ (or equivalently β = α → 1/2τ ), the
ordinary TE is recovered. That is, in the Fourier-Laplace rep-
resentation, the solution is obtained as

P̂(k, s) = (s + 1/τ )

s(s + 1/τ ) + v2k2
. (21)

This solution considers both short (t 
 τ ) and long (t 	 τ )
times for wave and diffusion behaviors. In the solution (19),
both timescales (τ1, τ2) and probability weight p control the
short and long time regimes. The transition between both
regimes can be characterized by the dispersion of the PDF,
or by studying time-dependent Gaussian invariants. These
analyses will be presented in the next sections.

III. THE SECOND MOMENT 〈x(t )2〉 USING DIFFERENT
STOCHASTIC VELOCITIES ξ(t )

The Laplace representation of the second moment for the
random flight (1) is calculated as

〈x(s)2〉 = −∂2
k P̂(k, s)|k=0, (22)

therefore we can calculate the dispersion for the generalized
diffusion process x(t ) with different models for the stochastic
velocity ξ (t ).

A. Using Markovian binary noise ξ(t )

For the binary Markovian noise, from (21) and (22), using
x0 = 0 we get

〈x(s)2〉 = 2v2

s2(s + 1/τ )
. (23)

Taking the inverse Laplace transform of this equation,
we obtain 〈x(t )2〉 = 2τv2(τe−t/τ + t − τ ). If t 
 τ , we get
〈x(t )2〉 ∼ v2t2 (ballistic regimen), while in the opposite
regime, i.e., t 	 τ , we obtain 〈x(t )2〉 ∼ 2τv2t (diffusive
regimen). These results correspond to the ordinary TE
[8,12,22,31].

B. Using biexponential (non-Markovian) binary noise ξ(t )

For the non-Markovian binary noise, using (19) in (22) and
taking x0 = 0 we obtain (in terms of parameters τ1, τ2, p)

〈x(s)2〉 = 2v2
{
τ 2

2 [−p2 + 2sτ1(2sτ1 + 1) + 1] + 2τ2τ1[(p − 1)p + sτ1] − (p − 2)pτ 2
1

}
s2[τ2(−p + 2sτ1 + 1) + pτ1][(p + 1)sτ2 + sτ1(−p + 2sτ2 + 2) + 1]

. (24)

From the Tauberian theorem, if t → 0, we get 〈x(t )2〉 ∼ v2t2

(ballistic behavior), while in the regime t → ∞, we get a
diffusive behavior,

〈x(t )2〉 ∼ 2v2

[
p(q + 1)τ 2

1 − 2τ2τ1 pq + (p + 1)qτ 2
2

]
(pτ1 + qτ2)

t (25)

= v2

[
2p − 4pατw + (1 + p)α2τ 2

w

]
α2qτw

t, (26)

where

τw = α

p
+ β

q

is the mean waiting-time τw for the biexponential function (7),
which characterizes the sign changes in the stochastic velocity
vξ (t ) = ±v,∀t � 0 in the SDE (1).

With these results, we conclude that the fourth-order par-
tial differential equation (16) also includes the wave and
diffusive regimes as in the TE. This generalized TE contains
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two timescales, τ1 and τ2, characterizing two rates for the
absorption of energy. These timescales can lead to an in-
termittent regime depending on the parameters, as we have
mentioned before. In the case τ1 = τ2, we recover the results
from the ordinary TE.

C. Poisson’s flight: ẋ(t ) = ξ(t )

A Poisson flight with an exponential-shaped pulse is non-
Markovian and non-Gaussian at all times. From the cumulants
of the Poisson flight (A10) and (A11), we get (for any x0)

〈x(t )〉 = x0 − Qω0τc(1 − e−t/τc ), ∀t � 0, (27)

〈x(t )2〉 − 〈x(t )〉2 = 2!Qτcω
2
0 B(3, 0, 1 − e−t/τc ), ∀t � 0.

(28)

In particular, the second moment follows immediately, using
(A12) as

〈x(t )2〉 = (
x2

0 + 2Qω2
0t

) − 2Qω2
0τc

(
1 + x0

ω0

)
y

+ Qω2
0τc(−1 + Qτc)y2, ∀t � 0, (29)

with

y ≡ (1 − e−t/τc ).

We will readily check 〈x2(t = 0)〉 = x2
0 and also the limits,

〈x2(t → 0)〉 ∼ Qω2
0τc

[(
1 + x0

ω0

)
+ (−1 + Qτc)

](
t

τc

)2

+ O(t3), (30)

that is, a ballistic behavior for short times, while in the long-
time regime we obtain

〈x2(t → ∞)〉 ∼ (
x2

0 + 2Qω2
0t

) − 2Qω2
0τc

(
1 + x0

ω0

)

+ Qω2
0τc(−1 + Qτc) + · · ·, (31)

that is, a time linear behavior.
We note that the second moment of a Poisson flight has

similar short (quadratic) and long (linear) time behaviors to
those for the random flight (1) with binary noise. Neverthe-
less, we remark that a Poisson flight, in general, is never
Gaussian because Kn(t → ∞) ∼ t,∀n � 2 (all cumulants are
non-null); see Appendix A for the definition of the moments
Mn and cumulants Kn. So it is interesting to show here a
non-Gaussian process, having the same short and long time
asymptotic behaviors.

General remark

After Laplace inversion of (24) the corresponding second
moments are shown in Fig. 1. This analysis shows a quadratic
behavior for short time (t → 0) and a linear behavior in
the long-time limit (t → ∞). We notice that 〈x(t )2〉 (for all
cases studied) has similar asymptotic behaviors. The most
interesting case corresponds to the intermittent binary noise
ξ (t ) limit (p = 0.98, τ2 = 20), where the ballistic regimen
is delayed compared to the remaining cases. Additionally,
we plot an arbitrary non-Markovian (nonintermittent) case

10
-4

10
-2

10
0

10
2

10
4

t (arbitrary units)

10
-8

10
-4

10
0

10
4

10
8

<
x

(t
)2

>

Ordinary TE

Poisson Q = 0.1
Poisson Q = 1
Poisson Q = 10
p=0.98, τ2=20
p=0.5, τ2=20

FIG. 1. Second moment 〈x(t )2〉 of the PDF P(x, t ) as a function
of time. From top to bottom (in log-log): Ordinary TE (black circles),
Poisson noise: Q = 0.1 (dashed lines), Q = 1 (dotted lines), Q = 10
(dashed and lines), non-Markovian noise with τ2 = 20 and p = 0.98
(intermittent case), and p = 0.5 noises ξ (t ) in Eq. (1). The remaining
parameters are set to unit.

(p = 0.5, τ2 = 20) for contrast. As can be seen, the inclusion
of generalized non-Poisson statistics is a crucial ingredient
to control the crossover between the ballistic and diffusive
regime in the transport process.

For the sake of completeness, we mention here that for
any noise ξ (t ), using the second moment 〈x(t )2〉 and the
Green-Kubo formula, we can readily calculate (analytically)
the stationary velocity autocorrelation function (VAF) of the
random flight process (1), and the diffusion coefficient of the
process; see Appendix D.

IV. NUMERICAL SOLUTION
OF THE GENERALIZED TE (16)

To observe the transition from the ballistic to the diffusive
regime, we present several results from the numerical solution
of the evolution of the PDF for the generalized random flight
(1). We have solved (11)–(14), which is equivalent to solving
(16) using two different initial conditions for the PDF f (x),
with the consistent auxiliary initial conditions:

P(x, t = 0) = f (x)� 0, Q(x, t = 0) = 0, M(x, t = 0) = 0,

N (x, t = 0) = 0.

A. Initial conditions

First, we consider f (x) as a narrow Gaussian at t = 0
(sharp IC), that is,

f (x) = 1√
2πσ 2

exp

(
− x2

2σ 2

)
, (32)

and we take σ = 0.06. In Fig. 2, we show P(x, t ) as a function
of position x for some values of t = 0, 2, 4, 6, 8, 10, 12, 14
for the Markovian case with [β = α or τ2 = τ1 = 1 in (16)].
We observe that the ballistic regimen vanishes with in-
creasing time. In Fig. 3, we compare these results with
the intermittent case for the non-Markovian binary noise
ξ (t ), i.e., p = 0.98, τ2 = 20 (α 	 β or τ2 	 τ1), for
t = 0, 4, 8, 12, 16, 20, 24, 28, 32 (the rest of parameters are
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FIG. 2. Evolution of PDF P(x, t ) as a function of x for the ordi-
nary TE, t = 0 (black), 2 (red), 4 (green), 6 (blue), 8 (yellow), 10
(brown), 12 (orange), 14 (violet). The initial condition is sharp:

P(x, t )|t=0 = f (x) = e− x2

2σ2 /
√

2πσ , with σ = 0.06. Probabilities at
different times have been shifted for better visualization. The shift
between consecutive PDFs is 0.5 and uniform.

set to unit). We note that, for a process x(t ) with a narrow
Gaussian IC, the evolution of the pulse has a longer ballistic
regime than for the ordinary TE. Note that even after t = 30
the evolution of the pulse is ballistic.

As a second IC, we consider a Student T-Distribution for
f (x) at t = 0, i.e.,

f (x) =
(

ν
ν+x2

) ν+1
2

√
νB

(
ν
2 , 1

2

) . (33)

This is a power-law distribution for the IC. We take the pa-
rameter ν = 4 with B(a, b) = �(a)�(b)

�(a+b) = ∫ 1
0 dzza−1(1 − z)b−1

as the Euler beta function [37]. In Fig. 4 we plot P(x, t ) as a
function of x for a Markovian noise [β = α or τ2 = τ1 = 1
in (16)] for t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6. The IC (33) is
wide in t = 0, and P(x, t ) hardly develops two peaks with
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FIG. 3. PDF P(x, t ) as a function of x for the intermittent noise
case with p = 0.98, τ2 = 20, τ1 = 1 [α 	 β in (8)] for t = 0
(black), 4 (red), 8 (green), 12 (blue), 16 (yellow), 20 (brown), 24
(gray), 28 (violet), 32 (celeste). The initial condition is sharp:

P(x, t )|t=0 = f (x) = e− x2

2σ2 /
√

2πσ , with σ = 0.06. Probabilities at
different times have been shifted for better visualization. The shift
between consecutive PDFs is 0.5 and uniform.
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FIG. 4. Evolution of P(x, t ) as a function of x for the
ordinary TE, for t = 0 (black), 0.5 (red), 1 (green), 1.5
(blue), 2 (yellow), 2.5 (brown), 3 (orange), 4 (violet), 6 (ce-
leste). The initial condition is wide: P(x, t )|t=0 = f (x) = ν

ν+1
2 (ν +

x2)−
ν+1

2 /
√

νB( ν

2 , 1
2 ), with ν = 4. Probabilities at different times have

been shifted for better visualization. The shift between consecutive
PDFs is 0.5 and uniform.

increasing time (in comparison with the previous IC). Instead
of developing two peaks, the profile is almost flattened, so
the profile quickly reaches the diffusive regime. In contrast,
in Fig. 5, for the non-Markovian (intermittent) binary noise
with p = 0.98, τ2 = 20 (the rest of parameters are set to unit),
a wide initial pulse (33) develops two wide peaks moving in
opposite directions, one with respect to the other. The peak
of the right is moving with velocity v (telegrapher’s velocity);
in this case we do not observe any abrupt cutoff in the prob-
ability, as it is for the case of sharp IC (a similar behavior is
obtained for the left peak).

Therefore, we reach the following conclusions: the cutoff
is due to the sharp IC and can be softened with a wider IC.
The parameters of the noise are crucial to preserve the ballistic
regime, but the peak moves (with the velocity of the TE) inde-
pendently of the noise parameters. Nevertheless, intermittent
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FIG. 5. P(x, t ) as a function of x for an intermittent noise
with p = 0.98, τ2 = 20, τ1 = 1 [α 	 β in (8)] for t = 0
(black), 5 (red), 10 (green), 15 (blue), 20 (yellow), 25
(brown), 30 (orange), 35 (violet), 40 (celeste). The initial condition
is P(x, t )|t=0 = f (x) = ν

ν+1
2 (ν + x2)−

ν+1
2 /

√
νB( ν

2 , 1
2 ), with ν = 4.

Probabilities at different times have been shifted for better visual-
ization. The shift between consecutive PDFs is 0.5 and uniform.
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binary stochastic velocity delays the ballistic regime in the
time evolution.

B. Softness in the support of the PDF

It is known that the solution of the ordinary TE presents a
cutoff in its support if the IC is a δ peak. This fact can readily
be seen from the presence of the step function in its solution;
that is, there is a time-dependent cutoff characterized by the
presence of the multiplicative factor [�(x + vt ) − �(x − vt )]
in the solution of the TE, if the IC is P(x, t )|t=0 = δ(x) and
∂t P(x, t )|t=0 = 0 [6,9].

When the IC is not sharp, the cutoff is not abrupt because
there is mass in all the domain of the initial distribution [10].
Therefore, it is interesting to present a figure showing how
this cutoff is softened by a wide IC. In addition to this issue,
in the same figure, we are going to show that the cutoff is
an intrinsic phenomenon due to the finite-velocity increments
in Eq. (1) (the binary noise). Also, we will show that this
cutoff only depends on the magnitude of the velocity v and
it is independent of noise parameters: {τ1, τ2, p}.

We have studied half of the area of the PDF as a function
of x and for different noise parameters. That is, we define the
function

A(x, t ) =
∫ x

0
P(x′, t )dx′. (34)

In Fig. 6, we show A(x, t ) as a function of x for different
times for the ordinary TE and the generalized TE. We study
this function considering two ICs for the initial pulse. Then, as
expected, it can be seen that the plots corresponding to a sharp
IC are always above the ones corresponding to a wide IC.
Also, by using the wide IC (33), it can be seen that the cutoff
is softened (before and after x = vt), while if the IC is sharp
(32), the cutoff is abrupt and occurs at the time-dependent
position: x = vt , even for an intermittent stochastic velocity
in the random flight.

C. Gaussian convergence of the PDF

It is known that the solution of the ordinary TE (6) con-
verges to the Gaussian distribution as time goes on. The same
happens with the solution of the generalized TE (16). Here,
the point that we want to emphasize is to show how this con-
vergence happens, and the way to control this time-dependent
convergence by changing the noise parameters {τ1, τ2, p}.
To show this issue, we calculate some Gaussian invariants
like the Kurtosis for each particular case using Markovian,
non-Markovian, and intermittent noises ξ (t ) in the random
flight (1). If the process were Gaussian, the Kurtosis would be
K = M4/M2

2 = 3; see Appendix E. For a generic distribution,
another important measure that uses higher cumulants is the
invariant H, which we define as

H = M6

M3
2

= 15 + 15C4 + C6. (35)

Here, Cj is calculated in terms of cumulants Kj and moments
Mj as

C4 = K4/M2
2 , C6 = K6/M3

2 . (36)

FIG. 6. Half of the area of the PDF P(x, t ). The measure
A(x, t ) as a function of space x for times t = 1, 5, 10, 20, 30. Top
figure: Markovian noise ξ (t ) (with τ = 1), and bottom figure: non-
Markovian noise ξ (t ) (with p = 0.98, τ2 = 20). Dashed lines for
a wide T-student IC, and continuous lines for a sharp IC. In the
Markovian case—at short times t = 1, 5—the cutoff can clearly be
seen, while for later times it is harder to see because the peak
disappears in the time-evolution of the PDF. In the non-Markovian
case (intermittent) the cutoff can readily be seen at all times. The
remaining parameters are set to the unit.

Therefore, from (35) we see that for a Gaussian distribution,
H = 15.

For a generic symmetric distribution, all cumulants adopt a
very simple expression [22]:

K4 = M4 − 3M2
2 , K6 = M6 − 15M4M2 + 30M3

2 . (37)

Then, using the solution (19) of our generalized TE (16), we
can calculate all moments Mj ≡ 〈x(s) j〉, and therefore after
Laplace inversion, the invariants H and K as a function of
time and for different values of noise parameters are {τ1 =
1/2α, τ2 = 1/2β, p = 1 − q}.

In Fig. 7, we show H and K as functions of time for several
values of {τ1, τ2, p} for the generalized TE. These functions
exhibit nonmonotonic behavior, showing a maximum depar-
ture from the Gaussian invariant values. The invariants H(t )
and K(t ) converge from above to the Gaussian values indicat-
ing that the solution of the generalized TE is different from
that of the ordinary TE. In the long-time regime, the conver-
gence to the Gaussian values follows a power-law: H(t ) ∼
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FIG. 7. Invariant H(t ) and Kurtosis K(t ) (in the inset) both as
a function of time and for two models of noises ξ (t ) in Eq. (1):
Markovian (τ = 1) and non-Markovian (p = 0.98, τ2 = 20) in the
intermittent case. The rest of the parameters are set to the unit. In
both figures, the IC is sharp (32). In both figures, plots below the
constant values 15 and 3 correspond to the convergence from the
solution of the ordinary TE (black lines).

15 + τH/t and K(t ) ∼ 3 + τK/t . While these functions have
similar long-time behaviors, H magnifies the non-Gaussian
relaxation. In Appendix E, we explicitly give the timescale τH

as a function of the noise parameters.

V. INTERMITTENT HYPERBOLIC DIFFUSION IN THE
PRESENCE OF A FORCE

Using Terwiel’s diagrams, the evolution equation for the
PDF for a random flight in the presence of a force (in the
overdamped limit) and driven by Markovian binary velocity
increments was presented in [14]. The time-dependent solu-
tion was introduced as a generalized Kac’s path integral, see
Appendix B.1 in [15]. In Refs. [13,14], the stationary PDF for

the generalized Smoluchoswki-like dynamics has been solved
for several stable and unstable potentials. Notably, the support
of the PDF is characterized by a finite domain and there is
a multimodal transition as a result of anharmonic potentials
and the competition between the two transport regimens: bal-
listic and diffusive. In all cases, the shape of the asymptotic
PDF depends on the flatness of the potential and the values
of TE parameters, i.e., finite velocity v and relaxation time
τ = 1/2a. Thus, it is important to generalize this analysis
considering an intermittent binary stochastic velocity, as well
as to study how the stationary state of the PDF is modified by
noise’s parameters {τ1, τ2, p}.

Using the present EME approach we can also solve the evo-
lution equation for the PDF for a random flight in the presence
of a force and driven by non-Markovian (intermittent) binary
stochastic velocity. To work out this problem, we follow the
method presented in Sec. II D.

Consider a Smoluchowski-like process with finite-velocity
diffusion, described by the SDE,

dx

dt
= h(x) + ξ (t ), t ∈ (0,∞), x(0) = x0. (38)

With ξ (t ) chosen to be our four-state Markov binary noise of
Sec. II D, the continuity equation in the presence of a force
h(x) is now

∂tρ(x, t ) = −∂x{[h(x) + ξ (t )]ρ(x, t )},
ρ(x, t0) = δ(x − x0), t � t0. (39)

Using the auxiliary conditional functions {P±
α,β} and the

notation P̃ = {P+
α , P+

β , P−
α , P−

β }, we can write the EME as (see
Appendix B)

∂t P̃ = B · P̃ + H · P̃, (40)

with

B =

⎛
⎜⎜⎝

−∂x[h(x) + v] 0 0 0
0 −∂x[h(x) + v] 0 0
0 0 −∂x[h(x) − v] 0
0 0 0 −∂x[h(x) − v]

⎞
⎟⎟⎠. (41)

The master Hamiltonian H in (40) is the same as that given in
(10).

The procedure to get the mean value of the density,
〈ρ(x, t )〉 = P+

α + P+
β + P−

α + P−
β , follows as in Sec. II D [see

(B5)]. Here the analysis of the stationary state will be pre-
sented. From (40) and in the limit p → 1 or q → 1, or τ2 →
τ1 (β → α), the stochastic process ξ (t ) goes to the Marko-
vian binary noise. Then, using Terwiel operators, the time
evolution equation for 〈ρ〉 ≡ P can be written as a hyperbolic
Smoluchoswki-like differential equation [15].

Another way to calculate the average of (39) is by
using (40) and our previous basis: P = P+

α + P+
β + P−

α +
P−

β , Q = P+
α + P+

β − P−
α − P−

β , M = P+
α − P+

β − P−
α + P−

β ,
N = P+

α − P+
β + P−

α − P−
β ; see Sec. II D. Therefore, we

obtain equations similar to (11)–(14), plus new terms depend-
ing on h(x):

∂t P = −v∂xQ − ∂xh(x)P, (42)

∂tQ = −v∂xP − ∂xh(x)Q + (β − α)M − (α + β )Q,

(43)

∂tM = −v∂xN − ∂xh(x)M− (pα + qβ )M − (pα − qβ )Q,

(44)

∂tN = −v∂xM − ∂xh(x)N − (qα + pβ )N − (qα − pβ )P.

(45)
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Here we focus on the stationary PDF, i.e., ∂t P = 0 and ∂tQ = 0, ∂tM = 0, ∂tN = 0 for t → ∞. For the Markovian noise
(p → 1 or q → 1, or β → α), we obtain a simple differential equation for the PDF Pst as in [14]:

2h(x)[α + h′(x)]Pst(x)

v
−

(
v − h(x)2

v

)
P′

st(x) = 0. (46)

Solving this equation, we obtain an analytical solution (where C is a normalization constant):

Pst(x) = C exp

[ ∫ x

0

2h(y)[α + h′(y)]

v2 − h(y)2
dy

]
. (47)

We note that we can write the solution as a function of a deterministic potential U (x) as in [14],

h(x) = −U ′(x). (48)

In the general case [non-Markovian, possibly intermittent stochastic velocity ξ (t )], we obtain [using (42)–(45)] an analytical
differential equation for Pst (x) as follows:

− [h′(x) + βp + αq]G(y) + [v2 − h(x)2]{h(x)P′(x)[α + β + 5h′(x) + αp + βq] + [h(x) − v][h(x) + v]P′′(x)}
− P(x)[R(x) + 2h(x)2{h′(x)[α + β + 2h′(x) + αp + βq] + α2 p + β2q}] = 0, (49)

where

G(x) =
∫ x

0
{A(y) + B(y)}dy, (50)

with

A(y) = [P′′(y)]3 + {[pα + α + qβ + β + 5h′(y)]P′(y)

+ 2P(y)h′′(y)}h(y)2, (51)

B(y) = [2P(y){pα2 + qβ2 + h′(y)[pα + α + qβ + β

+ 2h′(y)]} − v2P′′(y)]h(y)

− v2[pα + qβ + h′(y)]P′(y), (52)

and

R(x) = −2v2h(x)[h′′(x)]3[h′′(x)]2{(α − β )(αq − βp)

− h′(x)[α + β + 2h′(x)]}. (53)

By construction, the solution P(x, t ) of this set of equa-
tions must be positive for all values of the noise parameters
{α, β, p + q = 1} if P(x, t )|t=0 > 0,∀x ∈ Dx. We note that it
is easier to solve numerically the coupled differential system
of Eqs. (42)–(45) than the integral-differential equations (49)–
(53). Therefore, we obtain Pst(x) numerically from (42)–(45)
using ∂t P = 0, ∂tQ = 0, ∂tM = 0, ∂tN = 0 (for t → ∞),
and Pst(0)/const = 1, with Q(0) = 0, M(0) = 0, N (0) = 0
for t → ∞.

In Fig. 8, we study the anharmonic potential U (x) = 1
3 x3

for Markovian and non-Markovian stochastic binary velocity
ξ (t ). The parameters are β = α/40, p = 0.98, v = 1, and
α = 1, 1.5, 2.5, 27 (all corresponding to intermittent cases).
We notice that for α close to 1, the intermittence produces a
stationary state that is similar to the Markovian (dichotomic)
case presented in Ref. [14], while for α 	 1 the intermittent
noise prevents the (generic) transition from infinite to zero at
the border of Dx; that is, the transition between ∪ to ∩ shapes.

In Fig. 9, we study the harmonic potential U (x) = 1
2 x2 for

both Markovian and non-Markovian ξ (t ). The parameters are
β = α/40, p = 0.98, v = 1, and α = 0.9, 1.1, 5, 27 [all cor-
responding to intermittent stochastic velocities or noise ξ (t )].

As before, the intermittence produces a stationary state that
is similar to the Markovian (dichotomic) case [14]. Neverthe-
less, for α = 1.1 and 5 both cases prevent the transition from
∪ to ∩ shapes. In addition, for α 	 1 it can be seen that the
stationary distribution approaches the Gaussian distribution
better.

In all figures, it is possible to see that the domain Dx

where the stationary Pst(x) is defined remains similar to the
case when the noise is Markovian [13,14]. It is interesting to
point out that, in the intermittent regime, new scenarios for the
support of the stationary distribution may appear as a function
of the noise parameters. These results must be studied as a
function of all phase-space parameters {v, τ1, τ2, p} and com-
pared with stochastic simulations for the interpretation of the
physical model.

Another possibility is to consider the joint dynamics in
the space and velocity [11,15]. In this case, instead of (38)

0

Markov noise
Non-Markov noise

0

P
st
(x

)
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α = 1.5

α = 2.5

α = 27
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FIG. 8. PDF Pst(x) as a function of position x, for Markovian (full
black lines) and intermittent noise (red dashed lines). The parameters
are β = α/40, p = 0.98, v = 1 and α = 1, 1.5, 2.5, 27 (for both
cases). For U (x) = 1

3 x3.
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FIG. 9. PDF Pst(x) as a function of position x, for Markovian (full
black lines) and intermittent noise (red dashed lines). The parameters
are β = α/40, p = 0.98, v = 1 and α = 0.9, 1.1, 5, 27 (for both
cases). For U (x) = 1

2 x2.

we have two equations: ẋ = v(t ), v̇ = −γ v + h(x) + ξ (t ),
where ξ (t ) is the noise and γ is a dissipative parameter.
Therefore, the continuity equation is now for the density
ρ(x, v, t ), and the matrix system corresponding to the EME
will be of dimension R8×8

e .

VI. CONCLUSIONS

It is well known that Wiener’s process can be written as a
random flight when the stochastic velocity is a Gaussian white
noise. If the stochastic velocity is a binary Markovian noise
(dichotomic noise for the changes in the direction of the 1D
velocity [12]), Kac proved, many years ago, that the diffusion
turns out to be hyperbolic (that is, the PDF is governed by the
TE). In the present work, based on Kac’s random flight idea,
we have used different statistics for the time intervals �i j .
Then we have analyzed the robustness of the ballistic regime
as well as the Gaussian convergence of the profile.

We have presented a random flight in which the stochastic
velocity is a binary non-Markovian noise with the possibil-
ity of intermittence. This situation is quite different from
the usual Poisson-Kac flight [12] and provides more con-
trol over the ballistic-diffusion transition. We have found
that the evolution equation for this wave-diffusion dynamics
is a fourth-order partial differential equation that preserves
positivity and normalization for a generalized diffusion-
like process, and we have found the exact solution in the
Fourier-Laplace representation. We have also revisited a non-
Markovian Poisson flight (always non-Gaussian) in order to
compare this process with the one associated with a random
flight with a binary stochastic velocity. Then, the characteris-
tic functional of the Poisson noise with exponential pulses has
been used to present analytical results of the Poisson flights.

Using the Fourier-Laplace representation, we have calcu-
lated the exact solution of our generalized TE (random flights
having a non-Poisson time statistics interval �i j). We have

then calculated the second moment to study the transition
from the ballistic to diffusive regime. We have presented
asymptotic expressions to study the robustness of the ballistic
behavior as a function of noise parameters.

The cutoff of the support and Gaussian invariants have
been studied to show the time-dependent convergence of the
PDF to the diffusive regime. That is, H(t → ∞) ∼ 15 + τH/t
and K(t → ∞) ∼ 3 + τK/t with characteristic timescales.

We have found that the PDF for our generalized hyperbolic
diffusion is more malleable in terms of timescales {τ1, τ2}
than the ordinary telegrapher’s profile. We have conducted a
numerical analysis for the time-evolution of the PDF, using
two different ICs, to study the support of the distribution.

We conclude by noting that the EME approach has also
been used to solve the PDF for a random flight in the presence
of a force and driven by intermittent binary velocity incre-
ments. We have explicitly calculated the stationary PDF Pst(x)
for a random flight in the presence of two different potentials
(stable and unstable), and we have presented its behavior to
be compared with the Markovian dichotomic noise case. The
interesting analysis of the support in the stationary state, as
a function of noise’s parameters, is currently under investiga-
tion. Extended numerical analysis concerning these subjects
will be presented elsewhere.

The wave characteristics for the solution of the ordinary
TE can readily be demonstrated by calculating the localized
gap and/or studying the penetration of a wave [39,40]. This
localized gap is described by a critical Fourier number kc,
which can also be calculated from the solution (19) of the
present generalized TE (16). Works in these directions will
be presented in a future contribution.

The analysis of the survival probability for a run-and-
tumble particle with and without potential [41], and in the
presence of intermittence in the stochastic velocity, is an im-
portant issue that is outside the scope of the present work and
will be considered in the future.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: REVISITING A POISSON FLIGHT

An integrated Poisson process x(t ) is defined by the SDE
(1) when ξ (t ) is a Poisson’s noise. That is, considering the
stationary zero mean-value Poisson noise:

ξ (t ′) =
n(t ′ )∑
j=1

ω jh(t ′ − t j ) − Qω0 with t ′ ∈ (0,∞),

ξ (0) = −Qω0, h(u) = 0, ∀u < 0. (A1)

The positive random variables ω j are statistically indepen-
dent and equally distributed with the distribution φ(ω) =
e−ω/ω0/ω0 (so its mean value is ω = ω0), and h(t ) is an arbi-
trary positive normalized function characterizing the shape of
each pulse [22,33,38]. In (A1) the number n(t ′) states that it is
a Poisson counting process of rate Q, with events occurring
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at random times t j . If h(t ) is not a δ function, the process
(A1) is called colored Poisson noise. Using the characteristic
functional of a noise ξ (t ) [the average 〈· · · 〉 is over all stochas-
tic realizations of ξ (t ), and k(t ) is a test function],

Gξ ([k(•)]) =
〈
exp i

∫ ∞

0
k(t )ξ (t )dt

〉
with

∫ ∞

0
k(t )dt < ∞,

(A2)
we write for the Poisson noise,

ln Gξ ([k(•)]) = −iQω0

∫ ∞

0
dtn k(tn)

+ Q
∫ ∞

0
dtn

(
iω0

∫ ∞
0 dt ′k(t ′) h(t ′ − tn)

1 − iω0
∫ ∞

0 dt ′k(t ′) h(t ′ − tn)

)
.

(A3)

With these prescriptions, any Poisson noise ξ (t ) bounded
from below can be worked out. That is, at any time t , the
value of the noise fulfills ξ ∈ (−Qω0,∞). The Poisson noise
and integrated Poisson noise (Poisson flights) with square,
exponential, and power-law shape pulses have been studied
in [33].

1. The n − times joint PDF of the noise ξ(t )

For any stochastic process, it is true that the n − times
(joint) PDF P(ξ (t1) · · · ξ (tn)) can be calculated from the
Fourier inversion of the n − times characteristic function
Gξ (k1,t1; · · · ; kn, tn) [22]. The function Gξ (k1,t1; · · · ; kn, tn)
follows from the characteristic functional Gξ ([k(•)]) evalu-
ated at the test function k(t ) = k1 δ(t − t1) + · · · + kn δ(t −
tn). Thus, the 1 − time characteristic function of Poisson noise
is Gξ (k1,t1) = Gξ ([k1 δ(t − t1)]). From this formula, mo-
ments Mm(t1) ≡ 〈ξ (t1)m〉 = ∫

ξmP(ξ, t1)dξ , and cumulants
Km(t1) ≡ 〈〈ξ (t1)m〉〉, follow as

Mm(t1) = dm

d (ik1)m Gξ (k1,t1)|k1=0, ∀m � 1,

Km(t1) = dm

d (ik1)m ln Gξ (k1,t1)|k1=0, ∀m � 1,

and so we obtain the 1 − time cumulants:

K1(t1) = −Qω0 + Qω

∫ t1

−∞
h(u)du, (A4)

Km(t1) = Q ωm

∫ t1

−∞
h(u)mdu, ∀m � 2. (A5)

Noting that h(u) = 0 for u < 0 and
∫ ∞

0 h(u)du = 1, we see
that in the stationary state K1(t → ∞) → 0. The stationary
PDF Pst(ξ ) can also be analytically calculated [33].

2. Poisson’s flights

The complete Kolmogorov hierarchy for the set of n −
times PDF of the process ẋ(t ) = ξ (t ) can be written as the
Fourier inversion of the functional:

Gx([z(•)]) = eiz0x0 Gξ

([∫ ∞

t
z(u)du

])
; z0 =

∫ ∞

0
z(u)du,

(A6)

evaluated at the test function: z(t ) = znδ(t − tn) + · · · +
z1δ(t − t1) in the form [22]

Pn(xn, tn; · · · ; x1, t1)

=
(

1

2π

)n ∫ +∞

−∞
· · ·

∫ +∞

−∞
�n

j=1 dz j e−i(znxn+···z1x1 )

× Gx([z(•)]). (A7)

Thus, we can call the integral of the Poisson noise the “Pois-
son flight.” In the case when ξ (t ) is a shot-noise (the pulse is a
δ-function), the process x(t ) can be studied using the Feller–
Van Kampen formula to obtain the 1 − time PDF [38]. But
when the shape of the pulse is not a δ-function, the increments
of Poisson’s process are not independent, thus the process
x(t ) is non-Markovian and the situation is more complex to
analyze. Using our approach, this situation can be overcome.

In general for any stochastic process ξ (t ) in (1), the char-
acteristic functional of the process x(t ), t ∈ (0,∞) follows as
(A6). Then using Gξ ([k(•)]) for the Poisson noise, we obtain

ln Gx([z(•)])

= iz0x0 + Q
∫ ∞

0
dtn

{
exp i

∫ ∞

0
ω

∫ ∞

t ′
z(u)du h(t ′ − tn)dt ′

− iω0

∫ ∞

tn

z(u)du − 1

}
. (A8)

This formula can be used for any intensity distribution φ(ω)
[the mean-value is represented by (· · · )] and shape pulse by
h(t ). In particular, here we will exemplify Poisson’s flight with
exponential shape pulses h(t ) and exponentially distributed
intensities ω j ; see (A3). This readily allows taking the limit
to the Wiener process; other shapes can also be analyzed in a
similar way [33].

a. Poisson’s flights with exponential pulses
and exponentially distributed intensities

The 1 − time characteristic function follows from (A8)
as Gx(k1, t1) = Gx([z(t ) = k1 δ(t − t1)]). Like Wiener’s pro-
cess, Poisson’s flights are nonstationary. Using an exponential
shape h(u) = �(u)e−u/τc/τc, we get

ln Gx(k1, t1) = ik1x0 − ik1Qω0τc(1 − e−t1/τc )

+ Qτc

∞∑
n=2

(iω0k1)nB(n + 1, 0, 1 − e−t1/τc ).

(A9)

Here B(ν, μ, y) is the Beta function [37]. From this result, we
can calculate any moment or cumulant of Poisson’s flight x(t ).
In particular, the first and second cumulants are

K1(t ) = x0 − Qω0τc(1 − e−t/τc ), (A10)

K2(t ) = 2!Qτcω
2
0 B(3, 0, 1 − e−t/τc ). (A11)

Using the formula

B(n + 1, 0, y) = − ln (1 − y) − y − y2

2
− · · · − yn

n
, (A12)
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it is readily seen that any cumulant is given by

Kn(t ) = n!Qωn
0

(
t − τc(1 − e−t/τc ) − τc

2
(1 − e−t/τc )2

− · · · − τc

n
(1 − e−t/τc )n

)
, ∀n � 2. (A13)

Thus, in the long-time limit K1(t → ∞) → x0 − Qω0τc and
Kn(t → ∞) ∼ t,∀n � 2, showing a clear departure from dif-
fusive behavior. The Wiener limit can be recovered by taking
τc → 0 and Q → ∞, ω0 → 0 such that Qω2

0 → D.
Moments Mn(t ) ≡ 〈x(t )n〉 and correlations

〈〈x(t1)x(t2) · · · 〉〉 follow in a similar way. For example,
the 2 − times correlation function can be calculated from
the knowledge of the 2 − times characteristic function
Gx(k1, t1; k2, t2) = Gx([z(t ) = k1 δ(t − t1) + k2 δ(t − t2)]),
which can be computed from the functional Gx([z(•)])
given in (A8). In addition, using (A8) in (A7) and taking
the limit ti − ti−1 → 0, formula (A7) gives the path integral
representation for a general non-Markovian Poisson’s flight.

APPENDIX B: ENLARGED MASTER
EQUATION APPROACH

In general, for any nonwhite noise ξ (t ) the first-order dif-
ferential equation (1) is associated with a non-Markov process
x(t ), which for a given realization of the noise is characterized
by the Liouville flux:

∂tρ(x, t ) = −∂x[ξ (t )ρ(x, t )], ρ(x, t0) = δ(x − x0), t � t0.

(B1)

If the stochastic process ξ (t ) is Markovian, there ex-
ists a semigroup associated with its conditional probability
�t,t0 (ξ |ξ ′). Therefore, there is a master Hamiltonian H such
that d

dt �t,t0 (ξ |ξ ′) = ∑
ξ ′′ Hξξ ′′�t,t0 (ξ ′′|ξ ′) [if ξ (t ) is continu-

ous, H is the Fokker-Planck operator]. Although the process
x(t ) defined by (1) is itself not Markovian, it can be considered
as a projection of an enlarged Markovian process: {x(t ), ξ (t )}.
Therefore, using the fact that the noise ξ (t ) is Markovian and
discrete, we can write an enlarged master equation for the
joint probability P (ρ, ξ, t ):

∂tP (ρ, ξ, t ) = −∂ρ[(−∂xξρ)P (ρ, ξ, t )]

+
∑
ξ ′

Hξξ ′P (ρ, ξ ′, t ), t � t0. (B2)

The initial condition in (B2) is taken in the stationary en-
semble of process ξ (t ); that is, P (ρ, ξ, t0) = �t0 (ξ ) δ(ρ −
ρ(x, t0)).

In general, for a scalar process x(t ), the Markovian charac-
ter of the (1 + 1)-dimensional process, {x(t ), ξ (t )}, is due to
the Markovian character of process ξ (t ) and to the fact that for
a given realization the solution of (B1) depends on the values
of ξ (τ ) only in the time interval t0 � τ � t . Therefore, as
the enlarged process {x(t ), ξ (t )} is Markovian, one can write
the master equation (B2) for the joint probability P (ρ, ξ, t ),
which varies in time due to the flow in ρ-space and jumps of
ξ in an enlarged Liouville’s phase-space [22,30].

If only the mean value of ρ is wanted, we can go one step
further and calculate the conditional average:

Pξ (x, t ) ≡
∫

dρ P (ρ, ξ, t )ρ. (B3)

Thus, if Eq. (B2) is multiplied by ρ(x, t ) and integrated over
dρ, we get

∂t Pξ (x, t ) = −∂xξPξ (x, t ) +
∑
ξ ′

Hξξ ′Pξ ′ (x, t ). (B4)

Now considering the set of discrete values ξ = ±v for the
dichotomous process ξ (t ), we get the EME for the (velocity)
conditional PDF P̃ = {P+, P−}, that is, Eqs. (2) and (3).

In the case of considering the biexponential binary noise
ξ (t ) of Sec. II D, we do an embedding to consider a “Marko-
vian” binary noise with four states. In this manner, the set of
values of the process ξ (t ) is now {ξ+

α , ξ+
β , ξ−

α , ξ−
β } and the set

of conditional averages is P̃ = {P+
α , P+

β , P−
α , P−

β }. Thus from
(B4), we get the EME (8). Higher-order statistical objects can
also be considered using the EME approach; see Appendix A
in [31].

In general, the mean value of the density ρ(x, t ) is therefore
reduced to the addition of Pξ (x, t ) for the different set of
values ξ , that is,

〈ρ(x, t )〉 =
∑

ξ

Pξ (x, t ). (B5)

APPENDIX C: ON THE BINARY NOISE

1. Markov binary noise

A Markov binary process [dichotomic noise ξ (t )] can
be built by considering a sequence of constant values ±1
alternating at random times t j , where these times are in
correspondence with a stationary Markov renewal process.
Therefore, a realization of the process, ξ (t ) = ±1,∀t �
0 corresponds to being exponentially correlated; that is,
〈ξ (t )ξ (t ′)〉 = e−|t−t ′|/T . A realization of this symmetric binary
noise ξ (t ) can be generated by

ξ (t ) =
n∑

j=1

(−1) j W (t j, t j+1|t ), t � 0, ξ (0) = 1, (C1)

where W (t j, t j+1|t ) is the window function: W (t j, t j+1|t ) =
�(t − t j ) − �(t − t j+1), with �(u) a step function, the num-
ber of dots n in (C1) is Poisson-distributed, and the random
location of independent times t j is uniformly distributed in
[0,∞] with density a. That is, we generate statistically in-
dependent time-increments �i, j ≡ t j − t j−1 with an exponen-
tial waiting-time: ϕ(�i j ) = a exp(−a�i j ), where a = 1/2T
in (C1).

2. Intermittent (non-Markov) binary noise

A symmetric intermittent binary noise, ξ (t ) = ±1,∀t � 0,
can be represented with a nonexponential correlation function
having two characteristic timescales. The stationary distribu-
tion �St(ξ ) = [δξ,1 + δξ,−1]/2 remains the same as for the
Markovian dichotomic case. The only difference in the in-
termittent case is the waiting-time function that generates the

024116-12



INTERMITTENT KAC’S FLIGHTS AND THE … PHYSICAL REVIEW E 109, 024116 (2024)

statistically independent time increments �i, j ≡ t j − t j−1. It
can be proved that intermittent binary noise can be obtained by
introducing a biexponential waiting-time [see (7)] for the ran-
dom time increments �i j in (C1). We note that the important
parameters to characterize intermittence are α 	 β (different
timescales) and p 	 q, very different statistical weight for
each timescale [35]. If α = β, we recover the Markovian case.

3. The master equation approach

It is well known that the conditional probability
P(ξ, t |ξ ′, t ′) for the dichotomous process ξ (t ) = ±1,∀t �
0 with exponential correlation (the Markov case) can be
obtained by solving the master equation: ∂t P(ξ, t |ξ0, t0) =∑2

ξ ′=1 Hξξ ′P(ξ ′, t |ξ0, t0), where the “master Hamiltonian” is

given by H = (−a a
a −a).

Notably, for the intermittent case, and due to the fact
that the waiting-time (7) is biexponential, it is possible
to solve the conditional probability P(ξ, t |ξ ′, t ′) for this
non-Markov binary intermittent noise, as the embedding
of a four-state Markov process ξ{α,β}(t ) = ±1,∀t � 0, gov-
erned by the four-state master equation: ∂t P(ξ, t |ξ ′′, t ′′) =∑4

ξ ′=1 Hξξ ′P(ξ ′, t |ξ ′′, t ′′), where the “master Hamiltonian” is
given by (10); see [35].

APPENDIX D: VELOCITY AUTOCORRELATION
FUNCTION OF THE INTEGRATED PROCESS

Using the second moment 〈x(t )2〉 of the random flight (1),
we can write the VAF for the process x(t ) [22]. Thus, for the

case x0 = 0 using the Green-Kubo theorem, we obtain

s2

2
〈x(s)2〉 = Deff(s), (D1)

where Deff(s) is the Laplace transform of the stationary VAF:

Deff(s) ≡
∫ ∞

0
〈ξ (0)ξ (t )〉e−st dt . (D2)

In addition, the function Deff(s) allows for the calculation of
the diffusion coefficient D = Deff(s = 0) for the integrated
process x(t ), which is nothing more than Einstein’s formula:
D = ∫ ∞

0 〈ξ (0)ξ (t )〉dt .
On the other hand, in the real-time representation, we can

write

〈ξ (0)ξ (t )〉 = 1

2

d2

dt2
〈x(t )2〉. (D3)

1. The Markovian binary noise case

Using (23), (D1) and (D2), we get

〈ξ (0)ξ (s)〉 = v2

(s + 1/τ )
. (D4)

Taking the inverse Laplace transform, we get 〈ξ (0)ξ (t )〉 =
v2e−t/τ , in accordance with Rice’s method applied to the
SDE (1).

2. The non-Markovian binary noise case

From (24), (D1), and (D2), we obtain

〈ξ (0)ξ (s)〉 = v2
{
τ 2

2 [−p2 + 2sτ1(2sτ1 + 1) + 1] + 2τ2τ1[(p − 1)p + sτ1] − (p − 2)pτ 2
1

}
[τ2(−p + 2sτ1 + 1) + pτ1][(p + 1)sτ2 + sτ1(−p + 2sτ2 + 2) + 1]

, (D5)

which is the Laplace representation of the stationary correla-
tion function of the biexponential binary noise characterized
by the waiting-time function (7) [35].

3. Poisson’s flight

The exact second moment for Poisson’s flight is given in
(29). Thus, applying the Green-Kubo formula (D3) to the
integrated process, we get

〈ξ (0)ξ (t )〉 = Qω2
0

τc
[(2 − Qτc) + (−2 + 2Qτc)e−t/τc ]e−t/τc ,

∀t � 0, (D6)

which is the stationary correlation function of the Poisson
noise (A1), with exponential-shaped pulses.

APPENDIX E: GAUSSIAN INVARIANTS

A Gaussian distribution has many interesting characteris-
tics, among the most important being its invariants. These
values can be constructed as functions of moments Mj (or
cumulants Kj) [22]. For example, the kurtosis is defined

as the fourth centered moment divided by the square of
the second centered moment; that is, K = 〈(x − 〈x〉)4〉/〈(x −
〈x〉)2〉2 = 3. Nevertheless, here we are interested in symmet-
ric distributions, thus K = M4/M2

2 . Another invariant that is
built up with higher-order moments is H = M6/M3

2 = 15.
The important point is that, for any distribution, the devia-
tion from Gaussianity can be computed by calculating these
invariants.

For example, the convergence to the diffusion process can
be studied by calculating the time-dependent behavior of K
and/or H . From (19) we can calculate any moment, therefore
we get asymptotically a power-law convergence,

H = 15 + τH/t + · · · . (E1)

Here the timescale τH can be readily calculated as a func-
tion of the noise parameters {α, β, p = 1 − q} (or {τ1 ≡
1/2α, τ2 ≡ 1/2β}):

τH = 45

αβ

6∑
n=0

jn pn

/
5∑

n=0

ln pn, (E2)
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with

j0 = α6,

j1 = 2α5β + 10α4β2 − 20α3β3 + 8α2β4,

j2 = 3α6 − 2α5β − 17α4β2 + 20α3β3 + 4α2β4 − 8αβ5,

j3 = −8α5β + 12α4β2 + 20α3β3 − 52α2β4 + 36αβ5 − 8β6,

j4 = −3α6 + 8α5β + 10α4β2 − 60α3β3 + 85α2β4 − 52αβ5 + 12β6,

j5 = 6α5β − 30α4β2 + 60α3β3 − 60α2β4 + 30αβ5 − 6β6,

j6 = α6 − 6α5β + 15α4β2 − 20α3β3 + 15α2β4 − 6αβ5 + β6,

l0 = −α5,

l1 = α5 + 3α4β − 4α3β2,

l2 = 2α5 − 8α4β + 6α3β2 + 4α2β3 − 4αβ4,

l3 = −2α5 + 2α4β + 10α3β2 − 22α2β3 + 16αβ4 − 4β5,

l4 = −α5 + 8α4β − 22α3β2 + 28α2β3 − 17αβ4 + 4β5,

l5 = α5 − 5α4β + 10α3β2 − 10α2β3 + 5αβ4 − β5. (E3)

The intermittent case corresponds to taking p 	 q and α 	 β, as we have commented before. From (E2), it is possible to
recover the time-dependent Gaussian convergence from the solution of the ordinary TE. That is, taking α = β = 1/2τ , we get
H = 15 − 90τ/t + · · · .

A similar analytical formula can also be obtained for the kurtosis: K = 3 + τK/t + · · · , with a characteristic timescale τK .
We note that for the solution of the ordinary TE, this is K = 3 − 6τ/t + · · · .
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