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Non-Gaussian anomalous diffusion of optical vortices
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Anomalous diffusion of different particlelike entities, the deviation from typical Brownian motion, is ubiq-
uitous in complex physical and biological systems. While optical vortices move randomly in evolving speckle
fields, optical vortices have only been observed to exhibit pure Brownian motion in random speckle fields.
Here we present direct experimental evidence of the anomalous diffusion of optical vortices in temporally
varying speckle patterns from multiple-scattering viscoelastic media. Moreover, we observe two characteristic
features, i.e., the self-similarity and the antipersistent correlation of the optical vortex motion, indicating that
the mechanism of the observed subdiffusion of optical vortices can only be attributed to fractional Brownian
motion (FBM). We further demonstrate that the vortex displacements exhibit a non-Gaussian heavy-tailed
distribution. Additionally, we modulate the extent of subdiffusion, such as diffusive scaling exponents, and the
non-Gaussianity of optical vortices by altering the viscoelasticity of samples. The discovery of the complex
FBM but non-Gaussian subdiffusion of optical vortices may not only offer insight into certain fundamental
physics, including the anomalous diffusion of vortices in fluids and the decoupling between Brownianity and
Gaussianity, but also suggest a strong potential for utilizing optical vortices as tracers in microrheology instead
of the introduced exogenous probe particles in particle tracking microrheology.
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I. INTRODUCTION

Brownian motion or normal diffusion of particles is the
most fundamental stochastic process that has kept arousing
new physics and renewed interests across many disciplines
for over a century since the celebrated works of Einstein,
Langevin, and Smoluchowski [1]. Brownian motion is defined
by two characteristic features: the linear increase with time
of the mean-square displacement (MSD) and the Gaussian
distribution of the probability density function (PDF) of par-
ticle displacements. Deviations from one or both of the two
features are also common. Anomalous diffusion character-
ized by the power-law growth of the MSD 〈�r2(τ )〉 ∼ τα

with α �= 1 has been widely demonstrated in different phys-
ical and biological systems. Subdiffusion with 0 < α < 1 has
been observed for particles in crowded environments, like
nanoparticles in the cytoplasm of biological cells, and parti-
cles diffusing in porous material [2,3]. Superdiffusion with
α > 1 has been demonstrated for active molecular-motor-
driven motion in biological cells, animals searching for food,
and vortices in quantum fluids [4–6]. The two features of
Brownian motion were thought to be strictly linked until the
discovery of the so-called Fickian yet non-Gaussian diffusion
(FNGD), just over a decade ago [7–11]. In FNGD, the linear
time dependence of the MSD (Fickian) coexists with a non-
Gaussian PDF of displacements for given time lags.
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The most fundamental and simplest Brownian system is the
isolated spherical particles with certain mass and size in an
incompressible fluid with density and viscosity. Normal and
anomalous diffusion have been discovered for varied particle-
like entities, including atoms [12], colloid [13], molecules [1],
and cell organelles [14]. However the diffusion phenomena
are not solely limited to the particles with mass and size; they
also encompass the massless or topological objects in various
systems. Examples include singular points in phase fields of
matter or electrical waves, such as fluid vortices [15,16], and
topological defects of matter or bioelectrical waves in living
systems [17–19]. The properties and evolution of these singu-
lar points play a critical role in understanding the function and
internal structure of complex systems [20,21].

Optical vortices, the singular points in random optical
wave fields, are also performing particlelike random-looking
motion in fluctuating random fields. By recognizing the anal-
ogy between complex fluids and random wave fields [22,23],
different hydrodynamic features, such as vortex rotation and
interaction between a few neighboring vortices, have been dis-
covered for optical vortices [24–28]. The dynamic behaviors
of optical vortices have been widely utilized to character-
ize the physical and dynamic properties of complex systems
[22,29–32]. For instance, velocity statistics have been pro-
posed to serve as a measure of wave localization in strong
scattering random media [31]. The displacement information
of optical vortices is a sensitive assessment of nanometric
displacements or deformation of a sample, and the photon
diffusion coefficient through the random medium [33–35].
Optical vortex tracking has also been applied to evaluate tissue
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viscoelasticity, track cellular movement, and assess microcir-
culation [36–38]. However, despite substantial advances in
understanding and applying optical vortex stochastic motion,
only the pure Brownian diffusion of optical vortices has been
reported [35,39–41]. The anomalous diffusion of optical vor-
tices has not been demonstrated yet, let alone the underlying
physical mechanism.

In this paper we report our experimental observations of the
non-Gaussian anomalous diffusion of optical vortices in dy-
namic speckles and reveal the underlying mechanisms of the
anomalous diffusion of the optical vortices. Since the phase of
fast-varying speckle fields is challenging to acquire in exper-
iments, we apply the Laguerre-Gauss (LG) transformation to
the speckle intensity pattern recorded by a high-speed camera.
The phase of the corresponding complex representation gen-
erated from the LG transformation is what we designate as
the pseudophase. We subsequently verify through numerical
simulation that the motion of optical vortices in both the pseu-
dophase and the real phase is consistent. This is demonstrated
by showing that various statistical measures, such as MSD and
velocity correlation of the optical vortex motion in the pseu-
dophase, are strictly identical to those of the optical vortices
in the real phase. Therefore, in the experiment, we employ
the motion statistics of optical vortices in the pseudophase
to represent the motion statistics of optical vortices in the
real phase. Experimentally, we acquire sequences of dynamic
speckle patterns from the multiple-scattering polydimethyl-
siloxane (PDMS) sample during the entire process of PDMS
gelation. We investigate the collective motion of optical vor-
tices in the pseudophase calculated via the LG transformation
to the speckle patterns and we find that the optical vortices
perform a typical subdiffusive behavior, the power-law tem-
poral increase of MSD, 〈�r2(τ )〉 ∼ τα , with 0 < α < 1. We
next model the vortex subdiffusive behavior with fractional
Brownian motion (FBM), a Gaussian process commonly used
to model particle diffusion in a viscoelastic environment. In
addition, we observe a robust non-Gaussian behavior in the
probability distribution of the vortex displacements. More-
over, we tune the degree of subdiffusion of the optical vortex
by modifying the viscoelasticity of the sample, suggesting that
the optical vortices may serve as surrogate probes in optical
microrheology for turbid media [42]. The extensive study of
the diffusive motion of optical vortices may not only enrich
our understanding of the optical vortex diffusion in speckle
fields, but also contribute to further investigations of a variety
of fundamental physical phenomena, including wave transport
in disordered media [26], turbulent diffusion in quantum fluids
[22,43], and the riddle of anomalous yet non-Gaussian diffu-
sion [44].

II. MATERIALS AND METHODS

Optical vortices, or phase singularities, in speckle fields are
defined as intensity nulls where both the real and imaginary
parts of the fields vanish. All equiphase lines of speckle fields
converge to the phase singularities as shown in Fig. 1(a). The
accumulated phase change along with a contour surrounding
a single vortex is integer times of 2π , q = 1

2π

∮ �∇ϕ(x, y) · d�l ,
where the nonzero, signed integer q is referred to as the
topological charge of the vortex. Only optical vortices with

FIG. 1. Optical vortices in the speckle field. (a) Optical vortices
occur at intensity nulls and the intersections of phase contours (solid
lines). The phase difference between each equiphase line is π/4. The
value of the normalized speckle intensity is represented by the color
defined in the color bar. (b) Random motion of optical vortices in
the numerically generated dynamic speckle fields. The red lines and
green lines represent the trajectories of the positive and negative op-
tical vortices, respectively. (c) Linear correlation between the MSD
of optical vortices in the real phase and the pseudophase.

topological charge ±1 can stably exist in random speckle
fields [45]. High-order vortices are unstable and thus their
occurrence is improbable in speckle fields [46–48]. The op-
tical vortices with opposite topological charge always appear
and disappear in pairs [49,50]. The optical vortices connected
by equiphase lines form a network spreading over the whole
speckle field and determine the skeleton structure of random
wave fields, as shown in Fig. 1(a). All these described features
of optical vortices can help us determine the precise locations
of vortices in speckles [31,42,51].

The collective motion of optical vortices in temporally
varying speckle fields can be revealed by analyzing the life-
long trajectories of the optical vortices [52]. We follow the
trajectories by locating, distinguishing, and linking the phase
singularities in sequential speckle patterns according to the
definition and the morphological features of optical vortices
[33,42,53]. We determine the position of an optical vortex
by unwrapping the phase change along a closed counter-
clockwise contour around the vortex. The accumulated phase
change around a single vortex is ±2π , corresponding to the
topological charge of ±1. The locations of the identified vor-
tices over multiple frames trace a distinct vortex trail. The
criterion of the new trail and existing trail is determined by
the spatial correlation of speckles, or average speckle size.
The vortex trajectories are then followed from creation to
annihilation, as shown in Fig. 1(b). The optical vortex tracking
algorithm remains identical for the real phase and pseu-
dophase of speckle fields in simulations and the pseudophase
of speckle intensity patterns in experiments.
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A. Complex representations of speckle intensity patterns

In order to locate and track optical vortices or phase
singularities in dynamic speckles, accurate phase informa-
tion of speckle fields is essential. To acquire or recover the
phase of the fast-varying laser speckle fields is an arduous
task due to the considerable complications of experiments
and algorithms. Digital holography or digital speckle-pattern
interferometry are typical techniques that can be used to re-
construct the phase map of speckle fields [54,55]. However,
these techniques are only capable of recovering real phase
maps without singular structures or the phase with at most
only a few singularities [56]. Complex speckle fields usually
maintain a high spatial density of optical vortices since there is
one vortex for every speckle grain on average [57]. In particu-
lar, when the nucleation or annihilation of two optical vortices
with opposite topological charges happens, the separate dis-
tance between the vortices may be extremely small, making it
difficult to distinguish these optical vortices in the interfero-
metric phase measurements [58]. Therefore, it is challenging
for us to investigate the collective motion of optical vortices
by recovering the real phase of speckle fields experimentally
with these interferometric methods.

In the fields of physics, it is a prevailing practice to
represent real-valued signals by their corresponding complex-
valued counterparts [59]. Here we construct the complex
signal representation of the input speckle by applying the LG
transformation to the speckle intensity as [53,60–62]

Ẽ (x, y) = |Ã(x, y)| exp[ jϕ̃(x, y)]

=
∫∫

TLG( fx, fy)F ( fx, fy)

× exp[ j2π ( fxx + fyy)]dfxdfy, (1)

where F ( fx, fy) is the Fourier spectrum of speckle intensity
I (x, y), and Ã(x, y) and ϕ̃(x, y) are the generated pseudoampli-
tude and pseudophase. Here TLG( fx, fy) is a Laguerre-Gauss
transformation in the frequency domain defined as

TLG( fx, fy) = ( fx + j fy) exp
[ − (

f 2
x + f 2

y

)/
ω2], (2)

where ω is a parameter controlling the density of optical vor-
tices in the pseudophase and it is adjusted to a proper value so
that the speckle size of the pseudophase representation is close
to that of a real speckle. The complex signal representation
Ẽ (x, y) of a speckle pattern I (x, y) is not unique, for example,
one can employ a Riesz transformation [33] or Hilbert trans-
formation [42] in place of the Laguerre-Gauss transformation.
This is a classical problem in phase retrieval, and these trans-
formations only exploit the existing information in speckles
without introducing any new information [34].

B. Optical vortex motion in simulated speckles

Although the pseudophase cannot reproduce the real phase
of a speckle pattern and the fine structure of the optical
vortices may not be fully maintained, the spatial-temporal
behavior of the optical vortices in the real phase is strictly
followed [42,53,63]. To verify whether the motion of the op-
tical vortices in the pseudophase can strictly represent that of
the optical vortices in the real phase, we numerically simulate
the optical vortices moving in the fluctuating speckle fields.

We first generate the evolving speckle fields with different
decorrelation rates by superposing a large number of partial
waves from random moving scattering centers [30] (more
details are given in [64]). The complex representations of the
simulated speckle intensity patterns are calculated according
to Eq. (1). We then follow the vortex trajectories in both the
pseudophase ϕ̃(x, y) and the real phase ϕ(x, y) and calculate
the MSD

〈�r2(τ )〉 = 〈|�r(t + τ ) − �r(t )|2〉, (3)

where �r(t ) and �r(t + τ ) are the locations of the optical
vortices at times t and t + τ , respectively, and angular brack-
ets represent the ensemble average for all optical vortices.
The displacement of the optical vortex is normalized by the
speckle size. We compare the MSD of the optical vortices in
the real phase, denoted by 〈�r2(τ )〉r , and the MSD of optical
vortices in the corresponding pseudophase, 〈�r2(τ )〉p, for
all simulated speckle sequences and observe an equivalence
between the normalized 〈�r2(τ )〉r and 〈�r2(τ )〉p as shown
in Fig. 1(c). This clearly demonstrates that the averaged dis-
placements of the optical vortices in the real phase and the
pseudophase of the sequential speckle patterns are the same.
We further show that the velocity statistics of the vortices in
the real phase and the pseudophase remain consistent [64].
Hence we can explore the motion of the optical vortex in the
pseudophase as a replacement for that in the real phase of
dynamic speckle sequences.

C. Experimental setup and sample preparation

The optical setup of our experimental system to record
time-evolving speckle intensity patterns with the backscat-
tering geometry is given in [64]. To experimentally generate
speckle patterns with optical vortices, we focus a He-Ne laser
(λ = 632.8 nm) into a dynamic random sample, composed
of light scattering particles, titanium dioxide (TiO2) micro-
spheres, and optical clear surrounding substrate, a PDMS gel.
Light scatterers, TiO2 nanoparticles (approximately 500 nm
in diameter), are randomly mixed in the PDMS matrix with
a weight ratio of 1:48. The PDMS (Sylgard 184, Dow Inc.) is
prepared by mixing the cross-linking agent and base elastomer
in the ratio of 1:5; the resulting reduced scattering coefficient
μ′

s of the sample is 24 mm−1. The thickness of the sample is
approximately 2 mm, much larger than the mean free path l =
1/μ′

s. The entire process of the PDMS gelation is maintained
at 37 ◦C. The rapidly fluctuating speckle patterns reflected
from the sample are captured by a high-speed complementary
metal-oxide semiconductor camera (acA2000-340cm, Basler
AG) at a frame rate of 300 frames/s. We collect 13 dynamic
speckle sequences with 800 speckle images each at intervals
of 30 min during the process of PDMS sample gelation. The
size of acquired speckle patterns is 416 × 416 pixels. The
complex representations of the experimental speckle intensity
patterns are constructed according to Eq. (1). We then track all
the optical vortices in the pseudophase of the speckle patterns
from creation to annihilation. The locations of the identified
vortices over multiple speckle frames trace a separate vortex
trail, with the boundary between the new trail and existing trail
determined by the average speckle grain size.
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FIG. 2. Statistical properties of speckle patterns. (a) Intensity
PDF of the speckle patterns. The PDF of the speckle intensity
is consistent with the negative exponential function (black line),
demonstrating the Rayleigh statistical property of the speckles.
(b) Spatial intensity correlation function of speckle patterns. An
ensemble average is performed over 200 speckle frames.

The fully developed Gaussian speckle fields are manifested
by the Rayleigh statistics of the recorded speckle intensity
[30,65], as the intensity PDF shown in Fig. 2. This means
that the phases are uniformly distributed over [0, 2π ] and
the amplitude profiles are independent of the phase profiles.
We also specify the speckle grain size or Rayleigh range to
identify the characteristic length scales in the speckle pattern
by the full width at half maximum of the spatial intensity
correlation function

CI (�r) = 〈I (r)I (r + �r)〉 − 〈I〉2

〈I2〉 − 〈I〉2
, (4)

where the angular brackets denote the ensemble average of
speckle intensity. The speckle grain size in our system is
about eight camera pixels, well beyond the Nyquist sampling
criterion.

III. RESULTS

A. Spatial distribution of optical vortices

We demonstrate that optical vortex trajectories are ran-
domly and uniformly distributed in the entire speckle pattern,

as can be seen in Fig. 3. The speckle patterns captured at the
initial state of the PDMS curing process decorrelate rapidly;
thus the optical vortices possess a considerable proportion
of short trails. Here, for simplicity, we show only the trails
of optical vortices which can survive over 150 continuous
frames. Short trails of optical vortices are also distributed
randomly and uniformly in the speckles. Figure 3(a) clearly
demonstrates the random spatial-temporal distribution of op-
tical vortices and the random walk of each vortex in finite
space. We quantitatively characterize the spatial correlation of
optical vortices by calculating the pair and charge correlation
functions [51,66]

g(r) = 1

Nρ

〈∑
i �= j

ζ (r − |ri − r j |)
〉
, (5)

gQ(r) = 1

Nρ

〈∑
i �= j

ζ (r − |ri − r j |)qiq j

〉
, (6)

where N is the total number of vortices, ρ is the mean density,
ζ is the Dirac function, and q is the topological charge of
optical vortices. Figure 3(b) shows the correlation statistics
g(r) and gQ(r) for the optical vortices in the pseudophase
of speckles. The pair correlation function g(r) returns to
unity as the distance r increases, indicating the vortices are
spatially independent for r → ∞. When r approaches zero,
g(r) is a finite positive value, meaning that we may find
two vortices at extremely close positions, for instance, two
neighboring vortices with opposite charge which will col-
lide and disappear in a pair. Meanwhile, charge correlation
gQ(r) is almost equivalent to −g(r) for r → 0. These ob-
servations reflect representative repulsion between the optical
vortices, for instance, two neighboring vortices with the same
charge. All the observed results are completely consistent with
the characterizations of optical vortices in isotropic random
waves [29].

B. Subdiffusion of optical vortices

We explore the stochastic motion of optical vortices in dy-
namic speckles reflected from the complex viscoelastic PDMS
gels. Figure 4 shows the MSDs of optical vortices with the
time lag τ at different curing stages (0, 1, 2, . . . , 6 h from
the start of gelation) during the PDMS gelation. Throughout
the whole PDMS gelation process, all the MSDs increase
nonlinearly with time lag τ and demonstrate a power-law
dependence of τ , 〈�r2(τ )〉 ∼ τα . The time lag τ spans nearly
three decades for most MSDs from 10−3 to 100 s. The scaling
exponents α for all MSDs are always less than unity, indicat-
ing that the optical vortices perform the subdiffusive motion
in the speckle fields. At the early curing stages, due to the low
viscosity of the PDMS sample, a rapid decorrelation of the
speckle patterns is observed, shown in [64]. The correspond-
ing MSD of the optical vortices increases rapidly, suggesting
a rapid diffusion of optical vortices. The exponent α decreases
from 0.68 to 0.26 with the stiffening of the viscoelastic PDMS
sample. For the almost cured PDMS sample, we observe only
a slight increment in the MSD curves, which means the vortex
motion is tightly restricted.
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FIG. 3. Spatial distribution of optical vortices. (a) Trajectories of the optical vortices in the pseudophase from dynamic speckle patterns. It
is clear that the optical vortex motion yields a stochastic process. (b) Pair (blue circles) and charge (red squares) correlation function of optical
vortices as a function of distance r. The error bars correspond to the standard deviations over 200 frames.

C. Underlying mechanism of subdiffusive behavior

Anomalous subdiffusion could be induced by several dif-
ferent mechanisms: a continuous-time random walk (CTRW),
obstructed diffusion (OD), and fractional Brownian motion.
The CTRW model describes a general process dictated by a
sequence of binding-unbinding events in crowded environ-
ment and the anomalous diffusion is induced by the broad
distribution of the jump lengths and waiting times [67]. In
an OD model, a particle encounters a high density of immo-
bile obstacles and the motion of the particle thus becomes
subdiffusive with time [68]. For the FBM model, a particle
traveling through a semiflexible environment in the presence
of both viscous and elastic components moves back and forth
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FIG. 4. Subdiffusion of the optical vortices. Shown is a double-
logarithmic plot of the MSD for optical vortices in dynamic speckles
recorded at different curing times during the PDMS gelation. The
data are averaged over 30 000 vortex trajectories with different trail
lengths. The black solid lines represent the fits of the MSDs to
the power-law relation 〈�r2(τ )〉 ∼ τα , and the corresponding α are
listed. The red solid line depicts normal diffusion.

in a springlike fashion due to the viscoelastic response. These
to-and-fro movements possessing long-time negative correla-
tions in the particle’s trajectory, referred to as antipersistent
correlation, give rise to the subdiffusive behavior [69,70].
Despite the distinct physical interpretations of these three
models, they all lead to a power-law increase of the MSD with
time. Therefore, relying solely on the MSD cannot distinguish
the underlying mechanism responsible for the subdiffusive
behavior [71,72].

To further the investigation of the subdiffusive behavior of
the optical vortices in dynamic speckles, we calculate a diag-
nostic function [71,72], the velocity autocorrelation function
(VAF)

Cδ
v (τ ) = 〈�v(t + τ ) · �v(t )〉, (7)

where the averaged velocity �v(t ) = 1
δ
[�r(t + δ) − �r(t )] over

the time interval δ = n × �T s (n = 1, 2, 3, . . . , 60). The
smallest increments of time �T = 1/300 s, since the number
of frames per second of the camera is set to 300 in our
experiments. This function describes the degree of correlation
between the averaged velocity over two time intervals δ sep-
arated by the lag time τ . Figure 5(a) shows the VAFs of the
optical vortex motion in random speckles recorded at 3 h after
the curing of PDMS started. Each VAF curve in Fig. 5(a) has
a different time interval δ. We observe all VAF curves reach
a dip into negative values at time δ, indicating the negative
correlations of the optical vortex motion in intermediate time.
The negative correlation depicts a pushback tendency of the
optical vortices in the speckle. This oscillating behavior may
arise from the anticorrelation between the vortices [57], which
in turn leads to the subdiffusive motion of optical vortices.
The observed phenomenon of antipersistent correlation is in-
dicative of FBM, OD, and localization errors of particles, but
not the CTRW model [72]. To figure out the origin of the
subdiffusion of optical vortices, we examine the VAF as a
function of the rescaled time lag τ/δ. We notice that the VAF
curves rescaled by the time of the negative dips all collapse
to a universal curve as shown in Fig. 5(b). The universal
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h

FIG. 5. Velocity autocorrelation function Cδ
v (τ )/Cδ

v (τ = 0) for the anomalous diffusion of optical vortices. The average velocity is
calculated at δ = n × �T s (n = 1, 2, 3, . . . , 60) (blue to red). The velocity autocorrelation function Cδ

v (τ )/Cδ
v (τ = 0) is plotted against (a) the

time lag τ and (b) the rescaled time lag τ/δ. Data are obtained at the time point of 3 h. The black solid line is the FBM fit of the data. (c) The
Cδ

v (τ )/Cδ
v (τ = 0) curves acquired at different curing time points versus the rescaled time lag τ/δ. (d) Corresponding FBM fit of the collapsed

curves in (c). The scaling exponent αF ranges from 0.81 to 0.32 as the PDMS sample cures. The inset shows the minimum value of the VAF at
τ/δ as a function of the scaling exponent αF. The solid line is the theoretical prediction with the FBM model.

curve of the rescaled VAF reveals that the motion of optical
vortices possesses the striking property of self-similarity, sim-
ilar patterns at varying temporal scales. More specifically, the
velocity correlation of optical vortices remains similar man-
ifestations, although the averaged velocity is calculated over
different timescales. The self-similar behaviors of the vortex
motion exclude other possible mechanisms of subdiffusion,
including the OD model and localization errors in tracking the
optical vortex [71–73]. The two properties of self-similarity
and antipersistent correlation in the VAF are two signatures
of the FBM model; thus we conclude that the optical vortices
in dynamic speckles are undergoing anomalous subdiffusive
motion in terms of viscoelastic diffusion as FBM.

We also fit the measured velocity autocorrelation function
with the theoretical prediction of VAF in the FBM model as
[71,74]

Cδ
v (τ )/Cδ

v (τ = 0) = (η + 1)αF + |1 − η|αF − 2

2ηαF
, (8)

where 1/η is the rescaled time lag τ/δ. The rescaled VAF
shows excellent agreement with Eq. (8), with αF as the only

fitting parameter, as shown in Fig. 5(b). This indicates that
the subdiffusive behavior of optical vortices can be well de-
scribed by the FBM model. Additionally, we calculate the
VAF for optical vortices in speckle sequences obtained at
different curing stages throughout the PDMS curing process.
As shown in Fig. 5(c), all the rescaled VAF curves at differ-
ent time points show the same tendency of collapsing onto
a unique master curve. We fit the collapsed curves to the
FBM model and retrieve the scaling exponents αF. The αF

is proportional to the corresponding α retrieved from the
MSD of the optical vortices. Figure 5(d) shows the ana-
lytical rescaled Cδ

v (τ ) in the FBM model. With the PDMS
sample gelation, the negative dip of the VAF approaches the
theoretical limit (−0.5), which suggests the extreme tight
confinement. In the inset we plot the dip values averaged
over all time intervals δ at τ = δ against the scaling exponent
αF and our experimental results show excellent agreement
with the analytical expression in Eq. (8), Cδ

v (τ )/Cδ
v (τ =

0) = 2αF−1 − 1. This consistency further supports the
claimed FBM behavior of optical vortices in dynamic
speckles.
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D. Non-Gaussianity in FBM

Another significant feature of the normal Brownian diffu-
sion, besides the linear increase in time of the mean-square
displacement, is the Gaussian probability distribution of the
particle displacements. Brownian motion and the Gaussian
process were considered to be intimately tied together accord-
ing to the central-limit theorem. This connection was enforced
by the observations that the particles in pure viscous media
undergo Brownian motion accompanied by a Gaussian dis-
placement distribution while certain particle thermal motion
displays anomalous diffusion coexisting with a non-Gaussian
displacement distribution [14,44,67,75,76]. However, numer-
ous recent reports for different soft materials and biological
systems have demonstrated the clear decoupling between
the Brownianity and Gaussianity. The intriguing Brownian
yet non-Gaussian diffusion has been discovered in crowded
colloids [7–9,11], cells, and active matter [5,10,77,78]. The
Gaussian but anomalous diffusion has also been identified in
dilute solutions [67].

We have demonstrated the optical vortex subdiffusive mo-
tion conforming to the FBM through the statistical analysis
of the vortex trajectories. In FBM, the PDF of displacements
exhibits a Gaussian form

P(�x, t ) = 1√
4πKtα

exp

(
− (�x)2

4Ktα

)
. (9)

The optical vortex thus may perform a Gaussian anoma-
lous diffusion. However, we further study the probability
distribution of optical vortex displacements and find obvious
deviations from the Gaussian distribution. As shown in Fig. 6,
the PDFs of optical vortex transverse displacements �x at
different lag time τ are perfectly fit to the Gaussian distri-
butions only at small displacements. At large displacements,
the PDFs deviate from the Gaussian distributions and transit
to the heavy exponential tails quickly. The PDFs with the
sharp transitions from Gaussian distributions to exponential
tails are similar to the PDFs of the Brownian yet non-Gaussian
diffusion. By comparing Figs. 6(a) and 6(b), we also notice
that the PDFs possess a narrower width at the later gelling
stage [Fig. 6(b)] than the PDFs at an early gelling stage
[Fig. 6(a)]. The reason is that, at the later gelling stage, the
light scattering particles move slowly in the media with higher
viscoelastic modulus. As a result, the laser speckles fluctuate
slowly and the optical vortices move slowly. The underlying
physical mechanism of the non-Gaussian behavior in nor-
mal or anomalous diffusion is still highly debated [44,79–
83]. The discovered non-Gaussian behavior of optical vortex
subdiffusion may also enrich the understanding of this general
phenomenon.

IV. DISCUSSION

The subdiffusive behavior of optical vortices and the con-
strained motion with the viscoelasticity resemble those of
particles in viscoelastic media. Single- or multiple-particle
tracking is a well-established technique for evaluating the
dynamic properties of complex systems including molecular
transport and microrheological properties of soft materials.
Our results suggest an optical microrheology which tracks the
optical vortices rather than the exogenous probe particles to
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FIG. 6. Non-Gaussian behavior of optical vortices. (a) Dis-
placement PDFs over six orders of magnitude plotted against the
displacement �x at the initial state of PDMS gelation, at time lags of
0.01, 0.05, 0.1, 0.2, and 0.4 s. The dashed lines represent the Gaus-
sian distribution and the solid lines show the exponential distribution
at corresponding time lags. The inset shows a log-linear plot of the
same data at small �x values. (b) Data are obtained at the PDMS
curing stage of 3 h after curing starts.

evaluate the viscoelasticity of turbid media. We conceptually
prove this microrheology approach by exploring the relation
between the optical vortex dynamics and the viscoelasticity of
the sample. The frequency-dependent viscoelastic modulus,
|G∗(ν)| from 1 to 100 Hz, of the PDMS sample is measured
with a conventional mechanical rheometer while the speckle
sequences are recording. During the gelation, the viscoelas-
tic modulus of PDMS is increasing due to the formation of
cross-linking structures [64]. In Fig. 7 we plot the MSD of
the optical vortices 〈�r2(τ )〉 versus the viscoelastic modulus
of the sample |G∗(ν)| at ν = 5 Hz, while τ = 1/ν at differ-
ent curing times. We clearly observe a strong inverse linear
relation between 〈�r2(τ )〉 and |G∗(ν)| in logarithmic scale,

|G∗(ν)| ∝ 1

[〈�r2(τ )〉]k
, (10)
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FIG. 7. Double-logarithmic plot of the MSD of the optical vor-
tices 〈�r2(τ )〉 versus the corresponding viscoelastic modulus of the
PDMS sample |G∗(ν )| at ν = 5 Hz, while τ = 1/ν. The black line
represents the fit with Eq. (10) (r = 0.99, p < 0.0001).

where k represents the slope of the linear regression line
when plotted on a double-logarithmic coordinate system. This
relation indicates that the optical vortex motion is sensitive to
the viscoelastic properties of the sample. More investigations
to explore the quantitative relation between the viscoelas-
tic modulus and the motion of optical vortices, aiming to
establish the optical-vortex-tracking-based microrheological
approach, are left for future work.

Vortices or phase singularities are present not only in wave
fields but also in many different physical systems, where
they are better known as quantized vortices in superfluids
[12,16,84] or topological defects in liquid crystals and even
in cell membranes [17,85,86]. The analogy between the un-
derlying physics that governs the vortices in different systems
has been well recognized for decades. For example, the wave

coherence in random wave fields has been admitted to be an
analogy to the quantum coherence in turbulent superfluids
[22,43]. Hence the above analysis of the optical vortex motion
may also contribute to the investigation into the collective
dynamics of other vortices [22].

V. CONCLUSION

We have presented direct experimental evidence of the
anomalous diffusion of optical vortices in viscoelastic media.
We found that the subdiffusive motion of optical vortices
clearly shows two crucial features, self-similarity and an-
tipersistence, which can only be interpreted by the fractional
Brownian motion model. In addition, we observed a robust
non-Gaussian behavior in the probability distribution of the
optical vortex displacements, which is directly contradicted
by the Gaussian property of the fractional Brownian motion.
We also found the extent to which the optical vortex subd-
iffusion can be tuned by the changes in the viscoelasticity
of the light scattering media. The findings of anomalous yet
non-Gaussian diffusion of optical vortices not only enrich our
understanding of the relation between Brownianity and Gaus-
sianity [9,11,87], but also extend the knowledge of anomalous
diffusion of vortices from systems with rest masses like flu-
ids or superfluids [16,22,43] to the massless systems like
the phase or polarization of random light fields [28,88–90].
The similarity between the subdiffusion of optical vortices in
speckle fields from turbid viscoelastic media and the particle
subdiffusion in the viscoelastic environment strongly suggests
an optical-vortex-tracking-based microrheological approach,
particularly for turbid soft matter or biological tissues, as a
counterpart of single- or multiple-particle-tracking microrhe-
ology [91].
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