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We investigate the influence of quenched disorder on the steady states of driven systems of the elastic
interface with nonlocal hydrodynamic interactions. The generalized elastic model (GEM), which has been used
to characterize numerous physical systems such as polymers, membranes, single-file systems, rough interfaces,
and fluctuating surfaces, is a standard approach to studying the dynamics of elastic interfaces with nonlocal
hydrodynamic interactions. The criticality and phase transition of the quenched generalized elastic model are
investigated numerically and the results are presented in a phase diagram spanned by two tuning parameters. We
demonstrate that in the one-dimensional disordered driven GEM, three qualitatively different behavior regimes
are possible with a proper specification of the order parameter (mean velocity) for this system. In the vanishing
order parameter regime, the steady-state order parameter approaches zero in the thermodynamic limit. A system
with a nonzero mean velocity can be in either the continuous regime, which is characterized by a second-order
phase transition, or the discontinuous regime, which is characterized by a first-order phase transition. The focus
of this research is to investigate the critical scaling features near the pinning-depinning threshold. The behavior of
the quenched generalized elastic model at the critical depinning force is explored. Near the depinning threshold,
the critical exponent is obtained numerically.
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I. INTRODUCTION

The study of universal scaling behaviors associated with
nonequilibrium critical phenomena is an attractive and
fascinating field of statistical physics that has attracted con-
siderable attention in recent years [1–5]. Indeed, it is expected
that a wide range of models at the critical point could well
be characterized by the same universal parameters, as is well
known from equilibrium critical phenomena [6]. Is it possible
to derive these parameters to determine the universality of
critical phase transitions in out-of-equilibrium models? Re-
cent studies have focused on the dynamical characteristics of
a vast range of problems, including fracture propagation in
solids [7–11], charge-density waves in anisotropic conduc-
tors [12,13], vortices in type-II superconductors [14], domain
walls in ferromagnetic [15] or ferroelectric [16] systems, the
contact line of a fluid drop on a disordered substrate [17–21],
the deformation of crystals [11], crackling noise in a wide
range of physical systems from magnetic materials to paper
crumpling [22,23], friction and lubrication [24,25], the motion
of geological faults [26], tumor growth [27,28], and many
others. This diverse set of processes may be described as
an extended elastic manifold driven over quenched disorder,
which has a complicated dynamics that includes nonequilib-
rium phase transitions.

The competition between the deformation induced by
quenched disorder (induced by the presence of impurities in
the host environment) and the elastic material’s response to
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an applied driving force is the key factor determining their
dynamical behavior in all of these complex nonlinear systems.
The depinning transition phenomenon is a significant result of
this competition [29]. In the absence of an external driving
force F , the system is disordered but it does not move and
remains pinned by the quench disorder. When the external
force is increased from zero, the elastic object unpins and
reaches a finite steady-state velocity [2]. This describes the
critical phase transition of the elastic interface at the critical
force F = Fc, where the driving force F plays the role of
the control parameter and the mean velocity v is the order
parameter [1]. Note that the critical value of the external force
Fc is not universal and its value depends on the details of the
model. The steady-state average velocity follows a power-law
characteristic as v ∼ (F − Fc)θ while approaching the critical
point from above, where θ is a universal parameter. Other
measures, such as the local width, the correlation functions,
the correlation length, and the structure factor, may be used
to extract the exponents associated with the criticality of the
elastic interface. These techniques have been extensively used
to investigate the self-affine surface structure’s scaling prop-
erties [29–31].

Consider a single-valued function u(x, t ) that de-
scribes an elastic interface. The global surface width W =√

〈[u(x, t ) − 〈u〉x]2〉x, is the simplest quantity used to char-
acterize the scaling characteristics of elastic interfaces near
the critical point, which is defined as the standard deviation
around the mean position. For a finite system of size L, the
roughening of u from a flat initial condition scales as

W (L, t ) ∼ tβ f
(
L/t1/ν

)
, (1)
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where the exponents β and ν are called the growth and
the dynamical exponent. The scaling function f (x) is such
that f (x) ∼ const for x � 1 and f (x) ∼ xζg for x � 1 (the
exponent ζg is known as the global roughness exponent).
Finite-size effects, as expected, occur when t×

W ∼ Lν . The self-
affine scaling relates now ζg, β, and the dynamical exponent ν

through ν = ζg/β [32].
The average velocity, which corresponds to the order

parameter of the pinning-depinning transition of a driven in-
terface, may be assumed to be a homogeneous function of
time t and |F − Fc|, similar to critical phenomena, as

v(t, F ) ∼ t−σ g(|F − Fc|tσ/θ ), (2)

where σ is a universal scaling exponent. For F > Fc there is
a crossover timescale t×

v ∼ |F − Fc|θ/σ between two regimes:
g(x) → const for t � t×

v and g(x) ∼ xθ for t � t×
v . The equi-

librium configuration of an elastic rough interface in the
critical point is expected to be self-affine and the two-point
correlation function is supposed to obey the scaling form

C(r) = 〈[u(x) − u(x′)]2〉 ∼ |x − x′|2ζl , (3)

where ζl is the local roughness exponent [32].
It is worth noting that the interface would satisfy a

Family-Vicsek scaling only if αl = αg were satisfied for some
particular growth models. On the other hand, the growth
models with αl 	= αg could also be imaginable and represent
dynamics with an anomalous scaling law. For instance, there
are super-rough processes in which always αl = 1 but αg > 1.
On the other hand, there are intrinsically anomalous rough-
ened surfaces, for which αl < 1 and αg can actually be any
αg > αl [32] (see also [33]). Various experimental, analyt-
ical, and numerical works have been proposed to compute
the critical exponents θ , β, ζg, ζl , and σ characterizing the
pinning-depinning phase transition, in a similar fashion to the
equilibrium critical phenomena.

The purpose of this research is to describe and investi-
gate the statics and dynamics of a generalized model for
the investigation of a range of other reported phenomena in
which the pinning-depinning phase transition may occur. The
paper is organized as follows. Section II introduces the model.
Section III describes the numerical formalism. In Sec. IV
we discuss our findings. In Sec. V we summarize the results
obtained and our conclusions.

II. DEFINITION OF THE MODEL

Despite the significant variations in theoretical models,
many of the computations were performed using the linear as-
sumption of the elasticity u(x, t ). The following equation can
be used to explain the motion of an interface in an isotropic
disordered material at this level of precision [2]:

∂u(x, t )

∂t
= F + fp(x, u(x, t )) − K[u(x, t )]. (4)

Here F is a uniform external force which is also the con-
trol parameter and fp represents the nonthermal quenched
random forces due to the randomness and impurities of
the heterogeneous medium. The quenched random noise
fp(x, u(x, t )) can be taken to have zero mean satisfying the
relation 〈 fp(x, u) fp(x′, u′)〉 = 2Dδ(x − x′)R(u − u′), where

R(u − u′) is assumed to decay rapidly for large values of its
argument. The final term K[u(x, t )] in Eq. (4) describes the
elastic forces between different parts. It has the form

K[u(x, t )] =
∫

dDx′
∫

dt ′J (x − x′, t − t ′)

× [u(x′, t ′) − u(x, t )], (5)

where D is the space dimension and J (x − x′, t − t ′) is de-
fined as the propagation kernel to transmit the stress on the
interface from its elasticity. Moreover, systems with short-
range elasticity of the interface are characterized by J (x, t ) ∝
δ(t )∇2δ(x) [2].

Theoretical studies on quenched disordered systems, such
as a contact line of a liquid meniscus on a disordered substrate
[18,34], crack propagation [34,35], and solid friction [36],
have shown that it is possible to express the kernel K[u] in
a long-range form

K[u(x, t )] ∝
∫

dDx′ u(x, t ) − u(x′, t )

|x − x′|D+z
, (6)

where the exponent z is a variable that depends on the model
chosen to represent the elastic interface [10]. The most impor-
tant aspect of the singular integration (6) is that it may be used
to rewrite the elastic force K[u] as

K[u(x, t )] = (− �)z/2u(x, t ), (7)

where (−�)z/2 is the fractional Laplacian defined by its

Fourier transform ̂(−�)
z/2


(k) = |k|z
̂(k) [37]. According
to Eqs. (4) and (7), one can rewrite Eq. (4) as

∂u(x, t )

∂t
= F + fp(x, u(x, t )) − (−�)z/2u(x, t ). (8)

It is indeed worth mentioning that the dynamics given
by Eq. (8) is essentially a generalization of the quenched
Edwards-Wilkinson (QEW) and quenched Mullins-Herring
(QMH) equations, which are the simplest and most often used
equations to explain the interface pinning-depinning transition
in quenched random media, with z = 2 and 4, respectively.

Analytical treatment of Eq. (8) is difficult due to the nonlin-
earity and heterogeneity of the pinning forces fp(x, u(x, t )).
The simplest hypothesis is to treat the problem perturbatively.
The lowest-order approximation neglects important correla-
tions in the growth direction implied by the dependence of
the pinning force on the interface state. For this rough ap-
proximation, which was proposed by Blatter et al. [14], the
pinning force can be simply replaced by an x-dependent but u-
independent force. For z = 2 (quenched Edwards-Wilkinson
model), by doing so one arrives at the so-called Larkin model

∂u(x, t )

∂t
= ∇2u(x, t ) + F + fp(x). (9)

Within the Larkin approximation the problem becomes linear
and the critical exponents can be found exactly, by simple
dimensional analysis, to obtain ζg = (4 − d )/2 and ν = 2,
where d is the spatial dimension. By means of numerical
simulations one finds ζg ≈ 1.25 and ν ≈ 1.5 in d = 1, which
shows that the Larkin model is a good starting point to study
the effects of disorder on kinetic roughening [38,39].
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Much research has been carried out on the QEW and QMH
equations, as well as the related models. Early studies in-
vestigated numerically the crucial characteristics of the QEW
equation [40], which has been the subject of many theoretical
and numerical studies in recent years [32,41–45]. Recently,
a novel and very efficient approach investigated the QEW
equation’s depinning threshold and critical exponents [46,47].

The scaling properties of the QMH equation at the critical
point of the pinning-depinning transition have been quan-
titatively explored [48–50]. It is worth noting that, for the
so-called space-fractional quenched equation (8), the scaling
hypothesis was established in Ref. [51] (the fractional power
z is expected to be in the range 1.5 � z � 2). The Grünwald-
Letnikov form of a fractional derivative was used to discretize
the space-fractional quenched equation, which is essentially
an integro-differential equation, as noted in Ref. [51].

Despite the success of Eqs. (4) and (8) in describing the
dynamics of elastic interfaces driven through a disordered
medium, this toy model has one weakness: Hydrodynamic
interactions are not included. This is the case, for instance,
of polymers [52,53], membranes [54,55], the dynamics of
colloid suspensions, macromolecular solutions, and mul-
ticomponent systems [56–60]. Because of the long-range
hydrodynamic interaction, the dynamical behavior of these
systems is correlated via flows.

The generalized elastic model (GEM), proposed in
Ref. [61], is a suitable linear model that may capture the
essence of criticality and phase transition (see [62–65] for
more details). In this case, we use this model in the presence
of a quenched disorder. The quenched form of the generalized
elastic model (QGEM) is represented by the stochastic linear
integro-differential equation

∂u(x, t )

∂t
= F +

∫
dd x′�(|x − x′|) ∂z

∂|x′|z u(x′, t )

+ fp(x, u(x, t )), (10)

where the dynamical variables of the system u(x, t ) describe
an elastic interface driven through a disordered media, F
is the driving force on the interface, and fp represents the
quenched pinning forces whose distribution can be chosen to
be Gaussian with the first two moments 〈 fp(x, u)〉 = 0 and
〈 fp(x, u) fp(x′, u′)〉 ∝ δ(x − x′)δ(u − u′). The hydrodynamic
interaction term �(|x − x′|) corresponds to the nonlocal
coupling of different sites x and x′. Here ∂z/∂|x|z is the
multidimensional Riesz-Feller fractional derivative operator,
which is defined via its Fourier transform F{ ∂z

∂|x|z 
(x)} ≡
−|k|z
(k), immediately implying that the Riesz-Feller frac-
tional derivative has the same meaning as the fractional
Laplacian operator ∂z/∂|x|z := −(− �)z/2 [37].

At this point a specification of the hydrodynamic in-
teraction kernel �(�r ) is called for. For no fluid-mediated
interactions, one may suppose that the friction kernel is lo-
cal, �(�r ) = δ(|�r |). This can be attributed to the interactions
which are purely mechanical, for example, solid surfaces and
fluctuating interfaces. For systems having nonlocal interac-
tions, such as membranes, polymers, or viscoelastic surfaces,
where the hydrodynamic interactions take on a long-range

power-law form, a different scenario

�(�r ) ∼ 1

|�r |α (11)

occurs (where D−1
2 < α < D) [61]. It should be emphasized

that the D-dimensional Fourier transform of the hydrody-
namic friction kernel (11) is given by �(q) = A|q|α−D (A =
const). It is clear that the local hydrodynamic interaction cor-
responds to the act of taking α = D and A = 1 [�(q) = 1]
[62]. We start by considering the Larkin approximation to find
analytical expressions for the critical exponents ζg, ν, and β as
functions of the control parameters α and z.

In this way we neglect the dependence on u in the pinning
force fp(x, u(x, t )) = g(x). Then we construct a simple scal-
ing theory based on dimensional analysis. The solution of the
QGEM (10) has a continuous scale-invariant property, that is,
the statistical properties of the interface field u(x, t ) remain
unchanged after rescaling of space and time according to the
transformation

u(λx, λνt ) = λζgu(x, t ), (12)

where λ > 1 is an arbitrary scaling factor. This means that
Eq. (10) does not change under scaling transformations x →
λx and t → λν , together with the corresponding rescaling in
the amplitude u → λζgu. By imposing the scaling transforma-
tion on the Larkin representation of Eq. (10) we get

∂u(x, t )

∂t
= λd−α−z+ν

∫
dd x′�(|x − x′|) ∂z

∂|x′|z u(x′, t )

+ λ−d/2+ν−ζgg(x). (13)

The scale invariance of the solution of Eq. (13) implies that
ν = z + α − d and ζg = 2ν−d

2 .
The next section presents a detailed description of the

discretization approach used to numerically explore the gener-
alized elastic model in the presence of quenched disorder (10)
for various values of the fractional order z and the nonlocal
hydrodynamic interaction strength α.

III. NUMERICAL ALGORITHM

We consider here the QGEM (10) in one spatial dimension
D = 1. The interface position u(xi, tn) is specified on a lattice
of size L, where xi = i
x and tn = n
t are defined with i =
0, . . . , L and un

i is kept as a continuous variable.
To solve Eq. (10) in discretized time and space, we use the

finite-difference approximation to estimate the time derivative
(forward Euler method)

∂u(xi, tn)

∂t
= u(xi, tn+1) − u(xi, tn)


t
. (14)

The discrete-space Riesz-Feller fractional operator ∂z/∂|x|z
in Eq. (10) can be approximated using the matrix transform
method proposed by Ilic et al. [66,67]. Moreover, many other
different numerical methods have been proposed to simulate
such fractional operators [68]. Let us first consider the com-
mon notation for the Riesz-Feller derivative in terms of the
Laplacian ∂z/∂|x|z := −(− �)z/2 [69]. The matrix transform
algorithm is based on the following definition. First consider
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the usual finite-difference scheme for a Laplacian in one di-
mension

� φ(x) = 1

(
x)2
{φ(x − 
x) − 2φ(x) + φ(x + 
x)}, (15)

where {φ(x)} is the complete set of orthogonal functions.
Using the Fourier transform φ(x) = 1

2π

∫
φ̂(q)e−iqxdq, the

discretized Laplacian (15) in the Fourier representation can
be rewritten as

(̂�)φ(q) = −[2 − 2 cos(q
x)]φ(q), (16)

where 
x corresponds to the lattice constant.
One might start with the Fourier representation of the

discretized Laplacian to approximate the Fourier representa-
tion of the discretized fractional Laplacian (−�) as λ(q) =
2[1 − cos(q)] and raise it to the appropriate power {2[1 −
cos(q)]}z/2. This technique was invented by Ilic et al. (for
more details see Refs. [66–68]).

The matrix transform approach proposes that one can
obtain the elements of the matrix representation of the Lapla-
cian Al,m = − ∫ 2π

0
dq
2π

[2 − 2 cos(qa)]eiq(l−m), where A ≡
tridiag(1,−2, 1). The elements of the matrix K, representing
the discretized fractional Laplacian −(−�)z/2, are then

Kl,m = −
∫ 2π

0

dq

2π
eiq(l−m){2[1 − cos(q)]}z/2

= �(− z
2 + n)�(z + 1)

π�(1 + z
2 + n)

sin
( z

2
π

)
, (17)

where n = |l − m| and fractional order z � 1. In the special
case z = 2, the K matrix is equal to the matrix A of a simple
Laplacian. On the other hand, if α/2 is an integer, then K(n) =
(−1)α−n+1Cα,α/2+n for n � α/2 and K(n) = 0 for n > α/2,
where Cα,α/2+n are binomial coefficients [70].

Combining Eqs. (14) and (17) and substituting into
Eq. (10) leads to the discrete version of the QGEM. We em-
ploy the finite-difference method to investigate the numerical
discretization of Eq. (10), in the form

un+1
i = un

i + 
t

(
1

(
x)z

L∑
j=0

L∑
k=0

�(|i − j|)K j,kun
k

+ F + fp(xi, un
i )

)
, (18)

where un
i approximates the interface profile u(xi, tn) at the ith

lattice point and the nth time step. The lattice constant 
x has
been set equal to one and the grid steps 
t in time have been
chosen to be small enough to avoid numerical instabilities.

In order to numerically generate a quenched random field
fp(xi, un

i ), without loss of generality we assume the continu-
ous stochastic variables u(xi, tn) are discretized into a finite
numbers of integer values [un

i /ε], where ε � 1 is an arbitrary
small parameter and [· · · ] represents the bracket notation for
the integer part of a given continuous variable. Then the
quenched random field fp is defined on a square array where
each cell [i, h] (1 � i � L and h = [un

i /ε]) is assigned an
identically distributed random variable η(i, h) with normal
Gaussian distribution with zero mean and unit variance. The

(a)

(b)

(c)

FIG. 1. Numerical evaluation for the average velocity v(t, F ) =
d
dt 〈

∫
u(x, t )dx〉 for the generalized elastic model with quenched

disorder, which corresponds to the order parameter of the pinning-
depinning transition of the viscoelastic interface driven through a
disordered media. The behavior of the order parameter is strongly
influenced by the hydrodynamic interaction parameter α and the
fractional power z. (a) Order parameter v(t ) as a function of time
for three different values of the external force F ; it goes to zero
when t → ∞. The saturation values of the order parameter v(F ) is
shown in the inset. Note that there is no phase transition for the values
α = 0.5 and z = 1.0 in Eq. (10). (b) Order parameter as a function
of time and force for the so-called first-order phase transition for
the values α = 0.5 and z = 3.0. (c) Same analysis as in (b) for the
values α = 0.5 and z = 4.0, showing an ordinary pinning-depinning
phase transition. The red solid line corresponds to the scaling relation
v(t ) ∼ t−σ for the critical point F = Fc.

random disorder fp(xi, un
i ) is obtained by the linear interpola-

tion of the random force between two random variables η(i, h)
and η(i, h + 1), where h = [un

i /ε].
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FIG. 2. Phase diagram of the generalized elastic model with
quenched disorder. There are three different regimes, depending on
the values of the parameters z and α in Eq. (10). The first regime is
when z � 4 and α < 1, where there is no phase transition between
pinned and moving phases. The second regime is when z < 4 and
α � 0, where the order parameter of the system v(F ) as a function of
the control parameter F changes continuously from zero to nonzero
values (second-order phase transition). In the third regime the mean
velocity v(F ) as a function of F changes discontinuously from zero
to nonzero values (first-order phase transition).

The numerical investigation of the scaling characteristics
and critical exponents of the quenched generalized elastic
model for different values of the fractional order z and the
nonlocal hydrodynamic interaction power α is presented in
detail in the next section.

IV. NUMERICAL RESULTS

To determine the time evolution of the interface spec-
ified by u(x, t ) and to obtain the critical properties of
the QGEM, the simulation is started with the initial

FIG. 3. Steady-state interface mean velocity v (for the QGEM
with z = 4 and α = 1) as a function of the driving force F and system
size L. In order to determine the critical force Fc in the scaling limit
L � 1, we measure the value Fc(L), with F = Fc(L) the transition
point for a system with finite size L. The plot of Fc(L) as a function of
L is shown in the inset. The red solid line indicates Fc(L) = aL−b +
Fc, with a = 4.513 ± 0.005, b = 1.238 ± 0.003, and Fc = 0.646 ±
0.001.

FIG. 4. A log-log plot of velocity v(t ) as a function of time t for
various values of the external driving force F > Fc. In this region the
mean velocity decreases in a power law at the beginning and then
becomes constant at a later time. The log-log plot of the stationary
state velocity vs as a function of F − Fc is shown in the inset. The
red solid line represents vs ∼ (F − Fc )θ , with θ = 0.285 ± 0.002.

condition u(x, 0) = 0 and boundary condition u(x, t ) = u(x +
L, t ). We simulate this model on a lattice of size L ∈
{32, 64, 128, 256, 512, 1024, 2048}. In addition, we carefully
choose the time increment 
t small enough to ensure the
stability of the numerical algorithm.

In order to determine the criticality of the QGEM (10) and
(18) for various parameter values of the fractional order z and
the hydrodynamic interaction parameter α, we first compute
the average velocity v(t, F ) = d

dt 〈
∫

u(x, t )dx〉 as a function
of time for various values of the external homogeneous
force F .

Surprisingly, our simulations indicate that the QGEM in
the limit t → ∞ exhibits three quite different behaviors
depending on the values of z and α. When hydrody-
namic interactions are strongly long range α � 1 and the

FIG. 5. A log-log plot of the interface width W (L, t ) vs t and dif-
ferent system size L ∈ [32, 64, 128, 256, 512, 2048] for the QGEM
with z = 4 and α = 1. Results have been averaged over 104 noise
realizations. The top inset shows a log-log plot of the saturated
surface width Ws as a function of system size L and the bottom inset
shows the best data collapse with the exponents ξg = 1.358 ± 0.004
and ν = 1.625 ± 0.005.
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TABLE I. Measured exponents from numerical simulation of the QGEM with local hydrodynamic interaction α = 1 for different values
of z at the critical depinning transition point F = Fc.

z θ β ζg ζl σ

1.5 0.512 ± 0.005 0.877 ± 0.002 1.244 ± 0.003 0.915 ± 0.005 0.124 ± 0.003
2.0 0.445 ± 0.003 0.875 ± 0.003 1.255 ± 0.005 0.925 ± 0.004 0.125 ± 0.005
2.5 0.376 ± 0.004 0.869 ± 0.002 1.263 ± 0.004 0.935 ± 0.005 0.128 ± 0.002
3.0 0.315 ± 0.005 0.862 ± 0.002 1.268 ± 0.003 0.955 ± 0.003 0.134 ± 0.002
3.5 0.294 ± 0.004 0.851 ± 0.004 1.302 ± 0.004 0.990 ± 0.004 0.143 ± 0.003
4.0 0.285 ± 0.002 0.835 ± 0.003 1.358 ± 0.004 1.095 ± 0.005 0.155 ± 0.002

fractional power z � 4, there exists no phase transition be-
tween a pinned phase and a moving phase. In this regime
limt→∞ v(t, F ) = 0 for an arbitrary external driving force F .
Such a behavior is shown in Fig. 1(a) for α = 0.5 and z = 1.0.

In the opposite limit when the parameters α � 1 and z �
1,
the velocity of the interface remains zero (pinned phase) up
to a critical force Fc and above Fc the velocity v(t ) decreases
as a power law at the beginning and then becomes constant
at a later time, i.e., limt→∞ d

dt v(t, F ) = 0 (moving phase).
As indicated in Fig. 1(c), v(F ) is a continuous function of
F . Thus the transition looks similar to the continuous phase
transition in the context of the critical phenomena.

Another surprising feature of the QGEM is the anomalous
pinning-depinning transition for some specific values of the
parameters α and z in the (α, z) plane. In the anomalous
regime, an elastic interface which exhibits nontrivial phase
transition behavior is pinned when F < Fc. However, for
F > Fc we observe a jump in the average velocity as a func-
tion of F (see Fig. 1), which may lead to a first-order phase
transition in which the order parameter of the system changes
discontinuously from zero to a finite value. Note that above
Fc the average velocity varies with time limt→∞ d

dt v(t, F ) 	=
0, which is noticeably different from a standard pinning-
depinning phase transition that appears in the elastic interface
models. Figure 2 shows a phase diagram calculated for the
generalized elastic model with quenched disorder.

We focus here on one aspect of the problem, namely, the
scaling behavior with characteristic exponents of the QGEM
close to the depinning critical point. Identifying the critical
value Fc of the external driving force at the point when the
infinite system becomes pinned is necessary since we are
interested in the scaling behavior at the depinning transition.
We measure the velocity of the average height v(t, F ) as a
function of time for various values of the external driving

force F to calculate the critical force Fc. In the depinned zone
F > Fc, v(t ) drops in a power law at first and then becomes
constant later. In the pinned area of F < Fc, on the other
hand, v(t ) decays quickly to zero. The average velocity of the
stationary state depends on system size. In Fig. 3 we show
the simulation results for several lattice sizes 32 � L � 2048.
In our model we estimate that the critical force Fc(L) is well
fitted by a power-law function Fc(L) = aL−b + Fc, where Fc

is the critical driving force in the scaling limit.
To determine the exponent θ , let us now analyze the time

evolution of the interface velocity towards the final sliding
steady state for F > Fc. In Fig. 4 we show the time evolution
of v(t ) for forces above the threshold. We can distinguish
two different regimes for the evolution of v(t ). In short time,
v(t ) drops in a power law and then tends to a constant vs.
The inset of Fig. 4 shows the saturated velocity for vari-
ous driving forces F in a logarithmic scale, which leads to
vs ∼ (F − Fc)θ . We measure the exponent θ using this scaling
relation; the values are reported in Tables I and II.

At the depinning threshold Fc, the depinned inter-
face shows scaling behavior in the global interface width
W (L, t ) ∼ tβ f (L/t1/ν ), where L is the system size, β is the
growth exponent, ν is the dynamical exponent, and f (x) is a
scaling function with f (x) ∼ xζg for x � 1 and f (x) ∼ const
for x � 1. We measure W (L, t ) as a function of time to calcu-
late the dynamical roughness exponent β, regulating the rate
of growth of the interface width, as illustrated in Fig. 5. The
scaling exponent β is obtained by using the relation W (t ) ∼ tβ

for early time. On the other hand, the growth velocity of the
average height at the critical point scales like v(t ) = dū/dt ∼
t−σ . Since W ∼ ū, this results in a relation v(t ) ∼ tβ−1. There-
fore, the exponents β and σ are not independent and the
relation β + σ = 1 occurs. In Tables I and II we summarize
our numerical findings for exponents β and σ for different
values of control parameters z and α. Interestingly, the results

TABLE II. Measured exponents from numerical simulation of the QGEM with z = 4 and different values of nonlocal hydrodynamic
interaction parameter α at the critical depinning transition point F = Fc.

α θ β ζg ζl σ

1.0 0.285 ± 0.002 0.835 ± 0.003 1.358 ± 0.004 1.095 ± 0.005 0.155 ± 0.002
0.8 0.297 ± 0.004 0.704 ± 0.002 1.220 ± 0.003 1.010 ± 0.005 0.334 ± 0.001
0.6 0.311 ± 0.005 0.621 ± 0.004 1.107 ± 0.004 0.985 ± 0.004 0.427 ± 0.003
0.4 0.331 ± 0.006 0.556 ± 0.004 1.020 ± 0.004 0.980 ± 0.003 0.466 ± 0.003
0.2 0.361 ± 0.006 0.503 ± 0.005 0.954 ± 0.005 0.970 ± 0.005 0.486 ± 0.002
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FIG. 6. Equal-time correlation function C(r) for pinned QGEM
interfaces slightly below threshold Fc. Here we consider the model
with parameters z = 4 and α = 1, but the results will be valid for the
other values of z and α in the continuous phase transition regime.
We average the data over 104 independent realizations. The scaling
behavior C(r) ∼ r2ξl is suppressed by the finite-size effect. The red
solid line indicates the exponent ξl = 1.095 ± 0.005.

are in good agreement with the prediction β + σ = 1. When
the time exceeds the characteristic time t×

W ∼ Lν , the global
interface width W (L, t ) reaches a saturation value Ws(L).
We use 32 � L � 2048 to simulate various system sizes to
obtain the roughness exponent ζg, which describes the sat-
uration of the interface fluctuation. To determine the global
roughness exponent ζg for QGEM we use the scaling relation
Ws(L) ∼ Lζg . We obtain ζg from the double-logarithmic plot
of the saturated surface width as a function of the system
size. The top inset in Fig. 5 depicts the saturated width Ws for
different lattice sizes in a logarithmic scale. In Tables I and II
we show the results for various values of z and α. In addition,
the scaling plot of W/Lζg versus t/Lν for various system sizes
demonstrates excellent data collapse, as shown in the bottom
inset of Fig. 5.

Finally, to further investigate the scaling behavior of the
QGEM and to evaluate the local roughness exponent ζl , we
calculate the two-point correlation function C(r) [see Eq. (3)].
The log-log diagram of C(r) versus r as shown in Fig. 6 gives
the slope ζl . Our computations are reported in Tables I and II.
It seems that the local roughness exponent does not change
with respect to the control parameters α and z and it is nearly
constant and equal to unity.

V. CONCLUSION

In this paper we have studied the depinning transition of
the elastic interface with nonlocal hydrodynamic interactions.
As we mentioned earlier, this model is called generalized
elastic model in the presence of quenched disorder. We nu-
merically studied different aspects of this model for different
values of the fractional order z and the nonlocal hydrody-
namic interaction power α. We found that the behavior of
the order parameter v(F ) as a function of the external force
F highly depends on the values of z and α. There are three
distinct phases in the z-α phase space. For small values of
z and α the order parameter vanishes and in the thermody-
namic limit the steady-state order parameter approaches zero.
In the opposite limit, where α ∼ 1 and z � 1, the model
exhibits a second-order phase transition and the order pa-
rameter v(F ) continuously changes from zero to nonzero
values. Finally, there is an additional phase when the order
parameter changes discontinuously from zero to nonzero val-
ues, which is characterized by a first-order phase transition.
We have analyzed in detail the steady state of the model
in the second-order phase transition regime. Our model dis-
plays naturally scaling features near the critical point Fc. We
measured different scaling exponents as functions of z and
α. Our results are in good agreement with the well-known
models.

Many open questions remain. First, it will be interesting to
apply this numerical algorithm to other relevant aspects of in-
terface dynamics with nonlocal hydrodynamic interactions in
the presence of quench disorder, such as developing numerical
tools to study this model in a d-dimensional space. Second,
we would like to study the system in detail when it exhibits
a first-order phase transition in which the order parameter
of the system changes discontinuously from zero to a finite
value (see Fig. 2). It would be interesting to investigate the
hysteretic response of the QGEM [71,72]. Another interesting
direction would be to extend numerical tools to study the
QGEM with nonlinear terms [38,39].
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