
PHYSICAL REVIEW E 109, 024114 (2024)

Effectiveness of the recursive-lattice technique in the investigation of magnetic
systems with the pyrochlore structure
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A well-defined higher recursive approximation of the pyrochlore lattice is introduced and its relevance and
effectiveness for the systematic investigation of magnetic systems with the pyrochlore structure is studied within
the classical antiferromagnetic as well as ferromagnetic spin-1/2 Ising model in the presence of the external
magnetic field. The exact solution of the model is found with the explicit analytic expression for the free energy
per site of the lattice. The magnetization and entropy properties of all ground states of the antiferromagnetic
model are determined and compared to those obtained within the lower recursive approximation of the model
on the recursive tetrahedral lattice. The exact analysis of the residual entropies of the model on the introduced
recursive lattice explicitly shows that the well-known Pauling entropy of the water ice cannot represent the true
residual entropy of the antiferromagnetic model on the regular pyrochlore lattice in the zero external magnetic
field. The improvement of the value of the critical temperature of the ferromagnetic model obtained within the
introduced higher recursive approximation is also discussed. The analysis performed demonstrates the great
efficiency of recursive approximations in the investigation of various magnetic systems with the pyrochlore
structure, especially for frustrated antiferromagnetic systems.
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I. INTRODUCTION

The frustrated magnetic systems belong without a doubt
among the most intensively studied systems in condensed
matter physics from the experimental as well as the theo-
retical point of view (see, e.g., Refs. [1–12] and references
cited therein). This interest is primarily given by the fact that
such magnetic materials exhibit various nontrivial peculiar
magnetic as well as thermodynamic properties especially at
low temperatures (such as the anomalous behavior of the
specific heat, the presence of huge magnetocaloric effects,
or the formation of various exotic states, e.g., the spin-liquid
state), which are directly related to the impossibility of an
unambiguous spin arrangement in such materials in the zero-
temperature limit. As a result, well-defined discrete sets of
ground states are formed in such magnetic systems, many
of which are highly macroscopically degenerated with the
presence of strict hierarchies of their residual entropies.

From a theoretical point of view, the simplest examples
of the frustrated magnetic systems are pure antiferromagnetic
spin-1/2 models on various regular two- or three-dimensional
lattices that contain elementary cycles build up from odd num-
bers (usually three) of spin variables [7,9,13]. This geometric
property of a regular lattice naturally prevents the possibility
of an unambiguous spin arrangement of the antiferromagnetic
system in the zero-temperature limit. Typical examples of
such regular lattices are two-dimensional kagome, triangular,
or Shastry-Sutherland lattice and the three-dimensional
pyrochlore or octahedral lattice. At the same time, it is clear
that the full description of the properties of real frustrated
magnetic systems can be given only within the corresponding
quantum models of statistical mechanics (e.g., in the

framework of the Heisenberg model). However, one of the
main problem that complicates the process of a systematic in-
vestigation of the properties of the two- and three-dimensional
frustrated spin systems is the nonexistence of even nearly
exact analytical or, at least, computational methods for anal-
ysis of such quantum systems on infinite lattices [14]. In this
situation, the corresponding models of the classical statistical
mechanics become very useful since, on the one hand, many
typical properties of real frustrated systems can be analyzed
even in the framework of the Ising and Ising-like models (e.g.,
the formation of highly macroscopically degenerated ground
states or the anomalous behavior of the specific heat) and, on
the other hand, some models can even be solved exactly [9]
(e.g., as for the residual entropies of the antiferromagnetic
Ising model on the kagome [15] and triangular [16] lattice) or
at least analyzed within well-controlled approximation tech-
niques. Moreover, in the last case, the systematic analysis can
very often be performed even in the presence of the external
magnetic field. In this respect, it is necessary to emphasize
that the importance of taking into account the presence of the
magnetic field when investigating magnetic systems increases
significantly in the case of the frustrated magnetic systems,
since the most phenomenologically interesting properties of
such systems are manifested precisely in the presence of the
external magnetic field (e.g., the magnetocaloric effects and
associated with them phenomenologically important effective
adiabatic (de)magnetization cooling processes [17–29]).

As shown by direct investigations, among very effective
approximations for the investigation of classical magnetic
systems belong recursive-lattice approximations (see, e.g.,
Refs. [12,30]). The recursive-lattice approximations are ef-
fective especially for the systematic investigation of the
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geometrically frustrated magnetic systems on regular lattices,
in the framework of which given regular lattice is approxi-
mated by a recursive lattice that takes into account at least
basic geometric properties of the original lattice responsible
for frustration [31–34]. However, the main advantage of the
recursive-lattice approximations of the frustrated magnetic
systems is the fact that even completely analytical exact solu-
tions of some models can be found as, e.g., in Refs. [35–37],
where even the very existence and uniqueness of the corre-
sponding solutions of the antiferromagnetic spin-1/2 Ising
model on the recursive kagome lattice and on the recursive
tetrahedral lattice were proven. Moreover, the obtained mag-
netization properties of the models turned out to be in a
complete qualitative agreement with those obtained in the
framework of the Monte Carlo simulations [38,39].

However, when working with recursive-lattice approxima-
tions of magnetic systems, a natural question immediately
arises, namely, whether the obtained results are stable (at least
qualitatively) with respect to the possible higher recursive
approximations that take into account additional information
about the geometric structure of the corresponding regular
lattice. A detailed analysis of this question was performed
recently in Ref. [40] in the framework of the antiferromagnetic
model on the kagome-like recursive lattices and it was shown
that the higher recursive approximation of the kagome lat-
tice completely preserves the expected qualitative properties
of the model and, at the same time, gives numerical cor-
rections to the results obtained in the lower recursive-lattice
approximation in correct direction, i.e., towards known exact
values.

The open question is whether the conclusions obtained
within the recursive-lattice approximations of the models on
two-dimensional kagome lattice remain valid in the frame-
work of frustrated three-dimensional systems. This question
is studied in the present paper within the antiferromagnetic
spin-1/2 Ising model on the introduced so-called recursive
pyrochlore lattice, which represents a natural higher recursive-
lattice approximation of the model on the regular pyrochlore
lattice in comparison to the basic so-called recursive tetrahe-
dral approximation [24,37,41–45].

In this context, the present paper has several objectives.
The first objective is to introduce a higher recursive-lattice ap-
proximation of the regular pyrochlore lattice that would take
into account in more detail its complex geometric structure
in comparison with the simple tetrahedral recursive-lattice
approximation and to test its relevance and importance from
the qualitative as well as the quantitative point of view.

The second nontrivial objective of the paper is to test
the validity of the hypothesis stated in Ref. [40], which
asserts that the values of magnetization (residual entropies)
of ground states of the frustrated models obtained within
a higher recursive-lattice approximation are always smaller
(larger) or at most equal to those obtained within the lower
approximation.

Since the Pauling residual entropy of the water ice [46]
is in fact neither the real residual entropy of the water ice
[47,48] nor of the antiferromagnetic Ising model on the py-
rochlore lattice [38,49], the third goal of the present study is
to determine potential higher recursive-lattice corrections to
the Pauling residual entropy of the antiferromagnetic model

FIG. 1. Basic structure of the regular pyrochlore lattice.

in the zero external magnetic field obtained within the tetrahe-
dral recursive-lattice approximation of the pyrochlore lattice
[24]. As we will see, this residual entropy is really changed
(becomes larger than the Pauling residual entropy) when the
higher recursive-lattice approximation of the pyrochlore lat-
tice is considered.

The fourth objective of the present study is to determine
the position of the critical temperature of the ferromagnetic
model on the introduced recursive lattice and compare it to
that obtained within the tetrahedral recursive-lattice approx-
imation as well as to the critical temperatures of the model
on the regular pyrochlore lattice obtained in the framework
of some other approximation techniques. In this respect, let
us stress that the exact position of the critical temperature
of the ferromagnetic Ising model on the pyrochlore lattice is
unknown.

In the end, the last but not least aim of the present study is
to introduce a higher recursive-lattice approximation of the
regular pyrochlore lattice in the framework of which spin
models with the presence of various additional interactions
could be investigated in the future, which cannot in principle
be considered within the tetrahedral recursive-lattice approxi-
mation of the pyrochlore lattice.

The paper is organized as follows. In Sec. II, the model
is introduced and its exact solution is present. In Sec. III, the
magnetization and entropy properties of the antiferromagnetic
model are investigated and all ground states of the model are
determined. In Sec. IV, the ferromagnetic case of the model
is studied and the value of the critical temperature is found.
Finally, the obtained results are briefly reviewed and discussed
in Sec. V.

II. FORMULATION OF THE MODEL

As was discussed in Introduction, our aim is to intro-
duce a higher recursive-lattice approximation of the regular
pyrochlore lattice (the basic structure of the pyrochlore lat-
tice is shown in Fig. 1) that takes into account not only
its basic tetrahedral geometric properties, as the standard
tetrahedral recursive-lattice approximation does (see Fig. 2)
[24,37,41–43,45], but also a typical cyclic pattern of the
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FIG. 2. Form of the recursive tetrahedral lattice with the central
tetrahedron connected to the four tetrahedra of the next layer.

regular three-dimensional pyrochlore lattice formed by six
connected tetrahedra (see Fig. 1, where four such cycles
can be identified). The simplest recursive-lattice approxi-
mation that takes into account this property of the regular
pyrochlore lattice is the recursive lattice built up recursively
from elementary blocks, the explicit form of which is shown
in Fig. 3.

Thus, in what follows, we will investigate in detail the spin-
1/2 Ising model on the recursive lattice built up recursively
from the elementary blocks shown in Fig. 3 and described by
the Hamiltonian

H = −J
∑
〈i j〉

sis j − H
∑

i

si, (1)

where all spin variables si can acquire one of two possible
values ±1, J is the nearest-neighbor ferromagnetic (J > 0)
or antiferromagnetic (J < 0) interaction parameter, and H
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FIG. 3. Elementary block of the recursive lattice that takes into
account a typical cyclic pattern of the regular pyrochlore lattice
formed by six connected tetrahedra. The numbering of 18 sites of
the elementary structure of the recursive lattice is used for better un-
derstanding of the partition function of the model written in Eq. (3).

denotes the external magnetic field. The first sum in Eq. (1)
runs over all nearest-neighbor spin pairs and the second
sum runs over over all spin sites on the studied recursive
lattice.

Since the model described by the Hamiltonian (1) is con-
sidered on the recursive lattice, the basic geometrical structure
of which is given in Fig. 3, the partition function of the studied
system

Z ≡
∑

s

e−βH =
∑

s

eK
∑

〈i j〉 sis j + h
∑

i si , (2)

where the sum over s means the summation over all possible
spin configurations on the lattice, β = 1/(kBT ), T is the tem-
perature, kB is the Boltzmann constant, K = βJ , and h = βH ,
can be rewritten into the following recursive form:

Z =
∑

s(1)
n ,...,s(18)

n

eKs(1)
n (s(2)

n +s(6)
n +s(7)

n +s(8)
n +s(17)

n +s(18)
n )

× eK[s(2)
n (s(3)

n +s(7)
n +s(8)

n +s(9)
n +s(10)

n )+s(7)
n s(8)

n ]

× eK[s(3)
n (s(4)

n +s(9)
n +s(10)

n +s(11)
n +s(12)

n )+s(9)
n s(10)

n ]

× eK[s(4)
n (s(5)

n +s(11)
n +s(12)

n +s(13)
n +s(14)

n )+s(11)
n s(12)

n ]

× eK[s(5)
n (s(6)

n +s(13)
n +s(14)

n +s(15)
n +s(16)

n )+s(13)
n s(14)

n ]

× eK[s(6)
n (s(15)

n +s(16)
n +s(17)

n +s(18)
n )+s(15)

n s(16)
n +s(17)

n s(18)
n ]

× eh
∑18

i=1 s(i)
n

18∏
j=7

un
(
s( j)

n

)
, (3)

where it is supposed that the whole recursive tree has n layers
with the subsequent limit n → ∞, the 18 spin variables of
the central layer (the layer denoted by n) are numbered in the
way shown in Fig. 3, and un(s( j)

n ) represent partition functions
of the twelve independent branches of the whole recursive
tree with base sites numbered as j = 7, . . . , 18, respectively,
through which they are connected to the central elemen-
tary structure built up from the six connected tetrahedra
(see Fig. 3).

For completeness, let us note that since we intend to in-
vestigate the antiferromagnetic system on such a recursive
“pyrochlore-like” lattice, due to the presence of geometric
frustration given by four elementary triangles on each tetra-
hedron of the lattice, it is necessary, in general, to begin the
analysis with the assumption of the existence of four different
sublattices realized within each elementary tetrahedron of the
lattice. However, as was proven in Ref. [37], the antiferro-
magnetic model on the simplest tetrahedral recursive lattice
exhibits only the symmetric solutions, i.e., all sublattices of
such a recursive lattice are equivalent. Although it is impos-
sible to prove this fact in the framework of the studied higher
recursive approximation of the pyrochlore lattice, nevertheless
the numerical analysis shows that the same conclusion is also
valid in this more complicated case. In this respect, the par-
tition function in Eq. (3) is already written in the form when
all sublattices of the whole recursive lattice are equivalent to
each other.

As a result, the functions un(s(i)
n ) have the same form

for all spin variables s(i)
n ), i = 7, . . . , 18. Their values can be
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calculated recursively. For instance, if the numbering of the
next layer n − 1 is performed in the same way as shown

in Fig. 3, then the function un(s(7)
n ) is given recursively as

follows:

un
(
s(7)

n

) =
∑

s(1)
n−1,...,s

(6)
n−1,s

(8)
n−1,...,s

(18)
n−1

eK[s(7)
n (s(1)

n−1+s(2)
n−1+s(8)

n−1 )+s(1)
n−1(s(2)

n−1+s(6)
n−1+s(8)

n−1+s(17)
n−1+s(18)

n−1 )]

× eK[s(2)
n−1(s(3)

n−1+s(8)
n−1+s(9)

n−1+s(10)
n−1 )+s(3)

n−1(s(4)
n−1+s(9)

n−1+s(10)
n−1+s(11)

n−1+s(12)
n−1 )+s(4)

n−1(s(5)
n−1+s(11)

n−1+s(12)
n−1+s(13)

n−1+s(14)
n−1 )]

× eK[s(5)
n−1(s(6)

n−1+s(13)
n−1+s(14)

n−1+s(15)
n−1+s(16)

n−1 )+s(6)
n−1(s(15)

n−1+s(16)
n−1+s(17)

n−1+s(18)
n−1 )+s(9)

n−1s(10)
n−1+s(11)

n−1s(12)
n−1+s(13)

n−1s(14)
n−1]

× eK(s(15)
n−1s(16)

n−1+s(17)
n−1s(18)

n−1 )+h
∑18

i=1,i �=7 s(i)
n−1

18∏
j=8

un−1
(
s( j)

n−1

)
, (4)

and all other functions un(s(i)
n ), i = 8, . . . , 18 can be written in

the similar way. Note that from a mathematical point of view
all of them are completely equivalent to each other.

However, from a calculational point of view, it is more
convenient to work with the only independent quantity xn

defined as the following ratio:

xn = un(+)/un(−), (5)

which can be written in the following standard recursive form:

xn =
∑11

i=0 X1,ixi
n−1∑11

i=0 X0,ixi
n−1

, (6)

where the explicit form of functions X1,i and X0,i for i =
0, 1, . . . , 11 is given in Appendix A.

The fact that the studied recursive magnetic system is
described by the single recursion relation (6) means that the
physical properties of all possible phases of the studied model
are driven by the physically relevant (real and positive) stable
fixed points x of this recursion relation obtained in the limit
n → ∞, i.e., x = limn→∞ xn.

Note also that all physically relevant stable fixed points
of the recursion relation (6) must also belong among the
solutions of the following polynomial equation of the twelfth
order obtained from (6) in the limit n → ∞:

12∑
i=0

Yix
i = 0, (7)

where the explicit form of functions Yi, i = 0, 1, . . . , 12 is
given in Appendix B.

However, knowing only the coordinates of the stable fixed
points does not allow one to identify the physically relevant
phase of the model in the situations when (for given values of
the parameters of the model) more than one such recursively
stable fixed points exist. At the same time, it is obvious that the
mere knowledge of the coordinates of the physically relevant
fixed points of the recursion relation (6) for given values of
the parameters of the model is necessary but not sufficient
condition for the description of its thermodynamics.

In this respect, the recursively stable fixed point that corre-
spond to the thermodynamically stable phase of the model can
be identified if the explicit expression for the free energy of
the model is known. In addition, knowledge of the free energy

of the model allows a detailed analysis of its thermodynamic
properties.

The free energy per site f of the studied model can be
derived using, e.g., the technique described in Ref. [50] and
has the following explicit form:

β f = 1

12
ln

[
e12(h+K )F 5

1

F 6
2

]
, (8)

where the functions F1 and F2 have the following polynomial
form with respect to the coordinate x of the corresponding
fixed point of the recursion relation (6):

F1 =
12∑

i=0

F1,ix
i, F2 =

11∑
i=0

F2,ix
i, (9)

and the explicit form of all functions F1,i and F2,i is given in
Appendix C.

From a theoretical point of view, the existence of the ex-
plicit expression for the free energy per site of the model as
the function of the parameters of the model as well as of the
coordinate x of the fixed point of the recursion relation (6)
means that the present model can be considered as an exactly
solvable model of the classical statistical mechanics. In what
follows, we will used this exact solution for the analysis of
the magnetic and entropy properties of the antiferromagnetic
as well as ferromagnetic version of the model.

III. MAGNETIZATION AND ENTROPY PROPERTIES
OF THE ANTIFERROMAGNETIC MODEL: RESIDUAL

ENTROPIES OF ALL GROUND STATES

First, let us analyze the magnetization and entropy proper-
ties of the antiferromagnetic (J < 0) model on the recursive
lattice built from the elementary building blocks shown in
Fig. 3 and compare them to those obtained within the simplest
possible recursive approximation of the pyrochlore lattice,
i.e., to the results of the model obtained on the tetrahedral
recursive lattice (see Fig. 2). For convenience and to save
space, let us call the recursive lattice built from the elementary
building blocks shown in Fig. 3 as the recursive pyrochlore
lattice (RPL) and the recursive lattice shown in Fig. 2 as the
recursive tetrahedral lattice (RTL).

The temperature dependence of the absolute value of the
total magnetization m = −∂ f /∂H and of the entropy per site
s = −∂ f /∂T of the antiferromagnetic model on the RPL is
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FIG. 4. Dependence of the absolute value of the total magneti-
zation per site of the antiferromagnetic model on the RPL on the
reduced temperature kBT/|J| for various absolute values of the exter-
nal magnetic field |H/J| with the five different ground states formed
in the zero-temperature limit.

shown in Figs. 4 and 5, respectively, for the various ab-
solute values of the external magnetic field |H/J|. At the
same time, the dependence of the absolute value of the total
magnetization and of the entropy per site of the model on
the external magnetic field H/|J| for various values of the
reduced temperature kBT/|J| is demonstrated in Figs. 6 and 7,
respectively.

FIG. 5. Dependence of the entropy per site of the antiferromag-
netic model on the RPL on the reduced temperature kBT/|J| for
various absolute values of the external magnetic field |H/J| with
the explicit formation of nonzero residual entropies of four highly
macroscopically degenerated ground states.

FIG. 6. Dependence of the absolute value of the total magneti-
zation per site of the antiferromagnetic model on the RPL on the
external magnetic field H/|J| for various values of the reduced tem-
perature kBT/|J|.

As follows from all these figures (Figs. 4–7), the model
exhibits the formation of five different ground states in
the zero-temperature limit with different magnetization as
well as entropy properties. Three of them are the plateau
ground states formed in the following intervals of the external
magnetic field: the magnetization plateau with the zero
magnetization (m = 0) is realized for −2 < H/|J| < 2, the
second plateau ground state with |m| = 1/2 is formed in the

FIG. 7. Dependence of the entropy per site of the antiferromag-
netic model on the RPL on the external magnetic field H/|J| for
various values of the reduced temperature kBT/|J| with the explicit
formation of nonzero residual entropies of the highly macroscopi-
cally degenerated ground states.
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interval 2 < |H/J| < 6, and, finally, the saturated plateau
ground state with |m| = 1 is realized for |H/J| > 6. Note
that the same tree plateau ground states realized in the
same intervals of the external magnetic field as well as with
the same values of the magnetization are also formed in
the case of the studied model on the RTL [37] as well as in
the framework of the Monte Carlo investigations of the model
on the pyrochlore lattice [38].

At the same time, as it is also clear from Figs. 4–7, the
model on the RPL exhibits the formation of two single-
point ground states realized at |H/J| = 2 and 4, respectively,
which separate the aforementioned plateau ground states. The
magnetization of the single-point ground states realized at
H/|J| = ±2 are given as follows:

m = ±m1

m0
, (10)

where

m1 = x∗(5x11
∗ + 43x10

∗ + 179x9
∗ + 463x8

∗ + 812x7
∗

+ 997x6
∗ + 861x5

∗ + 514x4
∗ + 209x3

∗ + 58x2
∗

+ 10x∗ + 1), (11)

m0 = 18x12
∗ + 156x11

∗ + 678x10
∗ + 1844x9

∗ + 3423x8
∗

+ 4452x7
∗ + 4086x6

∗ + 2616x5
∗ + 1182x4

∗ + 376x3
∗

+ 84x2
∗ + 12x∗ + 1, (12)

and x∗ ≈ 1.261996 is the only real positive solution of the
following polynomial equation

−1 − 12x∗ − 71x2
∗ − 253x3

∗ − 555x4
∗ − 700x5

∗ − 371x6
∗

+ 132x7
∗ + 340x8

∗ + 236x9
∗ + 82x10

∗ + 13x11
∗ = 0. (13)

Their approximate numerical values are m ≈ ±0.228432.
Note that the absolute value of these magnetizations is only a
little bit smaller than the absolute value of the corresponding
magnetizations obtained in the framework of the model on the
RTL (m ≈ ±0.228438) [37].

However, the magnetization of the single-point ground
states formed at H/|J| = ±6 are defined as follows:

m = ±(32 + 112x∗ + 208x2
∗ + 232x3

∗ + 164x4
∗ + 68x5

∗
+ 13x6

∗ )/(64 + 192x∗ + 336x2
∗ + 352x3

∗ + 240x4
∗

+ 96x5
∗ + 18x6

∗ ), (14)

where now x∗ ≈ 2.303006 is the only real positive solution of
the following polynomial equation

−16 − 56x∗ − 96x2
∗ − 92x3

∗ − 44x4
∗ + 11x6

∗ + 4x7
∗ = 0.

(15)

Their approximate numerical values are m ≈ ±0.682667
and their absolute value is again only a little bit smaller
than the absolute value of the corresponding magnetiza-
tions obtained in the framework of the model on the RTL
(m ≈ ±0.682679) [37].

Thus, at least as for the magnetization properties of all
the ground states of the studied antiferromagnetic model, the
results obtained on the significantly more complicated RPL
are very close to the corresponding results obtained in the

framework of the analysis of the model within the much
simpler recursive approximation of the regular pyrochlore
lattice, namely, within the model on the RTL [37]. It means
that, at least from the magnetization point of view, even the
simplest possible recursive lattice approximation of the regu-
lar pyrochlore lattice provides quite accurate description of
the antiferromagnetic spin-1/2 Ising model on the genuine
pyrochlore lattice. Moreover, as will be shown and discussed
a little bit later, the magnetization properties of the studied
model on the RPL and on the RTL are not only very similar in
the zero-temperature limit but also for arbitrary finite values
of the temperature.

Now let us analyze the entropy properties of the ground
states of the model on the RPL. As follows from Figs. 5 and
7, all four different nontrivial ground states of the model, i.e.,
all ground states except of the saturated ground states realized
for |H/J| > 6, are highly macroscopically degenerated with
strict discrete hierarchy of their nonzero residual entropies.

First, let us determine the residual entropy of the plateau
ground state with zero magnetization realized in the interval
−2 < H/|J| < 2. Its residual entropy in the framework of the
studied model on the RPL is given as follows:

s = kB

12
ln

365

32
≈ 0.202847kB. (16)

This result, though very close, is different from the value
of the residual entropy of this ground state of the model
on the RTL [24], which is equal to the well-known Pauling
entropy of the water ice (s = kB/2 ln(3/2) ≈ 0.202733kB). In
this respect, if we assume the validity of the rule that a higher
approximation gives more accurate results, then the result
(16) represents another evidence of the fact that the residual
entropy of this ground state of the antiferromagnetic spin-1/2
Ising model on the regular pyrochlore lattice is not equal to the
Pauling entropy since the higher recursive approximation of
the pyrochlore lattice gives albeit small but nonzero correction
to the Pauling residual entropy obtained in the framework
of the model on the RTL [24]. Note that this conclusion
is qualitatively in accordance with the corresponding results
obtained within Monte Carlo simulations as well as other
theoretical investigations (see, e.g., results and discussions in
Refs. [38,49]).

The second nontrivial plateau ground state of the model
realized in the interval 2 < |H/J| < 6 with the absolute value
of the magnetization |m| = 1/2 is also highly macroscopically
degenerated (see Figs. 5 and 7) with the residual entropy given
as follows:

s = kB

12
ln

2x6
∗(16 + 16x2

∗ + 3x4
∗ )6

32 + 48x2∗ + 18x4∗ + x6∗
≈ 0.130928kB, (17)

where, in this case, the value of x∗ is given by the only real
positive solution of the equation

2x6
∗ + x4

∗ − 16x2
∗ − 16 = 0, (18)

which can be written as follows:

x∗ =
√

(719 + 24i
√

687)1/3 + 97
(719+24i

√
687)1/3 − 1

6
. (19)

Its approximate numerical value is x∗ ≈ 1.738536.
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TABLE I. Values of the magnetization and of the residual entropy of all ground states of the model on the recursive pyrochlore lattice
(RPL) and on the recursive tetrahedral lattice (RTL) [24,37].

0 � |H/J| < 2 |H/J| = 2 2 < |H/J| < 6 |H/J| = 6 |H/J| > 6

|m| on the RPL 0 0.228432 0.5 0.682667 1
|m| on the RTL 0 0.228438 0.5 0.682679 1
s/kB on the RPL 0.202847 0.481163 0.130928 0.330681 0
s/kB on the RTL 0.202733 0.481144 0.130812 0.330678 0

Note that the numerical value of this residual entropy is
again a little bit larger than the corresponding value of the
residual entropy of this plateau ground state obtained in the
framework of the model on the RTL (s ≈ 0.130812kB) [24].

Let us now turn to the residual entropies of two single-point
ground states of the model formed at |H/J| = 2 and 6. The
residual entropy of the first of them, i.e., of the single-point
ground state realized at |H/J| = 2, is given as follows:

s = kB

12
ln

A6

B5
≈ 0.481163kB, (20)

where

A = 1 + 11x∗ + 70x2
∗ + 282x3

∗ + 788x4
∗ + 1526x5

∗
+ 2043x6

∗ + 1855x7
∗ + 1141x8

∗ + 461x9
∗ + 113x10

∗
+ 13x11

∗ , (21)

B = 1 + 12x∗ + 84x2
∗ + 376x3

∗ + 1182x4
∗ + 2616x5

∗
+ 4086x6

∗ + 4452x7
∗ + 3423x8

∗ + 1844x9
∗ + 678x10

∗
+ 156x11

∗ + 18x12
∗ , (22)

and x∗ ≈ 1.261996 is again the only real positive solution of
the polynomial equation (13). The numerical value (20) of
this residual entropy is again only a little bit larger than the
corresponding residual entropy obtained within the tetrahedral
recursive-lattice approximation (s ≈ 0.481144kB) [24].

However, the residual entropy of the single-point ground
state formed at |H/J| = 6 in the framework of the studied py-
rochlore recursive-lattice approximation is given as follows:

s = kB

12
ln

2(4x∗C)6

D5
≈ 0.330681kB, (23)

where

C = 4 + 10x∗ + 14x2
∗ + 11x3

∗ + 5x4
∗ + x5

∗, (24)

D = 32 + 96x∗ + 168x2
∗ + 176x3

∗ + 120x4
∗ + 48x5

∗
+ 9x6

∗, (25)

and x∗ ≈ 2.303006 is the only real positive solution of the
polynomial equation (15). Note that the numerical value (23)
of this residual entropy is again a little bit larger than the
corresponding residual entropy obtained within the tetrahedral
recursive-lattice approximation (s ≈ 0.330678kB) [24].

Thus, our analysis shows that (see Table I, where the mag-
netization and residual entropy values of all ground states of
the model on the RPL are summarized and compared to those
valid on the RTL) the magnetization values of all ground states
of the antiferromagnetic model in the framework of the higher
recursive approximation of the regular pyrochlore lattice, i.e.,

on the RPL with the basic structure shown in Fig. 3, are
always smaller or at most equal to the corresponding values
obtained in the framework of the RTL [37] (see Fig. 2), which
represents the simplest possible recursive approximation of
the regular pyrochlore lattice that takes into account its basic
tetrahedral structure. At the same time, the residual entropies
of all these ground states obtained within the higher recur-
sive approximation are, on the contrary, always larger or at
most equal to those calculated within the simpler recursive
approximation [24]. This is a nontrivial fact, which is in
full agreement with the corresponding hypothesis stated in
Ref. [40] in the framework of the recursive investigations of
the antiferromagnetic systems on the kagome lattice.

However, to be able to estimate the suitability of vari-
ous recursive approximations for the systematic analysis of
the magnetic and thermodynamic properties of the antifer-
romagnetic systems with the pyrochlore structure, it is also
necessary to compare the results obtained within the py-
rochlore and tetrahedral recursive-lattice approximations at
nonzero temperatures.

In this respect, the effectiveness and suitability of even
the simplest recursive-lattice approximation of the pyrochlore
lattice given by the RTL for the systematic investigation of the
corresponding antiferromagnetic systems is explicitly demon-
strated in the series of Figs. 8–14, where the magnetization
and entropy properties of the model on the RTL [the dashed
(red) curves] and on the RPL [the solid (black) curves] as the
functions of the temperature are compared for typical values
of the external magnetic field |H/J|, namely, for |H/J| = 2
(Figs. 8 and 9) and |H/J| = 6 (Figs. 10 and 11), for which
the single-point ground states are formed, and for |H/J| = 4
(Figs. 12 and 13) and H = 0 (Fig. 14) that represent typical
values of the external magnetic fields, for which the plateau
ground states are formed in the zero-temperature limit. Note
that the magnetization of the model is always equal to zero
for H = 0.

As follows from all these figures (Figs. 8–14), the corre-
sponding magnetization as well as entropy curves obtained
within the aforementioned two recursive approximations
are almost indistinguishable. The differences can be seen
only with a closer look (see the corresponding inset fig-
ures near zero temperature). At the same time, the smallness
of differences �|m| = |m|RPL − |m|RTL and �s/kB = (sRPL −
sRTL)/kB between the corresponding magnetization and en-
tropy values of the model on the RPL (values |m|RPL and
sRPL/kB) and on the RTL (values |m|RTL and sRTL/kB) is also
demonstrated in the corresponding inset figures in Figs. 8–14.

Finally, another important quantity, behavior of which
characterizes nontrivial thermodynamic properties of the
frustrated systems, is the specific heat at the constant
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FIG. 8. The temperature dependence of the absolute value of the
magnetization of the antiferromagnetic model (J < 0) on the RPL
[the solid (black) curve] and on the RTL [the dashed (red) curve] for
|H/J| = 2. A detailed view at low temperatures is shown in the top
inset. The difference �|m| between these two magnetization curves
is shown explicitly in the bottom inset (see the text for details).

magnetic field cH ≡ −T ∂2 f /∂T 2 = T ∂s/∂T . This quantity
was studied in detail in Ref. [43] in the framework of the
tetrahedral recursive-lattice approximation. At the same
time, the adiabatic (de)magnetization cooling processes
in the antiferromagnetic systems on the pyrochlore lattice

FIG. 9. Temperature dependence of the entropy per site of the
antiferromagnetic model (J < 0) on the RPL [the solid (black) curve]
and on the RTL [the dashed (red) curve] for |H/J| = 2. A detailed
view at low temperatures is shown in the bottom inset. The difference
�s/kB between these two entropy curves is shown explicitly in the
top inset (see the text for details).

FIG. 10. Temperature dependence of the absolute value of the
magnetization of the antiferromagnetic model (J < 0) on the RPL
[the solid (black) curve] and on the RTL [the dashed (red) curve]
for |H/J| = 6. A detailed view at low temperatures is shown in the
bottom inset. The difference �|m| between these two magnetization
curves is shown explicitly in the top inset (see the text for details).

were investigated in Ref. [24] in the same recursive-lattice
approximation. All these results are also valid with a very high
precision in the framework of the model on the RPL studied in
the present paper since, as Figs. 9, 11, 13, and 14 show, there
are negligible differences between the entropy properties of

FIG. 11. Temperature dependence of the entropy per site of the
antiferromagnetic model (J < 0) on the RPL [the solid (black) curve]
and on the RTL [the dashed (red) curve] for |H/J| = 6. A detailed
view at low temperatures is shown in the bottom inset. The difference
�s/kB between these two entropy curves is shown explicitly in the
top inset (see the text for details).
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FIG. 12. Temperature dependence of the absolute value of the
magnetization of the antiferromagnetic model (J < 0) on the RPL
[the solid (black) curve] and on the RTL [the dashed (red) curve]
for |H/J| = 4. A detailed view at low temperatures is shown in the
bottom inset. The difference �|m| between these two magnetization
curves is shown explicitly in the top inset (see the text for details).

the model on the RPL and on the RTL. Therefore, there is no
need to repeat this analysis here.

Although it seems that, as the performed analysis shows,
even the simpler recursive-lattice approximation given by
the RTL describes appropriately the magnetic as well as

FIG. 13. Temperature dependence of the entropy per site of the
antiferromagnetic model (J < 0) on the RPL [the solid (black) curve]
and on the RTL [the dashed (red) curve] for |H/J| = 4. A detailed
view at low temperatures is shown in the bottom inset. The difference
�s/kB between these two entropy curves is shown explicitly in the
top inset (see the text for details).

FIG. 14. Temperature dependence of the entropy per site of the
antiferromagnetic model (J < 0) on the RPL [the solid (black) curve]
and on the RTL [the dashed (red) curve] for |H/J| = 6. A detailed
view at low temperatures is shown in the bottom inset. The difference
�s/kB between these two entropy curves is shown explicitly in the
top inset (see the text for details).

thermodynamic properties of the geometrically frustrated an-
tiferromagnetic systems on the regular pyrochlore lattice,
nevertheless the main advantage of the introduced antiferro-
magnetic model on the significantly more complex RPL is
that various additional interactions can be naturally added
into the model on this recursive lattice with more complicated
structure, which cannot in principle be taken into account in
the case of the model on the RTL. For instance, among such
interactions belongs the next-nearest-neighbor interaction, the
presence of which can have nontrivial impact on the properties
of various magnetic systems on the regular pyrochlore lattice.
Thus, the introduced higher recursive-lattice approximation of
the regular pyrochlore lattice opens up the possibility of study-
ing such more complicated magnetic systems in a systematic
way in the future.

IV. SPONTANEOUS MAGNETIZATION, ENTROPY,
AND THE CRITICAL TEMPERATURE
OF THE FERROMAGNETIC MODEL

Let us now turn our attention to the analysis of the mag-
netization and entropy properties of the ferromagnetic model
(J > 0) on the RPL and compare them to those obtained on
the RTL [41]. In this respect, the corresponding comparison
is given in Figs. 15 and 16, respectively, for the zero external
magnetic field with the explicit presence of the second order
phase transition at the critical temperature. As follows from
these two figures, the differences between the spontaneous
magnetizations as well as between the entropies of the model
on the RPL [the solid (black) lines in Figs. 15 and 16] and on
RTL [the dashed (red) lines in Figs. 15 and 16] are again al-
most invisible (see the corresponding inset figures in Figs. 15
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FIG. 15. The temperature dependence of the absolute value of
the spontaneous magnetization of the ferromagnetic model (J > 0)
on the RPL [the solid (black) curve] and on the RTL [the dashed (red)
curve]. A detailed view in the vicinity of the corresponding critical
points is shown in the bottom inset. The difference �|m| between
these two magnetization curves is shown explicitly in the top inset
(see the text for details).

and 16 that show the behavior of the magnetizations and
entropies in the vicinity of the critical points of the model on
the aforementioned two recursive lattices).

From a theoretical point of view, it is also both interesting
and important to determine the exact position of the critical

temperature of the ferromagnetic model on the studied RPL
and to estimate the effectiveness of this higher recursive ap-
proximation for its determination in comparison to the known
result on the RTL [41]. However, it is necessary to bear in
mind that, since the Ising model on the regular pyrochlore
lattice represents a three-dimensional model of the classical
statistical mechanics, the exact value of the critical temper-
ature of the Ising model on the regular pyrochlore lattice is
yet unknown. At the same time, the most accurate values of
the critical temperatures of three-dimensional ferromagnetic
systems are usually considered to be the corresponding val-
ues obtained in the framework of series expansions. In this
respect, the value of the critical temperature on the regular
pyrochlore lattice was obtained, e.g., in Refs. [51,52], by
using the high-temperature series expansion technique and is
given as follows (in our normalization):

kBTc

J

∣∣∣∣
HTS

≈ 4.21304. (26)

However, the critical temperature of the model on the RTL
was found in Ref. [41] with the numerical value (again in our
normalization)

kBTc

J

∣∣∣∣
RTL

≈ 4.40439, (27)

with the relative difference ε ≈ 0.045 with respect to the high-
temperature series expansion value (26).

The value of the critical temperature kBTc/J ≡ K−1
c of the

ferromagnetic model on the RPL can be found by using the
same arguments as in Ref. [41] and is given by the solution of
the following equation:

−440 sinh(Kc) + 346 sinh(3Kc) + 22 sinh(5Kc) − 146 sinh(7Kc) + 222 sinh(9Kc) + 398 sinh(11Kc)

− 208 sinh(13Kc) + 217 sinh(15Kc) + 289 sinh(17Kc) + 94 sinh(19Kc) + 120 cosh(Kc) − 294 cosh(3Kc)

+ 28 cosh(5Kc) + 156 cosh(7Kc) − 332 cosh(9Kc) − 228 cosh(11Kc) + 71 cosh(13Kc) − 142 cosh(15Kc)

− 314 cosh(17Kc) − 89 cosh(19Kc) = 0. (28)

In the end, the critical temperature kBTc/J of the model on the
RPL can be written as follows:

kBTc

J

∣∣∣∣
RPL

= 2

ln qc
≈ 4.39848, (29)

where qc > 1 is the only such real positive solution of the
following polynomial equation:

5q19 − 25q18 + 75q17 − 137q16 + 170q15 − 110q14

+ 10q13 + 50q12 + 52q11 − 320q10 + 560q9 − 640q8

+ 6q7 + 302q6 − 554q5 − 626q4 + 279q3 − 359q2

− 603q − 183 = 0. (30)

The relative difference of this value with respect to the
value of the critical temperature obtained within the high-
temperature series expansion (26) is ε ≈ 0.044, i.e., the

difference between the value of the critical temperature on the
RPL and the critical temperature on the regular pyrochlore
lattice obtained by using the high-temperature series expan-
sion technique is only 4.4% of the last one. Thus, the critical
temperature (29) of the model on the RPL is a little bit smaller
than the critical temperature (27) of the model on the RTL, i.e.,
the higher recursive approximation improves the value of the
critical temperature toward the “exact” value (26) represented
by the value obtained within the high-temperature series ex-
pansion although the improvement is small. Note that, in
contrast to this small improvement of the value of the critical
temperature of the ferromagnetic model on the pyrochlore
lattice at the transition from the tetrahedral recursive-lattice
approximation [41] to the pyrochlore recursive-lattice ap-
proximation studied in the present paper, the corresponding
improvement at the transition from the Bethe recursive-lattice
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TABLE II. Predictions of the value of the reduced critical temperature kBTc/J of the ferromagnetic spin-1/2 Ising model on the regular
pyrochlore lattice in the framework of various theoretical approximations as well as by the Monte Carlo simulations (MCS) [54,55]. Namely,
in the framework of the 7-site cluster effective field theory approximation (EFT) [56], the Bethe lattice approximation (BL) [53], the recursive
tetrahedral lattice (RTL) [41], the recursive pyrochlore lattice (RPL) determined in the present paper, the effective field renormalization group
technique (EFRG) [57], and the high-temperature series expansion [51,52], which is usually considered as the most accurate value of the
critical temperature of the model on the pyrochlore lattice.

EFT BL RTL RPL EFRG HTSE MCS

kBTc/J 4.7011 4.9326 4.40439 4.39848 4.34783 4.21304 4.21389

approximation [53] (which takes into account the value of
the coordination number z = 6 of the regular pyrochlore lat-
tice but no its specific geometric structure) to the tetrahedral
recursive-lattice approximation [41] is quite significant since
the value of the critical temperature of the model on the Bethe
lattice is kBTc/J = 2/ ln(3/2) ≈ 4.93261. Thus, the relative
difference between this value and the value of the critical
temperature (26) obtained within the high-temperature series
expansion is ε ≈ 0.171. It means that taking into account
the basic tetrahedral structure of the pyrochlore lattice within
the tetrahedral recursive-lattice approximation immediately
almost four times improves the relative difference with re-
spect to the value of the critical temperature obtained within
the high-temperature series expansion in comparison to the
Bethe lattice approximation (ε ≈ 0.045 versus ε ≈ 0.171).
However, as our analysis shows, further significant increasing
of the level of the recursive approximation of the regular
pyrochlore lattice, such as the including of the basic cyclic
structure of the pyrochlore lattice that consists of six con-
nected tetrahedra, has very small impact on the value of the
critical temperature. This is given by the fact that the corre-
lation length increases to infinity at the critical temperature.
Therefore the difference between the elementary geometric
structures of the RTL and RPL are negligible as for the critical
phenomena. However, the large difference between the criti-
cal temperatures of the model on the Bethe lattice with the
coordination number z = 6 and on the RTL is given by the
significant qualitative difference between these two recursive
lattices. Namely, while the Bethe lattice with the coordi-
nation number z = 6 approximates not only the pyrochlore
lattice but also the two-dimensional triangular lattice or the
three-dimensional simple cubic lattice, the basic tetrahedral
structure of the regular pyrochlore lattice is definitely fixed
in the tetrahedral recursive-lattice approximation. This fact
leads to the large shift of the value of the critical temperature
on the RTL towards its exact value on the regular pyrochlore
lattice.

For completeness, various values of the critical temperature
of the ferromagnetic spin-1/2 Ising model on the pyrochlore
lattice obtained in the framework of different theoretical ap-
proaches are compared in Table II.

Note also that, since, from the critical phenomena point
of view, the studied ferromagnetic model on the RPL (as any
model on arbitrary recursive lattice) belongs to the mean-field
class of universality, all critical exponents of the model are
equal to those of the mean-field theory. For instance, the ex-
ponent β that describes the asymptotic behavior of the sponta-
neous magnetization in the vicinity of the critical temperature

at the zero external magnetic field [mH=0(T ) ∼ (−τ )β for
τ = (T − Tc)/Tc in the limit τ → 0−] is equal to 1/2.

Finally, let us discuss briefly the behavior of the magne-
tization and entropy of the ferromagnetic model on the RPL
as functions of the temperature and of the external magnetic
field. In this respect, the dependence of the absolute value
of the magnetization on the reduced temperature kBT/J for
the various absolute values of the external magnetic field is
shown explicitly in Fig. 17. However, the dependence of the
magnetization on the external magnetic field H/J for various
values of the reduced temperature is demonstrated in Fig. 18
with the explicit presence of the first order phase transitions
at H = 0 below the critical temperature. In addition, the be-
havior of the entropy as the function of the external magnetic
field for various values of the reduced temperature is shown
in Fig. 19.

V. CONCLUSION

In the end, let us summarize briefly the main results ob-
tained in the present paper.

FIG. 16. The temperature dependence of the entropy per site of
the ferromagnetic model (J > 0) on the RPL [the solid (black) curve]
and on the RTL [the dashed (red) curve] for H = 0. A detailed view
in the vicinity of the corresponding critical points is shown in the
top inset. The difference �s/kB between these two entropy curves is
shown explicitly in the bottom inset (see the text for details).
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FIG. 17. The temperature dependence of the absolute value of
the magnetization of the ferromagnetic model (J > 0) on the RPL
for various absolute values of the external magnetic field.

In this paper, we have introduced a higher recursive ap-
proximation of the regular pyrochlore lattice that takes into
account the typical cyclic structure of the pyrochlore lattice
formed by six connected elementary tetrahedra. The anti-
ferromagnetic as well as the ferromagnetic spin-1/2 Ising
models are investigated on such a recursive lattice in the
presence of the external magnetic field. It is shown that such
magnetic systems are exactly solvable in the sense that the
explicit expression for the free energy per site of the model
is found as the function of the parameters of the model

FIG. 18. Dependence of the magnetization of the ferromagnetic
model (J > 0) on the RPL on the external magnetic field for various
values of the reduced temperature with the presence of the first order
phase transitions at H = 0 below the critical temperature.

FIG. 19. Dependence of the entropy of the ferromagnetic model
(J > 0) on the RPL on the external magnetic field for various values
of the reduced temperature.

and of the corresponding fixed point value of the single re-
cursion relation, which drives all physical properties of the
studied spin systems. The magnetization and entropy prop-
erties of the antiferromagnetic model are studied and it is
shown that the magnetization values of all ground states are
always smaller or at most equal to those obtained within
the simpler approximation on the so-called recursive tetra-
hedral lattice. At the same time, the residual entropies of
all the ground states are always larger or at most equal
to the corresponding residual entropies obtained within the
tetrahedral recursive-lattice approximation. These results are
completely in agreement with the corresponding hypothesis
states in Ref. [40] in the framework of recursive-lattice in-
vestigations of the antiferromagnetic systems on the kagome
lattice. Therefore, one can conclude that the performed anal-
ysis confirms the validity of this nontrivial hypothesis in
the framework of the frustrated antiferromagnetic models on
the recursive lattices that approximate the regular pyrochlore
lattice.

It is also shown that the residual entropy of the highly
macroscopically degenerated ground state of the antiferro-
magnetic model on the introduced higher recursive-lattice
approximation of the regular pyrochlore lattice formed at the
zero magnetic field in the zero-temperature limit is different
(a little bit higher) than the Pauling residual entropy of this
ground state predicted by the tetrahedral recursive-lattice
approximation [24]. This fact is, on the qualitative level,
in full agreement with result obtained in Ref. [49] within
the investigation of the antiferromagnetic model on the
pyrochlore lattice using the series expansion technique as
well as with the result obtained in the framework of Monte
Carlo simulations [38]. In this context, the performed analysis
represents another independent confirmation of the fact that
the value of the Pauling entropy does not represent the true
value of the residual entropy of the antiferromagnetic Ising
model on the pyrochlore lattice.

024114-12



EFFECTIVENESS OF THE RECURSIVE-LATTICE … PHYSICAL REVIEW E 109, 024114 (2024)

The value of critical temperature of the ferromagnetic
model on the introduced RPL is determined and compare to
its value obtained within the model on the RTL as well as to
the corresponding values obtained in the framework of other
approximative techniques.

It is also shown that the magnetization and entropy proper-
ties of the antiferromagnetic as well as the ferromagnetic Ising
model on the RTL and on the introduced more complex RPL
are qualitatively completely the same with very small quanti-
tative differences. This fact demonstrates the great efficiency
of the recursive-lattice approximations in the investigation of
magnetic systems with the pyrochlore structure. At the same
time, it is clear that the introduced higher recursive-lattice
approximation allows one to include various additional
interactions into the model in the future, e.g., the next-nearest-

neighbor interaction, where phenomenologically interesting
phenomena can be expected (see, e.g., Refs. [58,59]), or
various multisite interactions, presence of which can generate
frustration even in pure ferromagnetic systems [45]. We
suggest that many interesting theoretical as well as important
phenomenological results can still be obtained in this
direction.
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APPENDIX A

The explicit form of the functions X0,i and X1,i for i = 0, 1, . . . , 11 in Eq. (6) is the following:

X1,0 = e2K [2(e4K + 2)e2h+28K + 2e10h(2e4K + 1) + (5e4K + 3e8K + 7)e8h+4K + 2(5e4K + 2e8K + e12K + 2)

× e6h+8K + (9e4K + 2e8K + e12K + 3)e4(h+4K ) + e12h + e40K ], (A1)

X1,1 = e2h{(2e2h + e4h + 10)e36K + 4e2h+32K + 2(5e2h + e4h + 18)e2h+28K + 3(6e2h + e4h + 21)e4(h+5K )

+ 2(11e2h + 3e4h + 12)e2h+24K + (34e2h + 10e4h + 45)e8h+4K + (70e2h + 24e4h + e6h + 58)e6h+8K

+ 3(5e2h(e2h + 4) + 21)e4(h+4K ) + 2[2e2h(8e2h + e4h + 19) + 3]e4(h+3K ) + 4e10h + e40K}, (A2)

X1,2 = e4h+2K {5(3e4K + 8)e4(3h+K ) + 12(15e4K + 6e8K + 2e12K + 4)e2(h+8K ) + 6e10h(28e4K + 12e8K + 6e12K

+ 9) + 3(114e4K + 66e8K + 51e12K + 6e16K + 5e20K + 31)e4h+8K + 3e8h(119e4K + 62e8K + 45e12K + 13e16K

+ 6e20K + 30) + 2[3e4K (56e4K + 14e8K + 12e12K + 2e16K + e20K + 52) + 139]e6h+4K + 12e3h+32K cosh h

+ 5e28K (3e4K + 8)}, (A3)

X1,3 = e6h[2(e2h + 1)2e2h+36K + (8e4h + 5)e32K + 2(346e2h + 129e4h + 289)e6h+4K + 6(58e2h + 39e4h + 18e6h

+ 2e8h + 66)e2h+20K + 2(40e2h + 36e4h + 20e6h + 3e8h + 40)e28K + (128e2h + 90e4h + 80e6h + 27e8h + 80)

× e24K + (1072e2h + 858e4h + 384e6h + 80e8h + 475)e4h+8K + (672e2h + 508e4h + 304e6h + 96e8h + 5e10h

+ 352)e2(h+8K ) + 2(403e2h + 393e4h + 212e6h + 120e8h + 40e10h + 16)e2(h+6K ) + 56e8h], (A4)

X1,4 = 5e8h+2K [2(e2h + 1)e4(h+8K ) + (7e2h + 6e4h + 3e6h + 4)e2h+28K + (454e2h + 361e4h + 116e6h + 217)

× e4(h+K ) + 2(4e2h + 9e4h + 6e6h + 3e8h + 5)e24K + 2(131e2h + 138e4h + 108e6h + 60e8h + 8e10h + 24)

× e2h+8K + (72e2h + 81e4h + 78e6h + 45e8h + 12e10h + 40)e20K + (315e2h + 286e4h + 211e6h + 120e8h

+ 40e10h + 172)e2(h+6K ) + 2(46e2h + 44e4h + 50e6h + 31e8h + 14e10h + 5e12h + 8)e16K

+ 2e6h(43e2h + 53)], (A5)

X1,5 = e10h{3(e2h + 1)2e4(h+9K ) + 12e6h+32K + 3(738e2h + 397e4h + 397)e4(h+K ) + 12e6h+28K [15 cosh(2h)

+ 2 cosh(4h) + 9] + 12e6h+8K [363 cosh(2h) + 108 cosh(4h) + 235] + 4e6(h+4K )[81 cosh(2h) + 36 cosh(4h)

+ 5 cosh(6h) + 39] + 4e6(h+2K )[867 cosh(2h) + 486 cosh(4h) + 16 cosh(6h) + 428] + 12e6h+20K [81 cosh(2h)

+ 54 cosh(4h) + 30 cosh(6h) + 58] + 12e6h+16K [181 cosh(2h) + 124 cosh(4h) + 40 cosh(6h) + 112]

+ 172e6h}, (A6)

X1,6 = 7e2(6h+K ){2(e2h + 1)e6h+32K + (6e2h + 7e4h + 4e6h + 3)e4(h+7K ) + (361e2h + 454e4h + 217e6h + 116)

× e2h+4K + 2(6e2h + 9e4h + 4e6h + 5e8h + 3)e4(h+6K ) + 2(60e2h + 108e4h + 138e6h + 131e8h + 24e10h + 8)

× e8K + (45e2h + 78e4h + 81e6h + 72e8h + 40e10h + 12)e2h+20K + 2(14e2h + 31e4h + 50e6h + 44e8h + 46e10h

+ 8e12h + 5)e16K + 2e6h+12K [52 sinh(2h) + 26 sinh(4h) + 263 cosh(2h) + 146 cosh(4h) + 143] + 40e12K

+ 2e4h(53e2h + 43)}, (A7)

024114-13
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X1,7 = 2e14h(2(e2h + 1)2e6(h+6K ) + (5e4h + 8)e8(h+4K ) + 2(346e2h + 289e4h + 129)e2h+4K + 6(18e2h + 39e4h

+ 58e6h + 66e8h + 2)e2h+20K + (384e2h + 858e4h + 1072e6h + 475e8h + 80)e8K + 2(120e2h + 212e4h + 393e6h

+ 403e8h + 16e10h + 40)e12K + [4e2h(76e2h + 127e4h + 168e6h + 88e8h + 24) + 5]e16K + 2e4(h+7K )(20e2h

+ 36e4h + 80e7h cosh h + 3) + e4(h+6K ){2e5h[19 sinh h + 109 cosh h + 80 cosh(3h)] + 27} + 56e4h), (A8)

X1,8 = 3e2(8h+K )[3(2e2h + 5e4h + 2)e8(h+4K ) + 6(3e2h + 12e4h + 2)e6(h+4K ) + 3(28e2h + 66e4h + 16e6h + 13)

× e4(h+4K ) + 9(8e2h + 17e4h + 20e6h + 2)e4(h+5K ) + (15e2h + 24e4h + 40e6h + 6)e6h+28K + 3(45e2h + 112e4h

+ 114e6h + 12)e2(h+6K ) + (168e2h + 357e4h + 278e6h + 40)e4K + 3(24e2h + 62e4h + 104e6h + 31e8h + 5)e8K

+ 18e2h(5e2h + 3)], (A9)

X1,9 = 5e18h[(2e2h + 10e4h + 1)e8h+36K + 4e10h+32K + e12h+40K + 2(11e2h + 12e4h + 3)e6(h+4K ) + 2(5e2h

+ 18e4h + 1)e6h+28K + 3(6e2h + 21e4h + 1)e4(h+5K ) + 3(20e2h + 21e4h + 5)e4(h+4K ) + (34e2h + 45e4h

+ 10)e4K + 2(16e2h + 38e4h + 3e6h + 2)e2(h+6K ) + (24e2h + 70e4h + 58e6h + 1)e8K + 4e2h], (A10)

X1,10 = 11e20h+2K [e2h(e4K{e2h[e4K (2(e4K + 2)e6h+20K + e8(h+4K ) + 2e2h(5e4K + 2e8K + e12K + 2)

+ (9e4K + 2e8K + e12K + 3)e4h+8K + 3e4K + 5) + 7] + 4} + 2) + 1], (A11)

X1,11 = e22h(e4(h+4K ) + 2e2h+4K + 1){e2h+4K [e2h+4K (4e2(h+6K ) + e4(h+6K ) + 6e4K − e8K + 1) + 4] + 1}, (A12)

X0,0 = (2e2h+4K + e4h + e16K )(6e4(h+3K ) − e4(h+4K ) + 4e6h+4K + e4h+8K + 4e2h+20K + e8h + e32K ), (A13)

X0,1 = 11e2hX1,0, X0,2 = 5e2hX1,1, X0,3 = 3e2hX1,2, X0,4 = 2e2hX1,3, X0,5 = 7e2hX1,4/5,

X0,6 = e2hX1,5, X0,7 = 5e2hX1,6/7, X0,8 = e2hX1,7/2, X0,9 = e2hX1,8/3, X0,10 = e2hX1,9/5,

X0,11 = e2hX1,10/11, (A14)

APPENDIX B

The functions Yi for i = 0, 1, . . . 12 in Eq. (7) have the following explicit form:

Y0 = e2K [−2(e4K + 2)e2h+28K − 2e10h(2e4K + 1) − (5e4K + 3e8K + 7)e8h+4K − 2(5e4K + 2e8K + e12K + 2)

× e6h+8K − (9e4K + 2e8K + e12K + 3)e4(h+4K ) − e12h − e40K ], (B1)

Y1 = −(2e2h + e4h + 4)e2h+36K − 4e4(h+8K ) − e2h+40K − 2(5e2h + e4h + 15)e4(h+7K ) − 3(6e2h + e4h + 19)

× e6h+20K − (22e2h + 6e4h + 15)e4(h+6K ) − (34e2h + 10e4h + 39)e10h+4K − (70e2h + 24e4h + e6h + 49)e8(h+K )

− 2(35e2h + 16e4h + 2e6h + 2)e6(h+2K ) − 3[5e2h(e2h + 4) + 17]e6h+16K − 3e12h + e48K , (B2)

Y2 = −(43e2h + 68)e2(6h+K ) + 11e2h+42K − 2(9e2h + 6e4h + 25)e6h+26K − (13e2h + 15e4h + 6e6h − 4)e4h+30K

− (131e2h + 72e4h + 18e6h + 81)e6h+22K − (303e2h + 135e4h + 36e6h + 232)e8h+14K − (154e2h + 84e4h + 39e6h

+ 15)e6(h+3K ) − (313e2h + 168e4h + 40e6h + 201)e10h+6K − (257e2h + 186e4h + 72e6h + 15e8h + 49)e8h+10K

+ [7 − 6e2h(e2h + 1)]e4h+34K , (B3)

Y3 = e4h[(15 − 8e4h)e2h+32K − (522e2h + 208e4h + 353)e8h+4K + (10e2h + 3e4h − 4e6h − 2e8h + 50)e36K

− 2(15e2h + 31e4h + 20e6h + 3e8h − 50)e2h+28K − 3(86e2h + 73e4h + 36e6h + 4e8h + 27)e4(h+5K )

− (18e2h + 60e4h + 80e6h + 27e8h − 40)e2h+24K − (722e2h + 738e4h + 379e6h + 80e8h + 185)e6h+8K

− (372e2h + 433e4h + 304e6h + 96e8h + 5e10h + 37)e4(h+4K ) − 2(213e2h + 313e4h + 202e6h + 120e8h

+ 40e10h + 1)e4(h+3K ) − 36e10h + 5e40K ], (B4)

Y4 = e6h+2K {−(1199e2h + 1301e4h + 460e6h + 251)e6h+4K − 2(−7e2h + 27e4h + 30e6h + 15e8h − 83)e2h+24K

− (374e2h + 822e4h + 864e6h + 555e8h + 80e10h − 39)e4h+8K − (567e2h + 1025e4h + 947e6h + 600e8h + 200e10h

− 166)e4(h+3K ) + [45 − 2e2h(e2h + 1)(5e4h − 9)]e32K + [340 − 3e2h(63e2h + 112e4h + 75e6h + 20e8h − 33)]

× e2h+20K + e28K [120 − e6h(55 sinh(2h) + 87 sinh(4h) + 5 cosh(2h) − 57 cosh(4h) + 17)] − e8(h+2K )

× [122 sinh(2h) + 274 sinh(4h) + 114 sinh(6h) + 498 cosh(2h) + 6 cosh(4h) − 14 cosh(6h) + 383]

− 4e8h(67e2h + 65)}, (B5)
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Y5 = e8h{(3e4h − 4)(e2h + 1)2(−e2h+36K ) − 5(166e2h + 135e4h + 7)e6h+4K − 2(−8e4h + 6e8h − 5)e32K

− 2(−80e2h − 66e4h + 5e6h + 48e8h + 45e10h + 6e12h − 80)e28K − 6(−62e2h + 3e4h + 80e6h + 77e8h + 54e10h

+ 30e12h − 102)e2h+20K − 2e24K (e2h{−54e2h + 2e8h[−19 sinh h + 4 sinh(3h) + 81 cosh h + 6 cosh(3h)] cosh h

− 123} − 80) − 2e8(h+K )[688 sinh(2h) + 395 sinh(4h) + 722 cosh(2h) + 93 cosh(4h) + 552] − 4e8h+12K

× [273 sinh(2h) + 363 sinh(4h) + 16 sinh(6h) + 354 cosh(2h) + 43 cosh(4h) + 216] − 2e8(h+2K )

× [412 sinh(2h) + 667 sinh(4h) + 352 sinh(6h) + 482 cosh(2h) + 67 cosh(4h) − 112 cosh(6h) + 368] − 60e8h}, (B6)

Y6 = 14e17h+2K (−e4K{e4K [3e4K (20e4K + 23e8K + 6e12K + 65) + 142] + 101} sinh(3h)

− 2e8K (e4K{e4K [4e4K (e4K + 9) + 41] + 66} + 16) sinh(5h) − 2e16K [5e4K (e4K + 4) + 8] sinh(7h)

− sinh h{4e28K cosh2 h[8 cosh(2h) + 2e4K + 3] + 93e4K + 60e8K + 75e12K + 38e16K + 33e20K + 6e24K + 20}), (B7)

Y7 = e12h(−(4e4h − 3)(e2h + 1)2e4(h+9K ) + 5(166e2h + 7e4h + 135)e4(h+K ) − 2(8e4h + 5e8h − 6)e6h+32K

− 2(−705e2h − 552e4h − 17e6h + 151e8h − 244)e2h+8K − 2(−367e2h − 447e4h − 368e6h − 35e8h + 300e10h

+ 232e12h − 120)e16K − 2e2h+28K {e7h[71 sinh h + 128 sinh(3h) + 125 sinh(5h) + 61 cosh(h) + 32 cosh(3h)

+ 35 cosh(5h)] − 6} + 4e6(h+2K )[−273 sinh(2h) − 363 sinh(4h) − 16 sinh(6h) + 354 cosh(2h) + 43 cosh(4h) + 216]

− 12e6h+20K [37 sinh(2h) + 58 sinh(4h) + 66 sinh(6h) − 40 cosh(2h) + 4 cosh(4h) + 36 cosh(6h) − 40] − 2e24K

×{e8h[105 sinh(2h) + 204 sinh(4h) + 116 sinh(6h) + 3 cosh(2h) + 42 cosh(4h) + 44 cosh(6h) − 1] − 5} + 60e6h),

(B8)

Y8 = e2(7h+K )[(1301e2h + 1199e4h + 251e6h + 460)e2h+4K − 2(−30e2h − 27e4h + 7e6h + 83e8h − 15)e4(h+6K )

+ (225e2h + 336e4h + 189e6h − 99e8h − 340e10h + 60)e2h+20K + (600e2h + 947e4h + 1025e6h + 567e8h − 166e10h

+ 200)e12K + (555e2h + 864e4h + 822e6h + 374e8h − 39e10h + 80)e8K + (140e2h + 310e4h + 383e6h + 188e8h

− 134e10h − 64e12h + 50)e16K + e6h+32K [5(2e2h − 9e8h + 2) − 36e5h cosh h] + e4(h+7K )

×{15 − e6h[89 sinh(2h) + 150 sinh(4h) + 55 cosh(2h) + 90 cosh(4h) + 25]} + 4e4h(65e2h + 67)], (B9)

Y9 = e16h[(8 − 15e4h)e8(h+4K ) − 5e14h+40K + (522e2h + 353e4h + 208)e2h+4K + (4e2h − 3e4h − 10e6h − 50e8h + 2)

× e6(h+6K ) + (80e2h + 60e4h + 18e6h − 40e8h + 27)e4(h+6K ) + 3(36e2h + 73e4h + 86e6h + 27e8h + 4)e2h+20K

− 2(−20e2h − 31e4h − 15e6h + 50e8h − 3)e4(h+7K ) + (379e2h + 738e4h + 722e6h + 185e8h + 80)e8K

+ 2(120e2h + 202e4h + 313e6h + 213e8h + e10h + 40)e12K + (96e2h + 304e4h + 433e6h + 372e8h + 37e10h + 5)

× e16K + 36e4h], (B10)

Y10 = e2(9h+K )[−11e14h+40K + (6e2h − 7e4h + 6)e8(h+4K ) + 2(9e2h + 25e4h + 6)e6(h+4K ) + (15e2h + 13e4h

− 4e6h + 6)e6h+28K + (84e2h + 154e4h + 15e6h + 39)e4(h+4K ) + (72e2h + 131e4h + 81e6h + 18)e4(h+5K )

+ (168e2h + 313e4h + 201e6h + 40)e4K + (135e2h + 303e4h + 232e6h + 36)e2(h+6K ) + (72e2h + 186e4h

+ 257e6h + 49e8h + 15)e8K + e2h(68e2h + 43)], (B11)

Y11 = e20h[(2e2h + 4e4h + 1)e8h+36K + 4e10h+32K + e12h+40K − e14h+48K + 2(5e2h + 15e4h + 1)e6h+28K

+ (22e2h + 15e4h + 6)e6(h+4K ) + 3(20e2h + 17e4h + 5)e4(h+4K ) + 3(6e2h + 19e4h + 1)e4(h+5K ) + (34e2h

+ 39e4h + 10)e4K + 2(16e2h + 35e4h + 2e6h + 2)e2(h+6K ) + (24e2h + 70e4h + 49e6h + 1)e8K + 3e2h], (B12)

Y12 = e22h+2K (7e4(h+K ) + 10e6(h+2K ) + 3e8(h+2K ) + 3e4(h+3K ) + 2e8(h+3K ) + 4e2h+4K + 5e4h+8K + 4e6h+8K

+ 4e6h+16K + 2e6h+20K + 9e8h+20K + e8h+28K + 4e10h+28K + 2e10h+32K + e12h+40K + 2e2h + 1). (B13)

APPENDIX C

The explicit form of the functions F1,i and F2,i in Eq. (9) is the following:

F1,0 = (2e2h+4K + e4h + e16K )(6e4(h+3K ) − e4(h+4K ) + 4e6h+4K + e4h+8K + 4e2h+20K + e8h + e32K ), (C1)

F1,1 = 12e2(h+K )[2(e4K + 2)e2h+28K + 2e10h(2e4K + 1) + (5e4K + 3e8K + 7)e8h+4K

+ 2(5e4K + 2e8K + e12K + 2)e6h+8K + (9e4K + 2e8K + e12K + 3)e4(h+4K ) + e12h + e40K ], (C2)
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F1,2 = 6e4h{(2e2h + e4h + 10)e36K + 4e2h+32K + 2(5e2h + e4h + 18)e2h+28K + 3(6e2h + e4h + 21)e4(h+5K )

+ 2(11e2h + 3e4h + 12)e2h+24K + (34e2h + 10e4h + 45)e8h+4K + (70e2h + 24e4h + e6h + 58)e6h+8K

+ 3[5e2h(e2h + 4) + 21]e4(h+4K ) + 2[2e2h(8e2h + e4h + 19) + 3]e4(h+3K ) + 4e10h + e40K}, (C3)

F1,3 = 4e6h+2K {5(3e4K + 8)e4(3h+K ) + 12(15e4K + 6e8K + 2e12K + 4)e2(h+8K ) + 6e10h(28e4K + 12e8K + 6e12K

+ 9) + 3(114e4K + 66e8K + 51e12K + 6e16K + 5e20K + 31)e4h+8K + 3e8h(119e4K + 62e8K + 45e12K + 13e16K

+ 6e20K + 30) + 2[3e4K (56e4K + 14e8K + 12e12K + 2e16K + e20K + 52) + 139]e6h+4K + 12e3h+32K cosh h

+ 5e28K (3e4K + 8)}, (C4)

F1,4 = 3e8h[2(e2h + 1)2e2h+36K + (8e4h + 5)e32K + 2(346e2h + 129e4h + 289)e6h+4K + 6(58e2h + 39e4h + 18e6h

+ 2e8h + 66)e2h+20K + 2(40e2h + 36e4h + 20e6h + 3e8h + 40)e28K + (128e2h + 90e4h + 80e6h + 27e8h + 80)

× e24K + (1072e2h + 858e4h + 384e6h + 80e8h + 475)e4h+8K + (672e2h + 508e4h + 304e6h + 96e8h + 5e10h

+ 352)e2(h+8K ) + 2(403e2h + 393e4h + 212e6h + 120e8h + 40e10h + 16)e2(h+6K ) + 56e8h], (C5)

F1,5 = 12e2(5h+K )[2(e2h + 1)e4(h+8K ) + (7e2h + 6e4h + 3e6h + 4)e2h+28K + (454e2h + 361e4h + 116e6h + 217)

× e4(h+K ) + 2(4e2h + 9e4h + 6e6h + 3e8h + 5)e24K + 2(131e2h + 138e4h + 108e6h + 60e8h + 8e10h + 24)

× e2h+8K + (72e2h + 81e4h + 78e6h + 45e8h + 12e10h + 40)e20K + (315e2h + 286e4h + 211e6h + 120e8h

+ 40e10h + 172)e2(h+6K ) + 2(46e2h + 44e4h + 50e6h + 31e8h + 14e10h + 5e12h + 8)e16K

+ 2e6h(43e2h + 53)], (C6)

F1,6 = 2e12h{3(e2h + 1)2e4(h+9K ) + 12e6h+32K + 3(738e2h + 397e4h + 397)e4(h+K ) + 12e6h+28K [15 cosh(2h)

+ 2 cosh(4h) + 9] + 12e6h+8K [363 cosh(2h) + 108 cosh(4h) + 235] + 4e6(h+4K )[81 cosh(2h) + 36 cosh(4h)

+ 5 cosh(6h) + 39] + 4e6(h+2K )[867 cosh(2h) + 486 cosh(4h) + 16 cosh(6h) + 428] + 12e6h+20K [81 cosh(2h)

+ 54 cosh(4h) + 30 cosh(6h) + 58] + 12e6h+16K [181 cosh(2h) + 124 cosh(4h) + 40 cosh(6h) + 112] + 172e6h},
(C7)

F1,7 = 12e2(7h+K ){2(e2h + 1)e6h+32K + (6e2h + 7e4h + 4e6h + 3)e4(h+7K ) + (361e2h + 454e4h + 217e6h + 116)

× e2h+4K + 2(6e2h + 9e4h + 4e6h + 5e8h + 3)e4(h+6K ) + 2(60e2h + 108e4h + 138e6h + 131e8h + 24e10h + 8)

× e8K + (45e2h + 78e4h + 81e6h + 72e8h + 40e10h + 12)e2h+20K + 2(14e2h + 31e4h + 50e6h + 44e8h + 46e10h

+ 8e12h + 5)e16K + 2e6h+12K [52 sinh(2h) + 26 sinh(4h) + 263 cosh(2h) + 146 cosh(4h) + 143] + 40e12K

+ 2e4h(53e2h + 43)}, (C8)

F1,8 = 3e16h{2(e2h + 1)2e6(h+6K ) + (5e4h + 8)e8(h+4K ) + 2(346e2h + 289e4h + 129)e2h+4K + 6(18e2h + 39e4h

+ 58e6h + 66e8h + 2)e2h+20K + (384e2h + 858e4h + 1072e6h + 475e8h + 80)e8K + 2(120e2h + 212e4h + 393e6h

+ 403e8h + 16e10h + 40)e12K + (4e2h(76e2h + 127e4h + 168e6h + 88e8h + 24) + 5)e16K + 2e4(h+7K )(20e2h

+ 36e4h + 80e7h cosh h + 3) + 2e9h+24K [19 sinh h + 109 cosh h + 80 cosh(3h)] + 27e4(h+6K ) + 56e4h}, (C9)

F1,9 = 4e2(9h+K )[3(2e2h + 5e4h + 2)e8(h+4K ) + 6(3e2h + 12e4h + 2)e6(h+4K ) + 3(28e2h + 66e4h + 16e6h + 13)

× e4(h+4K ) + 9(8e2h + 17e4h + 20e6h + 2)e4(h+5K ) + (15e2h + 24e4h + 40e6h + 6)e6h+28K + 3(45e2h + 112e4h

+ 114e6h + 12)e2(h+6K ) + (168e2h + 357e4h + 278e6h + 40)e4K + 3(24e2h + 62e4h + 104e6h + 31e8h + 5)e8K

+ 18e2h(5e2h + 3)], (C10)

F1,10 = 6e20h[(2e2h + 10e4h + 1)e8h+36K + 4e10h+32K + e12h+40K + 2(11e2h + 12e4h + 3)e6(h+4K ) + 2(5e2h

+ 18e4h + 1)e6h+28K + 3(6e2h + 21e4h + 1)e4(h+5K ) + 3(20e2h + 21e4h + 5)e4(h+4K ) + (34e2h + 45e4h

+ 10)e4K + 2(16e2h + 38e4h + 3e6h + 2)e2(h+6K ) + (24e2h + 70e4h + 58e6h + 1)e8K + 4e2h], (C11)

F1,11 = 12e22h+2K (7e4(h+K ) + 10e6(h+2K ) + 3e8(h+2K ) + 3e4(h+3K ) + 2e8(h+3K ) + 4e2h+4K + 5e4h+8K + 4e6h+8K

+ 4e6h+16K + 2e6h+20K + 9e8h+20K + e8h+28K + 4e10h+28K + 2e10h+32K + e12h+40K + 2e2h + 1), (C12)

F1,12 = e24h(2e6(h+2K ) + 6e4(h+3K ) + 9e8(h+3K ) + e12(h+4K ) + 6e2h+4K + 9e4h+8K + 12e6h+16K + 6e6h+20K

+ 6e8h+28K + 6e10h+36K + 1), (C13)

024114-16



EFFECTIVENESS OF THE RECURSIVE-LATTICE … PHYSICAL REVIEW E 109, 024114 (2024)

F2,0 = F1,0, F2,1 = 11F1,1/12, F2,2 = 5F1,2/6, F2,3 = 3F1,3/4, F2,4 = 2F1,4/3, (C14)

F2,5 = 7F1,5/12, F2,6 = F1,6/2, F2,7 = 5F1,7/12, F2,8 = F1,8/3, F2,9 = F1,9/4, (C15)

F2,10 = F1,10/6, F2,11 = F1,11/12. (C16)
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