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Barkhausen noise in disordered striplike ferromagnets: Experiment versus simulations
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In this work, we present a systematic comparison of the results obtained from the low-frequency Barkhausen
noise recordings in nanocrystalline samples with those from the numerical simulations of the random-field Ising
model systems. We performed measurements at room temperature on a field-driven metallic glass stripe made of
VITROPERM 800 R, a nanocrystalline iron-based material with an excellent combination of soft and magnetic
properties, making it a cutting-edge material for a wide range of applications. Given that the Barkhausen noise
emissions emerging along a hysteresis curve are stochastic and depend in general on a variety of factors (such
as distribution of disorder due to impurities or defects, varied size of crystal grains, type of domain structure,
driving rate of the external magnetic field, sample shape and temperature, etc.), adequate theoretical modeling
is essential for their interpretation and prediction. Here the Random field Ising model, specifically its athermal
nonequilibrium version with the finite driving rate, stands out as an appropriate choice due to the material’s
nanocrystalline structure and high Curie temperature. We performed a systematic analysis of the signal properties
and magnetization avalanches comparing the outcomes of the numerical model and experiments carried out in a
two-decade-wide range of the external magnetic field driving rates. Our results reveal that with a suitable choice
of parameters, a considerable match with the experimental results is achieved, indicating that this model can
accurately describe the Barkhausen noise features in nanocrystalline samples.
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I. INTRODUCTION

A multitude of systems respond to slowly changing exter-
nal conditions by exhibiting a bursty, “crackling noise” type
of response, consisting of a sequence of bursts of activity,
or avalanches, characterized by scale-free power-law distribu-
tions [1]. A prime example of both fundamental and applied
interest is given by Barkhausen noise (BN) [2]. It consists
of irregular electromotive force (EMF) pulses induced by
the jumps in magnetization caused by the jerky motion of
magnetic domain walls in response to the slow changes of the
external magnetic field.

The BN studies performed so far [3–20] have shown
that the (individual) jumps, and therefore the BN pulses,
are stochastic and that their distributions follow power laws
described by power-law indices which satisfy. certain scal-
ing relations. Experimental studies of Barkhausen noise have
been conducted both in bulk [8] and nonequilateral geome-
try samples, in particular thin films [9–11]. Two distinctive

universality classes have been identified in polycrystalline
and amorphous bulk materials, while in thin samples the
question of universality remains to be resolved. The use of
magneto-optical techniques [13] demonstrated the clear dif-
ference between the magnetic behavior of thin films and bulk
materials, while more scrutinized investigations [16,17,19]
confirmed the existence of various types of two-dimensional
(2D) dynamics in thin films with different thicknesses. BN
is by no means unique in exhibiting crackling noise with
power-law statistics. Numerous other systems exhibit a simi-
lar pattern of behavior sharing the profound analogies despite
fundamental differences in spatiotemporal scales, system ge-
ometry, structure, underlying interactions, and type of driving.
Examples of such systems cover a broad range, including
compressed nanocrystals [21], imbibition fronts in porous
materials [22], plastic deformation due to collective dynamics
of dislocations [23–26], heartbeat [27] and brain dynamics
[28–30], earthquakes [31–33], and financial stock markets
[34,35].
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Theoretical or numerical models of BN proposed in the
literature include discrete spin models such as the random-
field Ising model (RFIM) [36–39], micromagnetic simulations
[40,41], and various domain-wall models describing domain
walls as driven elastic interfaces in random media [42]. The
underlying field-driven system’s processes exhibit stochastic-
ity along the hysteresis loop and are influenced by a plethora
of interrelated factors such as disorder originated from impuri-
ties and defects, distribution of crystal grains, type of domain
structure, driving rate of the external magnetic field, sample
shape, temperature, applied stress, and so on. It is difficult to
determine how relevant each of them is to the behavior of the
system; therefore, choosing the most appropriate theoretical
modeling is very important for understanding their signifi-
cance and how they relate to one another.

In this paper, we use the field-driven athermal nonequilib-
rium RFIM as a model that can be considered suitable for
the description of the BN emitted from the samples made
of nanocrystalline metallic glass materials that is missing in
the literature to our knowledge. To this end, we present a
systematic comparison between the simulation results and
the BN recordings performed in a two-decade-wide range of
low driving rates on a sample of this material type, namely
VITROPERM 800 R nanocrystalline metallic glass. We find
that by tuning the disorder and driving rate parameters of
the model appropriately, the model is able to reproduce most
of the experimental BN features. Unlike in the equilibrium
model version [43–46], in which the system evolves jump-
ing between the equilibrium states determined by the current
value of the external magnetic field, in the nonequilibrium
model version, the system evolves through the nonequilibrium
states following some local dynamic rule. The nonequilibrium
version enables simulations of the time response of the system
(mimicking BN) under all driving conditions and better corre-
sponds to the BN experiments performed on metallic glasses
which are by themselves not in equilibrium. Also, this model
version is greatly computationally more efficient, so it enables
simulations of much larger systems reducing the finite-size
effects.

This paper is organized as follows: After the introduction
in Sec. I, the details on the experimental analysis are presented
in Sec. II, including Secs. II A and II B devoted to the descrip-
tion of the experimental setup and BN recordings. Section III
showcases obtained results and contains Secs. III A and III B
dedicated to the analysis of experimental BN response signals
and hysteresis loops, a detailed explanation of the decom-
position of BN signal into BN pulses, and experimental BN
distributions, followed by Sec. III C devoted to the comparison
of results of experimental BN measurements and numerical
simulations of RFIM. The paper ends with discussion and
conclusion presented in Sec. IV followed by Appendixes A
and B.

II. EXPERIMENTAL ANALYSIS

A. Experimental setup

We performed the Barkhausen noise recordings using the
setup depicted in Fig. 1. The Barkhausen noise signal was
collected by a pickup coil (1100 turns of AWG 34 copper

FIG. 1. Schematic presentation of the experimental setup used in
our Barkhausen noise measurements.

wire 0.160 mm in diameter and 23.3 � resistance) tightly
wound around the entire sample, see more in Appendix A.
The sample and the pickup coil were placed in the middle of a
30-cm-long driving solenoid with a circular cross section 5 cm
in (inner) diameter, 840 turns in three rows of AWG 26 copper
wire 0.405 mm in diameter, and 5.7 � resistance. This driving
coil provided the external magnetic field that is homogeneous
along 80% of its axis with 1% tolerance due to the presence
of two compensating coils (each with 50 turns of wire) placed
at the driving coil ends.

The electric current, causing the external magnetic field by
its flow through the driving coil, is produced at the output of
a dedicated battery-operated transconductance amplifier from
the input voltage signal generated by a function generator
(two-channel Multifunction synthesizer WF 1966B, NF cor-
poration, Japan, 0.01 µHz to 50 MHz frequency range with ±5
ppm accuracy, 14-bit waveform resolution, and ±10 V maxi-
mum output). The (digital high-frequency) generator voltage
noise is suppressed at the amplifier input by a low-pass active
filter (four stages: Sallen-Key 20 Hz cutoff frequency, 12
dB/octave each, 48 dB/octave overall), so that the standard
deviation of the generated current noise was less than 20 µA
providing driving virtually without digital and environmental
noise.

The response signal (i.e., the electromotive force gener-
ated in the pickup coil) is routed from the pickup coil to a
laboratory-made battery-operated two-stage voltage amplifier.
In its first stage a CA-261F2 Low Noise Bipolar Amplifier
(NF Corporation, Japan) is used with dc to 200 kHz frequency
response, gain 40 dB ± 0.2 dB, and equivalent input noise
voltage of 0.8 nV/

√
Hz. In the second amplifier stage a Na-

tional Semiconductor LME 49720NA dual high-performance,
high-fidelity audio operational amplifier is used with max-
imum gain of 26.85 dB and equivalent input noise of 2.7
nV/

√
Hz. The measurements were performed with the overall

amplifier gain set at 2100, turned on a first-order RC filter in
the feedback section of the amplifier with the cutoff frequency
set to 160 kHz, and the overall equivalent input noise voltage
less than 1 nV/

√
Hz.

The amplified BN signal is led by a BNC cable to
an OD200 acquisition card (four differential channels,
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10 MHz-500 kHz maximum-continuous sampling rate on all
channels, and 14-bit-16-bit resolution) of the Odyssey XE
(Nicolet, USA) data acquisition system. Besides the BN sig-
nal, we also monitored on another OD200 channel the voltage
at a RDS = 1.00 � (metal film) resistor connected in series
with the driving solenoid giving us, via the conversion factor
of 2960 Am−1/V, the time profile of the magnetic field H
inside the driving solenoid.

The sample, pickup coil, and driving solenoid were en-
closed in a cylindrical MuMetall chamber (Vacuumschmelze,
Germany) with four walls (each 3 mm thick) providing
50-cm-high and 35-cm-diameter shielded volume, placed to-
gether with both amplifiers inside a sealed 1 × 1 × 1 m sound
isolated Faraday shield made of 1-cm-thick solid aluminium.
Due to such shielding and battery-operated amplifiers, the
recorded Barkhausen noise was virtually free from the ex-
ternal electromagnetic noise and pollution penetrating from
the electric network, as well as from the external static and
low-frequency environment electric and magnetic field.

Let us also mention that in the calibration of the measure-
ment system and for various types of control measurements
we used a 350 MHz oscilloscope (Agilent 54641A), three-
channel gaussmeter (FW Bell 7030), LakeShore fluxmeter
480, 6.2-GHz spectrum analyzer (PSA-6000, EdCo, Korea),
LCR meter (EDC-1630, EdCo, Korea), and digital multimeter
(Agilent 34411A), whereas for the control of the ambiental
electromagnetic noise and distribution of static voltage we
used the TRIFIELD EMF meter (model TF2) and the surface
dc voltmeter SVM2 (AlphaLab, USA).

B. Barkhausen noise recordings

In this paper, we present the results of the BN measure-
ments performed on a 16 cm × 1 cm × 40 µm sample of VIT-
ROPERM 800 R supplied from Vacuumschmelze, Germany.
VITROPERM 800 R [47] is a commercial nanocrystalline
ferromagnetic alloy (82.8 Fe%, 1.3% Cu, 5.6% Nb, 8.8% Si,
and 1.5% B by weight) with crystal grains of diameter be-
tween approximately 10–15 nm surrounded by an amorphous
nonmagnetic residual phase. It has 1.24 T saturation magnetic
polarization reached at the field strength above approximately
500 A/m, very high (up to 600 000) treatment-dependent
initial susceptibility, negligible magnetostriction, and 600◦C
Curie temperature. This sample was annealed for 12 h at
300◦C without a magnetic field.

The Barkhausen noise recordings were performed in the
vertically oriented external magnetic field H parallel to the
sample’s longest side, which varied in time between −550
A/m and 550 A/m according to a periodic zero-mean triangle
time profile at 0.5, 1, 2, 5, 10, 20, and 50 mHz frequencies. For
each frequency (0.5–10 mHz)/(20–50 mHz), the presented
data are measured in the 10–20 V voltage span during 20
field cycles preceded by 50 cycles to reach a closed hysteresis
loop. The measurements were performed in the continuous ac-
quisition mode of the Odyssey XE data acquisition system at
the 200 kSa/s sampling rate with 16-bit resolution and turned
on the internal antialias (low-pass) analog filter at 100-kHz
cutoff frequency. The recorded data were stored in a 36 GB
internal Odyssey XE acquisition SCSI hard disk, and after
completion of measurements transferred to a hard disk of an

FIG. 2. Time profiles of the response voltage signal v and the ex-
ternal magnetic field H (straight line) driving the sample at the 1 mHz
frequency shown during one period. In our BN measurements, we
connected the pickup coil so that the response signal had the polarity
opposite to the sign of dH/dt in agreement with the Faraday-Lenz’s
law.

external PC connected to Odyssey for the purpose of storage
and numerical processing. All measurements were performed
during weekend nights to minimize the amount of external
(environmental and electric network) noise.

III. RESULTS

A. Experimental BN: Response signal, hysteresis loops,
and decomposition of BN signal into BN pulses

In Fig. 2 we illustrate the time profiles of the response
signal and the external magnetic field recorded at 1 mHz
driving frequency during one period. Examples of time pro-
files of response signals recorded in one half-period for each
of the employed driving frequencies are shown in the main
panels of Fig. 3 for 0.5–2 mHz (5–50 mHz) on the left (right)
main panel, together with the corresponding hysteresis loops
presented in the right insets. Short excerpts of the response
signal voltage, recorded around the maximum value of H
when the sample is saturated, show in top-left insets the
overall noise of the measurement system and the sample at
� = 0.5 mHz (in the left main panel) and � = 50 mHz (in
the right main panel). As illustrated by noise histograms in
the bottom-left insets, this noise is of the Gaussian type with a
standard deviation of less than 5 mV at these two and likewise
for the remaining frequencies, so the signal-to-noise ratio by
amplitude was maintained above 1000.

As a part of the overall response signal, the pure BN sig-
nal arises due to the motion of the domain walls caused by
flipping of magnetic moments tending to align with the local
effective magnetic field. In ferromagnetic samples, this local
field increases or decreases (almost everywhere) together with
the external magnetic field, and therefore the corresponding
values of induced electromotive force (EMF) are (almost al-
ways) one-sided. The domain-wall motion proceeds in the
form of one or several avalanches of finite duration possibly
merging in time and space. Each such event induces a BN
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FIG. 3. Main panels show one example of time profiles of the voltage response signal vt recorded during a single half-period of the external
driving field H for each of the employed “slow” (left) and “fast” (right) driving frequencies � quoted in legends. Top-left inset in the left main
panel presents an excerpt of the time profile of the response signal recorded at � = 0.5 mHz near the maximum value of the external field H ,
while the histogram of presented values illustrates in the bottom-left inset of the same panel that these values are normally distributed, which
could be mainly attributed to random fluctuations of sample’s magnetization. In the right panel, the left insets show the same, but for � = 50
mHz, while for the remaining frequencies, the corresponding distributions are roughly the same with the standard deviation less than 5 mV.
Hysteresis curves, displaying versus the external magnetic field H the sample’s magnetization M scaled by maximum magnetization M0, are
given in the right insets.

pulse—a sequence of nonzero pure BN signal values of the
same sign realized in contiguous short intervals of time.

Figure 4 shows a part of the recorded signal suggesting that
the response signal can be considered as a train of BN pulses,
separated in time by the inactivity intervals of the sample
during which the pure BN signal is absent. This means that the
recorded signal can be decomposed into BN pulses, which is,
however, not straightforward due to the superimposed induced
voltage caused not by the rearrangements of the magnetic
domains but by other means. Indeed, some EMF is induced
in the pickup coil because of the varying external magnetic
field even without inserted sample. For the noiseless triangle

FIG. 4. Part of the time-profile of the response signal v and
horizontal lines representing (bottom to top): The baseline bl (full
line), base threshold level bl + V 0

th (dotted line), and waiting-time
threshold level bl + V (wt)

th (dashed line). Base threshold V 0
th is used

in the decomposition of the response signal into BN pulses (one such
pulse, starting at ts and ending at te, is shaded in gray), while the
waiting-time threshold V (wt)

th is used in the analysis of waiting times
(e.g., internal and external waiting time, Tint and Text).

time profile of the driving field, this contribution would appear
in the signal time profile as a horizontal line switching its
level at the half-period transitions, whereas in reality some
concomitant noise, caused by all factors except the change of
sample’s magnetization and therefore external, is inevitably
superimposed as well. Due to this, several methods for base-
line determination in the presence of noise (and investigated
signal, here pure BN) have been proposed so far; see, e.g.,
Refs. [48,49]. Here, like in Ref. [4], we used the simplest and
the fastest one in which the baseline level bl is taken so that
it corresponds to the discrete value of the digitized signal that
is most frequently visited during the ongoing half-period, cf.
Fig. 4.

The next step in the decomposition of the recorded sig-
nal into BN pulses is the establishment of some threshold
region around the baseline and subsequent recognition of the
recorded signal parts lying outside that region as BN pulses.
Here the threshold region is taken as the range of signal values
v satisfying bl − Vth < v < bl + Vth for some chosen thresh-
old Vth > 0. As for the signal value v close to bl one cannot
resolve whether the external noise dominantly causes its part
v − bl or not, the purpose of Vth is to discriminate between
these two cases. So for |v − bl | < Vth (and small enough
Vth > 0), one can consider that v is dominantly caused by
other (i.e., non-BN) causes and disregard such signal points
from further analysis of BN distributions, whereas the remain-
ing part of the recorded signal, despite being polluted by the
external noise, is taken as the BN signal relative to the baseline
and proceeded to further analysis. For the threshold Vth used
in the foregoing way we say that it plays the role of a base
threshold, in which case we will denote it as V 0

th.
The so-obtained BN signal is already decomposed into BN

pulses, each being a subsequence,

{v(ts), v(ts + �t ), . . . , v(te)},
of the overall recorded sequence of digitized signal values v(t )
taken in the interval {ts, ts + �t, . . . , te} of contiguous discrete
moments of acquisition time starting at ts and ending at n�t
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later moment te, where �t is the sampling interval (= 5 ×
10−5 s in our case), cf. Fig. 3. ts and te are defined in the usual
way such that for a positive BN burst the signal goes above the
threshold at t = ts and stays above the threshold until t = te,
when it goes below the threshold for the first time after the
start of the burst; note that for negative bursts, the opposite
applies (i.e., the event starts at t = ts, when the signal goes
below the negative threshold and lasts until it goes above it
at t = ts). Each BN pulse of a ferromagnetic sample is either
positive or negative, i.e., all its values are either above bl + V 0

th
or below bl − V 0

th, depending on the sign of dH/dt , cf. Fig. 2.
The collection of BN pulses extracted via the foregoing

procedure from the overall recorded signal depends on the
choice of threshold Vth. Because the basic role of imposing a
threshold is to keep in further analysis most of the data points
that are likely caused by BN reasons, a natural way would
be to choose a threshold taking into account the width w of
the external noise. As explained in Ref. [4], this width can
be estimated from the data lying below the baseline and take
V 0

th proportional to this width, V 0
th = dlw, using reasonable

discrimination levels dl (e.g., between 0.5 and 3). Alterna-
tively, the base threshold can be chosen differently, e.g., fixed
to some constant value approximately matching the width of
external noise, as we did in this paper.

Besides playing the role of a base threshold that is used
in the decomposition of the response signal into BN pulses,
variable threshold values are used in the analysis of waiting
times (see the next subsection) in which case such threshold
will be referred to as the waiting-time threshold V (wt)

th . The
logic here is to first define a pulse with one threshold (V 0

th)
and then a new threshold with another value (V (wt)

th ) in order
to be able to classify the waiting times into internal (due to
breaking of the bursts into subavalanches) and external ones
(those separating the “original” bursts) [50].

B. Experimental BN distributions

Each BN pulse {v(ts), v(ts + �t ), . . . , v(te)} is character-
ized by several parameters. Mostly analyzed are its size

S =
n∑

k=0

[v(ts + k�t ) − bl ]�t ;

duration

T = te − ts,

i.e., the time interval between its ending moment te and start-
ing moment ts; energy

E =
n∑

k=0

[v(ts + k�t ) − bl ]
2�t ;

and amplitude

A = max{v(ts) − bl , . . . , v(te) − bl} .

Regarding the question of to what extent are the so-obtained
parameter values affected by the external noise, one can take
that while the width of (zero-mean) noise is comparatively
small and its values uncorrelated, it cannot affect much the
individual parameter values for moderate and large BN pulses
and likely has no effect on their statistics.

In Fig. 5 are presented the log-log plots of the experimental
probability density functions (i.e., distributions with the unit
area at the lin-lin scale) of size S, duration T , energy E ,
and amplitude A of BN pulses. Presented are the integrated
distributions, i.e., the distributions extracted along the entire
hysteresis loop, which correspond to six values of base thresh-
old V 0

th from the signals recorded at 5 mHz.
Previous studies of Barkhausen noise emissions (see, e.g.,

Refs. [4,51]) and our data from Fig. 5 show that these distri-
butions follow the (modified) power laws,

DX (X ) = DX (X/X0, X/X1, ...)/X aX , (1)

where X denotes one of the avalanche parameters (size S,
duration T , energy E , and amplitude A) and aX the pertaining
power-law exponent (τ , α, ε, and μ for X = S, T , E , A,
respectively). The exponents are associated with the slope of
the log-log plot of DX (X ) in its scaling region (i.e., the part
in which this plot appears as linear), while the cutoff func-
tion DX (X/X0, X/X1, ...), depending on the cutoff parameters
X0, X1, . . . , describes the departure of DX (X ) from the power-
law shape at the distribution ends (e.g., DX (X/Xl , X/Xu) ≈
const for Xl � X � Xu for the cutoff function specified by the
lower cutoff Xl and the upper cutoff Xu).

The data displayed in Fig. 5 show that, although the choice
of base threshold affects the shape of distributions, they all ex-
hibit scaling regions which seem to be visually approximately
parallel in their main part. This we quantified by extracting
the effective values of the corresponding exponents (by the
simple linear fit applied in the main part of the scaling region
for each of them; see the comment [52]) and presenting their
variation with the chosen base threshold V 0

th in the inset for
each of the distributions. Except for the energy exponent ε, the
so-obtained exponent values are not constant but instead show
a systematic change with V 0

th maintaining (within the uncer-
tainty bars) the fulfillment of the scaling relations [4,53,54]:

τ = 1 + (α − 1)/γS/T , (2)

ε = 1 + (α − 1)/(2γS/T − 1), (3)

μ = 1 + (τ − 1)/(1 − 1/γS/T ), (4)

containing the exponent γS/T , see Eq. (5), whose variation
with V 0

th is shown in the left panel of Fig. 10.
Regarding the choice of the base threshold values em-

ployed in Fig. 5, we notice that, due to 5-mV noise width,
the value of 1-mV base threshold is too small, enabling some
signal parts dominated by the external noise to be recognized
as (small) BN pulses, and also an occasional artificial merging
of several separate BN pulses lined up in a sequence into
larger ones. The next two values of V 0

th, namely 10 and 20
mV, should be the most appropriate at the current (i.e., 5 mV)
noise width because they statistically eliminate the influence
of external noise and do not discriminate recognition of BN
pulses that are not too small. The distributions extracted at
these two V 0

th values indicate the existence of two scaling re-
gions like the ones observed in the case of the RFIM avalanche
distributions of thin systems; see Refs. [55–58]. There it was
shown that the small avalanches, not reaching the system
borders, propagate like in bulky 3D systems, whereas the
big avalanches effectively propagate like 2D avalanches being
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FIG. 5. For the values of base threshold V 0
th quoted in the (common) legend, we give in main panels the integrated distributions of size S,

duration T , energy E , and amplitude A of BN pulses all collected from the data recorded in 20 cycles of the external magnetic field at the same
driving rate � = 5 mHz. All distributions are normalized to the unit area at the lin-lin scale so as to be the experimental probability density
functions. In the insets, we show the variation with V 0

th of the effective values of the distributions’ exponents [τ for D(S), α for D(T ), ε for
D(E ), and μ for D(A)] with the error bars mainly caused by the variation of the fitting region.

sandwiched between the top and bottom system boundaries.
So the small 3D-like avalanches dominate in the initial steeper
scaling region, followed by the less steep one caused by the
big 2D-like avalanches. The initial (i.e., 3D-like and steeper)
part of the distributions’ scaling region gradually vanishes
with further increase of V 0

th and the distributions attain the
shape of a single-slope power law sharply decreasing at the
large avalanche end.

Experimental BN studies performed so far revealed that
between the duration T and the average size 〈S〉T of BN pulses
of duration T should exist the correlation of a power-law type

〈S〉T ∼ T γS/T , (5)

specified by the power-law exponent γS/T . Our 5-mHz data
from the top panel of Fig. 6 suggest that the experimental
value of this exponent, determined from the slope of the
scaling region in its large-avalanche (linear) part, slightly
depends on the choice of base threshold as is visible in the
figure. Moreover, our data for V 0

th < 50 mV indicate the pres-
ence of two scaling parts in graphs. The initial one shows
the correlations between 〈S〉T and T for small avalanches
and continues through a transitional region to the main
part of the scaling region giving the correlations for larger
avalanches.

The BN power spectrum P( f ), i.e., the (spectral) density of
power released by the BN signal at frequency f , is expected

to follow the power law

P( f ) ∼ f −γspc , (6)

specified by the power exponent γspc. In experiments, the BN
signal is polluted by the external noise, so that the experimen-
tal power spectrum deviates from the power law most notably
at the higher frequencies at which the noise dominates the
Fourier components of the BN signal. This is noticeable in the
experimental power spectra, exemplified in the bottom panel
of Fig. 6 by the integral spectra recorded at three driving rates
(0.5, 5, and 50 mHz) along the entire hysteresis loop (and
shown by the pale lines). The clearest example is the 0.5 mHz
integral spectrum whose power-law part is absent due to the
proportionally longest interval of time virtually without the
BN noise. As the driving rate increases, the interval with a
pronounced BN signal gets proportionally longer, as does the
power-law spectrum part. To reduce the influence of noise,
we also calculated the binned power spectra, i.e., the power
spectrum of the response signal recorded in a narrow window
of the external magnetic field centered at that value of H
at which the averaged response signal attains its maximum.
Under our experimental conditions, the binned spectra seem
to be only weakly polluted by the external noise up ∼20 kHz,
so their power-law part extends that far.

As previously mentioned, thresholds are also used in the
analysis of waiting times which are defined in the following
way. For any threshold V (wt)

th , chosen for the waiting-time
analysis, some parts of the response signal remain below the
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FIG. 6. Top panel: Correlations between duration T and the av-
erage size 〈S〉T of BN pulses with duration T obtained for the same
values of base threshold V 0

th as in Fig. 5. Bottom panel: BN power
spectra P( f ) against frequency f collected at three driving rates (0.5,
5, and 50 mHz) along the entire hysteresis loop (int) and in a narrow
window (bin) of the external magnetic field centered at the maximum
of the average response signal. For both panels, the underlying sets
of experimental data are the same as in Fig. 5.

imposed waiting-time threshold level bl + V (wt)
th , meaning that

at any moment t in such part v(t ) < bl + V (wt)
th . The start ts

and end te of each of the corresponding intervals of time are
(figuratively speaking) determined by two successive intersec-
tions of the response signal with the waiting-time threshold
level, see in Fig. 4. So one can take the duration Tw = te − ts
between these two moments ts and te as the waiting time and
classify it either as the external waiting time Text or internal
waiting time Tint if the moments ts and te belong to different
or same activity event, respectively.

In Fig. 7, we present three types of distributions of waiting
time: Total waiting time Tw in the top panel, external waiting
time Text in the middle panel, and internal waiting time Tint in
the bottom panel. These distributions become of a power-law
type for the sufficiently high values of waiting-time threshold
V (wt)

th signifying the presence of temporal correlations; other-
wise, they are exponential, showcasing the random waiting
times and absence of temporal correlations.

FIG. 7. Distributions of various types of waiting times: Total Tw

in the top, external Text in the middle, and internal Tw in the bottom
panel. The distributions are obtained at the 5 mHz driving frequency
for the same threshold levels and the same sets of data as in Fig. 5.

C. Comparison with RFIM

In this section, we compare our experimental results with
the results of numerical simulations of the athermal nonequi-
librium random field Ising model [36,39] driven at finite
rates with the aim to test its suitability for interpretation
of the behavior of field-driven disordered nanocrystalline
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ferromagnets; see more in Appendix B. Since at room-
temperature conditions, like in our experiment, thermal
fluctuations in real systems should not be important, we em-
ployed the athermal (i.e., zero-temperature) model version
[37–39] which is significantly less demanding than the ther-
mal (i.e., finite-temperature) version. In the athermal version
the distribution of the random field is quenched and therefore
the model behavior is fully deterministic, meaning that driving
the system through the next hysteresis cycle gives the same
results. This is not consistent with BN experiments having a
somewhat different response in repeated hysteresis cycles that
might originate, e.g., from thermal noise and/or redistribution
of stress within the sample from cycle to cycle. To overcome
this deficiency, simulations are performed using a different
configuration of the random field in each run, and the so-
obtained results are averaged over employed configurations
having all the same value of the disorder parameter (this is
known as quenched averaging).

1. On the model and numerical simulations

In the RFIM, N Ising spins si = ±1, located at the sites i
of a lattice, interact with their nearest neighbors ferromagnet-
ically and are exposed to a homogeneous external magnetic
field H like in the Ising model. Additionally, in the random
field variant of the Ising model, the spins are also influenced
by a quenched random magnetic field taking uncorrelated
values hi at lattice sites i from a zero-centered Gaussian (i.e.,
normal) distribution,

ρ(hi ) = exp
[ − h2

i /2R2
]

√
2πR

, (7)

whose standard deviation R is taken in the RFIM as the pa-
rameter measuring disorder in the system. In this way, the
averages 〈hi〉R and 〈hih j〉R corresponding to (all) possible
random field configurations at disorder R satisfy

〈hi〉R = 0 , 〈hih j〉R =
{

R2, if i = j
0, otherwise

. (8)

In the athermal nonequilibrium RFIM version, employed
in this work, the evolution of the system is determined by the
driving protocol and by the following dynamical rule:

the spin si is unstable at the moment tm and will flip at the
next moment of time tm + �tm if

heff
i (tm)si(tm) < 0 ;

otherwise, si is stable at the moment tm and will retain its
value at the next moment.

Here,

heff
i (tm) =

∑
j

s(i)
j (tm) + H (tm) + hi, (9)

is the (local) effective field acting on si at the moment tm
of discrete time and �tm = 1. The effective field heff

i (tm) is
the sum of the random field hi at site i, (homogeneous) ex-
ternal magnetic field H (tm) at the moment tm, and the term∑

j s(i)
j (tm) giving the influence on si at the moment tm of its

nearest neighbors s(i)
j . The flipping of unstable spins reduces

the value of the system Hamiltonian

H = −
∑
〈i j〉

sis j − H
∑

i

si −
∑

i

hisi, (10)

and spreads like an avalanche until all spins in the system
become stable. When all spins are stable the system is in a
stationary state which is not necessarily the equilibrium one
(i.e., the state of minimum energy at the current value of
the external magnetic field H) but will be maintained until
destabilized by some change in the external magnetic field H .

In the adiabatic driving of the athermal nonequilibrium
RFIM [39,59] each avalanche is nucleated due to such change
in the external magnetic field H that destabilizes only the
least stable spin; thereafter, H is kept constant as long as the
nucleated avalanche lasts propagating over the shell of the
nearest neighbors of spins flipped at the previous moment, the
shell being placed at the rim of the cluster of spins flipped
during the ongoing avalanche. H is also kept constant during
each avalanche in the quasistatic driving of the model and
repeatedly changed by a fixed amount �H while the state of
the system is stationary. This type of driving is therefore suit-
able for simulations of systems having two timescales, namely
an internal timescale that is much faster than the timescale at
which H changes.

On the other hand, in the finite driving rate protocol,
the external magnetic field H changes in each time step
by some constant increment �H , i.e., at the driving rate
� = �H/�tm, facilitating the propagation of the ongoing
avalanche(s). Like for the quasistatic driving, such driving
occasionally causes the simultaneous nucleation of several
avalanches when �H and/or lattice size are large, and/or the
nucleation of new avalanche(s) while the ongoing avalanche
is still active [60–63]. These separately nucleated avalanches
may overlap in time (and possibly merge in space) forming a
single activity event [64]. The activity events are separated in
time by the intervals of the system’s inactivity, leading in this
model version to the natural choice of baseline level bl = 0
and identification of the event parameters (size S, duration
T , energy E , and amplitude A) like in the experimental case,
but after setting the value of base threshold in simulations to
V 0

th = 1.
Because of the symmetry between the rising and falling

part of the hysteresis loop, we performed the numerical RFIM
simulations only along the rising part by the field H (t ) in-
creasing at a constant driving rate � like in our experiments.
Each simulation starts with all spins set to −1 and some
concordant big negative value of H , and afterward, H is in-
creased until all the spins are flipped to 1. We performed the
simulations with the aid of the so-called sorted list algorithm
(see in Refs. [53,65]) modified and adjusted for the finite-rate
driving protocol.

Unlike in the athermal RFIM version, where quasistatic
and finite rate driving reduce in �H → 0 limit to adiabatic,
nonequilibrium stationary states are absent in the thermal
RFIM version because of the nonzero probability pi = [1 +
exp(−2siheff

i /T )]−1 of thermal flipping of (any chosen) spin
si in the effective field heff

i at temperature T . This causes
thermal fluctuations of average magnetization M = (

∑
i si )/N

tending to drive the system towards the equilibrium state at
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the current value of the external magnetic field H in the spirit
of Glauber model [66]. We note that the thermal effects can
be neglected because of the high Curie temperature (600◦C)
of the VITROPERM 800 R sample and the experiments per-
formed at room temperature. Therefore, the above-described
formulation of the thermal RFIM, as well as other possible
generalizations of thermal spin models (e.g., Kawasaki model
[67] and Swendsen-Wang model [68]) for the RFIM will not
be considered in this work.

2. Comparison of results of experimental BN measurements
and numerical simulations of RFIM

In order to optimally match the simulation results to ex-
perimental, one can adjust in simulations the shape and size
of the lattice, the value of disorder R, and the value of driv-
ing rate �. To this end, we performed simulations using the
32 768 × 2048 × 8 striplike cubic lattice with open bound-
aries mimicking our experimental samples by the ratio of its
sides.

Next, because of unknown value of disorder which might
provide results similar to the experimental, we performed sim-
ulations for several values representing all three domains of
disorder for the employed lattice (below critical, transitional,
and above critical, see in Ref. [59]), and for each of them at a
set of values of � from 10−10 to 10−6 covering for this lattice
all types of driving regimes from slow (without spanning
events [69,70]) to fast (large spanning events of quasi-2D type
[71]), see in Refs. [62,64].

For each pair of simulation parameters (R,�) we per-
formed 20 simulations with different realizations of the
random magnetic field. As the activity events in simulations
are clearly extraditable as the longest subsequences of the
nonzero values appearing in the (noiseless) response signal at
contiguous moments of time, the collecting of their statistics
would be natural to perform with the base threshold V 0

th = 1.
Still, for the intended comparison with experiments, we did
this for all distributions at the same base threshold V sim

th = 5
in simulations and at the same base threshold in experiments
V exp

th = 50 mV. Despite the fact that the (V exp
th ,V sim

th ) pairs,
chosen individually for each pair of the compared distri-
butions, would provide closer matching, for simplicity we
decided to perform all comparisons using the above pair of
fixed thresholds with a remark that at and above V exp

th = 50
mV the 〈S〉T − T experimental correlations have the scaling
region with a single slope, cf. Fig. 6, and that for V sim

th = 5 and
all employed rates the ratio (rms of simulation signal):V sim

th is
roughly the same as in experiment at V exp

th = 50 mV.
In Fig. 8 we compare the integrated distributions of

avalanche event parameters (size, duration, energy, and am-
plitude) collected along the entire hysteresis loops in our
experimental measurements and in numerical simulations.
The presented simulational distributions are obtained for dis-
order R = 2.3, being above the effective critical disorder
for the adiabatically driven 32 768 × 2048 × 8 RFIM system
[58], and at a set of “nice” values of the driving rate quoted
in legend chosen in the same progression as the experimental
ones. Among the tested driving rates and disorder values,
ranging between R = 1.8 and R = 3.0 in 0.1 increments, this
combination of driving rates and disorder provided the best

achieved matching between experimental and simulational
distributions presented in this and all subsequent figures.

Because of the different time and signal scales in the ex-
periment and in simulations (real scales in the experiment
and discrete model scales in simulations), the matching of the
two is achieved by dividing the simulational timescale by the
factor ct = 2 × 105 (equal to the sampling rate used in our
experiment) and the signal scale by the factor cv = 50 (hence,
the factor ct cv = 107 for the scale of avalanche size and the
factor ct c2

v = 5 × 108 for the scale of avalanche energy) pro-
viding the best matching with the experimental distributions.
In addition to this, due to the existing difference in both the
shape and the logarithmic span, the distributions obtained
from the simulations are shifted along the vertical axis so to
attain the best overlapping in the scaling regions of the pairing
distributions obtained in the experiment.

The data presented in Fig. 8 show a significant overlapping
for the pairs of distributions at faster rates and overlapping
in the scaling region but noticeable discrepancies in the ini-
tial and final part of the distributions at slower rates. The
overlapping is the least in the case of amplitude distributions
which could be related to a significantly smaller dynamic
range of the simulated response signal at the chosen lattice
size. Comparison between the experimental and simulational
〈S〉T − T correlations, presented in the left panel of Fig. 9, is
performed for the same sets of experimental and simulational
data as in Fig. 8 using the same ct and ct cv factors and the
same threshold pairs. The best overlapping is obtained be-
tween 1 mHz (1 × 10−8) and 2 mHz (2 × 10−8) experimental
(simulational) driving rates, while for higher rates the exper-
imental correlations depart more and more from the power
law, likely due to spatial merging of avalanches occurring at
these rates.

Even more intricate is the behavior of power spectra. Com-
parison of the experimental and simulational binned spectra
for the used experimental (simulational) driving rates is shown
in the right panel of Fig. 9. The compared data suggest that
the experimental BN (binned) spectra can be described by the
power law

P( f ) ∼ f −γS/T , (11)

meaning that the power exponents γspc and γS/T might be
the same, as it was suggested in Ref. [72] within the RFIM
context. Here, however, one must take into account that both
experimental and simulational effective values of the exponent
γS/T depend on the choice of the imposed base threshold V 0

th
and on the driving rate �, which we illustrated in Fig. 10.
The data displayed in this figure show that both γspc and γS/T

vary with threshold V 0
th in a similar way decreasing from their

maximum values at zero base threshold towards values at a
plateau, one in the experimental and the other (∼0.1 lower) in
the simulational case, attained at rather high base thresholds.
For each fixed value of base threshold V 0

th, the variation of γS/T

with � is less, but present, including the plateau values. On
the other hand, the effective values of γspc for different �, dis-
played in the insets of these main panels, seem to be the same
in the experimental case as the corresponding values of γ0

(i.e., the effective value of γS/T for the smallest base threshold
V 0

th at the current driving rate �), but not in the simulational
case except for the very small driving rates. However, in both
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FIG. 8. Comparison of integrated (unit area) distributions of avalanche parameters (size S, duration T , energy E , and amplitude A)
obtained in experiments and numerical RFIM simulations for the experimental (simulational) driving rates quoted in the common legend.
Each experimental distribution is extracted at the (same) experimental base threshold V exp

th = 50 mV of 20 hysteresis cycles data and presented
with full symbols on the requisite scale using SI units for time and voltage. Starting from the distribution recorded at the lowest driving rate,
each experimental distribution obtained at the next (higher) rate is for better visibility vertically translated by one decade upwards relative
to the distribution recorded at the previous (lower) rate. Each simulational distribution is extracted at the (same) simulational base threshold
V sim

th = 5 of 20 RFIM simulations on the 32 768 × 2048 × 8 cubic lattice performed with different realizations of the random magnetic field
with disorder R = 2.3. For comparison, the simulational distributions, presented by empty symbols, are shifted along the horizontal axis
dividing the data by a suitable factor (ct = 2 × 105 for T axis, cv = 50 for A axis, ct cv = 1 × 105 for S axis, and ct c2

v = 5 × 108 for E axis).

FIG. 9. Left panel: Comparison of the experimental and simulational correlations between the avalanche duration T and the average
avalanche size 〈S〉T of that duration extracted at the same experimental and simulational base thresholds, the same values of experimental and
simulational driving rates, and the same ct and ct cv factors as in Fig. 8. Right panel: Comparison of the experimental and simulational power
spectra P( f ) for the driving rates from the legend. Simulational frequencies are multiplied by the factor ct = 2 × 105. For visibility, each of
the next-driving-rate curves in both panels is shifted vertically upwards by one-two decades in left-right panel relative to the previous one. The
underlying sets of data are the same as in Fig. 8.
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FIG. 10. Left panel: Effective experimental values of the exponent γS/T against the base threshold V exp
th . In the inset, we show against the

driving rate � the effective experimental values of γ0 (i.e., the value of γS/T at the current driving rate � for the smallest experimental base
threshold V exp

th = 1 mV), γspc (i.e., power spectrum exponent), and γpl (i.e., plateau value of the exponent γS/T at the corresponding driving rate
�). Right panel: The same as in the left panel but for the values obtained from the simulational data. Each effective exponent value is the slope
determined by the linear fit in the power-law region of the corresponding distribution. The underlying data sets and other relevant parameters
are the same as in Fig. 8.

experimental and simulational cases, the power exponent γspc

is undoubtedly different for the corresponding plateau values
at all driving rates.

In Fig. 11 we compare the distributions of waiting time:
Total, external, and internal shown in the top, middle, and
bottom panel, respectively. The distributions calculated from
the experimental and simulated data are overlapped to a high
degree in the whole range of waiting times, except for the
distributions of internal waiting times which overlap only in
their scaling regions.

The average avalanche shape [74] is given by 〈vt/v
max
t 〉

(i.e., the average value of the response signal vt scaled by
its maximum value vmax

t during the avalanche) taken as a
function of t/T (i.e., the time t measured from the be-
ginning of avalanche scaled by the avalanche duration T ).
Figure 12 shows that both in experiment and simulations these
shapes are parabolic-like and rather similar, the experimental
being slightly right-skewed and simulational (even less) left-
skewed. Performing the fits of the average avalanche shape
data to the functional form (found in Ref. [74])

〈V (t |T )〉 ∝ T γ−1
[ t

T

(
1 − t

T

)]γ−1[
1 − a

( t

T
− 1

2

)]
(12)

allows us to estimate exponent γ as the fitting parameter;
here parameter a accounts for the underlying asymmetry of
the average avalanche shape. So-estimated values of γ are
contrasted to the γS/T data and are shown in the inset of Fig. 12
against the driving rate �. One can observe that the values
remain fairly close and consistent in the region of low driving
rates but begin to vary more and more as the driving rate
increases. Two of the representative fits to the function (12)
are included in the main panel of Fig. 12, shown with full
line.

Finally, in Fig. 13 we contrast the magnetizations and mag-
netic susceptibilities obtained from the experiment and the
numerical simulations. Magnetizations, rescaled by the sat-
uration value M0 and susceptibilities dM/dH , are presented
against the external magnetic field H . Regarding the behavior
of these curves below and above the coercive field Hc (i.e., the

value of the external field H at which M = 0), one can see
that the matching of data obtained from the experiments and
numerical simulations is very good for H < Hc and notably
worse for H > Hc.

IV. DISCUSSION AND CONCLUSION

The main issue we faced in the comparison between the
results obtained in our BN experiment and the possible results
of the nonequilibrium athermal RFIM numerical simulations
was the identification of the appropriate values of the RFIM
parameters (lattice sizes, disorder R, and driving rate �) that
would provide a reasonable matching of the two types of data.

To this end, we performed the simulations on the 32 768 ×
2048 × 8 striplike cubic lattice, the largest one we could
use. This lattice with more than half a billion spins has
approximately the same aspect ratio as the sample used in
our experiment, which is important because the simulational
results are affected by the lattice aspect ratio and also by the
lattice finite size [55,56,58,62]. These two facts prevented us
to use a bigger lattice (e.g., doubled along each of its sides)
because seeking the reasonable (R,�) pairs would be out
of our reach due to the greatly increased running time of
simulations at the corresponding computer memory demands.

Regarding the optimality of the value of disorder and the
set of values of the driving rate in simulations for which the
comparison with experimental findings is performed, we point
out that these values depend on the choice of lattice (i.e., they
might be somewhat different for another lattice due to the con-
formity of the finite-size and driving-rate scaling conditions
[62]). It is also important to stress that the type and structure
of the underlying sample affect the model’s applicability. This
is in particular because the employed version of the RFIM
is not a realistic model for the Barkhausen noise recorded
from the ferromagnetic samples having well-defined domain
structure because, instead of considering the time evolution of
magnetic domain pattern of driven disordered ferromagnetic
samples responsible for the emission of BN, the model treats
individual spins with the simplest mutual exchange coupling

024110-11
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FIG. 11. Comparison of integrated distributions of total, external
and internal waiting times, respectively, obtained in experiments
and numerical simulations. The underlying data sets and all other
parameters are the same as in Fig. 8.

and the coupling with the quenched random magnetic field
whose existence and characterization in real samples is still
not well documented and understood. Yet, as we demonstrated
by a methodical comparison of the obtained simulational and

FIG. 12. Average avalanche shapes, shown by filled symbols,
obtained from the experimental and by empty symbols, obtained
from the simulational data. The graph shows against t/T (i.e.,
time t measured from the start of avalanche scaled by avalanche dura-
tion T ) the values of 〈vt/v

max
t 〉 (i.e., the average value of the response

signal vt scaled by its maximum value vmax
t during the avalanche).

The underlying data sets and all other parameters are the same
as in Fig. 8. Full lines are fits to the functional form (12) and the
inset shows the comparison of γS/T , introduced in Eq. (5), to γAAS

values, introduced in Eq. (12), for both simulations and experiment.

experimental results over a wide range of driving rates, in the
case of nanocrystalline samples, this model shows a high de-
gree of plausibility, reproducing most of the features obtained
in the experimental measurements. Therefore, based on all our
findings, we can consider that the athermal nonequilibrium
RFIM version proved to be valuable for the comparison be-
tween its predictions and the characteristics of the Barkhausen
noise emitted from the nanocrystalline samples.

To conclude, in this paper we systematically compared
the findings of the Barkhausen noise measurements and the
simulations of the nonequilibrium athermal RFIM. The mea-
surements were performed on a VITROPERM 800 R metallic
glass nanocrystalline strip driven by the external magnetic
field at the rates between 0.5 and 50 mHz. All RFIM sim-
ulations were accomplished using suitable model parameters
(lattice sizes with the aspect ratio as for the sample, a single
value of disorder of the quenched random field, and a two-
decade-wide range of driving). Applying these adjustments in
simulations, allowed us to achieve a considerable matching
with the experimental data. We hope that our findings will
be helpful in the interpretation and analysis of experimental
results obtained from a variety of striplike disordered fer-
romagnetic nanocrystalline samples driven at constant rates.
Further on, the results of our study may also stimulate some
future theoretical research, invoking the development of mod-
els that will more accurately capture the essence of the BN
underlying dynamics.
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FIG. 13. Comparison of averaged magnetization and magnetic susceptibility curves obtained in experiments (symbols) and numerical
simulations (full lines), the later scaled so as to achieve a matching with the experimental. The underlying data sets and other relevant
parameters are the same as in Fig. 8. In the main panels, we show the magnetic susceptibilities dM/dH against the external magnetic field
H , while in the insets we show M/M0 (i.e., the magnetization M scaled by the saturation magnetization M0) against H ; both types of curves
correspond to the rising part of the hysteresis loop, and the dM/dH experimental curves are inverted (i.e., multiplied by −1), cf. Fig. 2. In main
panels and insets the curves are shifted for better visibility, namely susceptibilities and magnetizations in increments of 10 Am−1 and 150 Am−1

relative to the (unshifted) curves which correspond to the 0.5 and 5 mHz driving rates in left and right panel.
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APPENDIX A: COMPARISON OF BN RECORDINGS
ACCOMPLISHED USING SHORT AND LONG

PICKUP COILS

In inductive Barkhausen noise measurements, the response
signal is collected with the aid of a pickup coil. One possibility
is to use, like in the present experiment and Ref. [4], a long
single-layered pickup coil tightly wound around the entire
sample, or a multilayered short pickup coil, e.g., in Ref. [75],
wound around the central part of the sample. As is illustrated
in Fig. 14, the short pickup coil detects only the nearby
changes in magnetization. This is not suitable for comparison
with the cases in which the local changes in magnetization
are homogeneously detected over the entire sample as in the
RFIM model and the BN measurements performed with a long
pickup coil.

Detection of the BN signal from the entire sample has been
criticized in the literature (e.g., in Ref. [75]) on the grounds of
a nonhomogeneous demagnetization field over the sample and
informally also on the possibility that the current through the
long pickup coil, triggered by some localized avalanche, may
initiate by its flow another avalanche at some distant position
that would otherwise be absent. This should not happen if the
pickup coil is connected (like in our measurements) to the

amplifier with a large input impedance (say, above 100 k�, so
that the current induced in the pickup coil like ours remains
below 10 nA and the corresponding magnetic field strength
remains below 0.1 mA/m). Regarding the first objection, ac-
cording to our experience, the effect of the demagnetizing
field Hdmf = −Ndmf M in the case of extended samples is low

FIG. 14. Two sections of the BN response voltage signal v

against driving magnetic field H . The sections were recorded at
the 2-mHz driving frequency using two identical short pickup coils,
whose length is 1 mm, with 300 turns connected in series but with
opposite polarity (so that in both cases the overall signal is the sum of
the EMFs induced in opposite directions). The black line shows the
section from the signal recorded by the pickup coils placed next to
each other so that the induced EMFs practically cancel each other.
The gray line shows the section from the signal recorded by the
pickup coils separated by 8 cm. Two encircled segments in this
section show time-separated parts of opposite polarity caused by the
changes in the magnetization localized near the first and the second
pickup coil, respectively.
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FIG. 15. Hysteresis loops for several values of the demagnetizing
factor Ndmf from the legend. The loops are obtained in the athermal
RFIM simulations on the 16 384 × 1024 × 4 lattice (with approxi-
mately the same aspect ratios as for our sample) at the driving rate
� = 0.001 and disorder R = 2.4 of the quenched random field hi.
For the four first-listed loops the external magnetic field H = const
over the entire sample (as is in the measurements we performed due
to the use of compensating coils placed at the ends of the driving
solenoid). Without compensating coils, at the ends of the sample (like
the one used in Ref. [75]), H drops to 65% from its value at the mid-
dle, and such variation of H over the sample gives rise to noticeable
changes in the hysteresis loop. On the other hand, if H = const, then
the changes in the hysteresis loop become noticeable only for the
values of Ndmf that are (about) 100 times greater than the value for
our sample Ndmf = 0.00053.

due to the small demagnetizing factor Ndmf (=0.00053 in our
case) which we illustrate in Fig. 15. Here, however, we men-
tion that if the external driving field H is not homogeneous
over the entire sample, then a more pronounced effect could
appear, as is shown in Fig. 15 by a dash-dotted (orange) line.

An additional difference between the long and short pickup
coil appears in their amplitude-frequency response illustrated
in Fig. 16. Comparing the impedance |Z| of the long coil (used
in our experiment) with that of a short coil with 300 turns and
the same resistance, one can see that the impedance of the long
coil is flat in a broader range of frequencies potentially en-
abling usage of a low-pass filter with higher cutoff frequency,
i.e., the measurements in an extended frequency range.

Despite the previous differences, recordings performed by
using both types of pickup coils lead to essentially the same
findings regarding the exponents characterizing the distribu-
tions of BN avalanches. This we illustrate in the main panels
of Fig. 17 showing an overlapping between the corresponding
distributions of avalanche size and duration collected with
the aid of long and short pickup coils. Fits to the stretched
exponential functional form

DSE (X ) = AX −aexp[−(X/X0)b], (A1)

where X is the avalanche parameter, A the function am-
plitude, a the pertinent exponent, X0 the cutoff parameter
and b the cutoff exponent, are commonly used to esti-
mate the pertinent exponents. In the insets of top-left and

FIG. 16. Impedance |Z| (measured up to 500 kHz by a Microtest
6366 LCR meter) against frequency f for long pickup coil used in
our experiment (full symbols) and a short pickup coil (empty sym-
bols) with the same resistance and 300 turns. As a matter of principle,
an unbiased detection of the recorded signal is enabled in the range
of frequencies in which the overall response of the pickup coil and
amplifier is reasonably constant, whereas the frequency components
in the detected signals outside this range should be suppressed by
filtering. Our measurement data indicate that the resonance and
antiresonance frequencies for both coils lie above 500 kHz. So the
signal detection by both coils is safe below 100 kHz due to flat overall
response provided in a frequency range wider then shown here by the
used amplifier having (reasonably) high input impedance.

bottom-left panels of Fig. 17 are shown fits of both integrated
and binned distributions (the distributions collected in a bin,
i.e., a narrow window of the external magnetic field, where
the response signal can be considered stationary), giving the
exponent values τ ∼ 1.65/τint ∼ 1.93 for the size distribution,
and α ∼ 1.85/αint ∼ 2.4 for the duration distribution, binned,
and integrated, respectively. Obtained values show that the
BN, emitted from the VITROPERM 800 R sample, likely
belongs to the same universality class as for the unstressed
samples referenced in Ref. [75] and furthermore support the
quasi-2D behavior of avalanches spreading in a sandwiched
geometry within thin systems, which has been numerically
explored earlier [55–58]. The impact of the bin width on the
binned distribution is displayed in the insets of the top-right
and bottom-right panels of Fig. 17. It is evident that for the
narrow bins, containing a small percentage of the magneti-
zation saturation value (10% or less), the distributions are
independent of the bin width, while as the bin size increases,
the distributions tend towards the integrated one. Additionally,
a closer inspection of Fig. 17 reveals that the long pickup coil
seems to be more efficient in detection of small (but not the
smallest) avalanches giving steeper distributions in their initial
part weakly affected by the choice of threshold, as is predicted
for thin samples in RFIM simulations [55–58].

APPENDIX B: ON THE ADEQUACY OF USING THE RFIM
FOR BN SIMULATIONS

Barkhausen noise emissions are theoretically usually de-
scribed as a consequence of a jerky motion of the magnetic
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FIG. 17. Main panels present a comparison of integrated size distributions (top-left), binned size distributions (top-right), integrated
duration distributions (bottom-left), and binned duration distributions (bottom-right) collected by the long pickup coil (empty red squares)
and by the short pickup coil (full black circles). Binned distributions are collected in the window that is centered at the coercive field Hcoerc

(i.e., the value of H at which magnetization M = 0) and has width such that magnetization changes within it by 10% of saturation value. Insets
of top-left and bottom-left panels show fits to the functional form (A1) of both integrated and binned distributions obtained from the recordings
using the long pickup coil, giving the exponent values τ ∼ 1.65/τint ∼ 1.93 for the size distribution, and α ∼ 1.85/αint ∼ 2.4 for the duration
distribution, respectively. Insets of top-right and bottom-right panels demonstrate the variation of the binned distribution with the selected bin
width expressing the change of magnetization in bin as a percentage of the magnetization saturation value. Recording settings: 16 cm × 1 cm
× 40 µm VITROPERM 800 R sample, triangular profile of the external magnetic driving field with 550 A/m amplitude and 2 mHz driving
rate; the BN signal, amplified 2000 times and low-pass filtered at 100 kHz, is sampled at 200 kSa/s sampling rate with 16-bits resolution.
Due to approximately 10 times smaller sensitivity of the short pickup coil, the corresponding distributions are extracted at 10 times Vth and
appropriately shifted to achieve overlapping with the distributions collected with the long pickup coil.

domain walls in the ferromagnetic samples with impurities or
imperfections. In this respect, one may ask a question whether
the RFIM is a suitable candidate for the description of the
BN emissions. Indeed, the RFIM treats the discrete system
of spins having only two possible orientations (+1 and −1)
so that instead of continuously spreading magnetic domains
there are only clusters of discrete spins of the same orientation
and there are no domain walls (i.e., thin regions separating
two neighboring domains in which the local magnetization
gradually changes between the orientations of the neighbor-
ing domains). For this reason, the RFIM is not suitable for
the description of the BN in materials with a well-developed
domain structure.

However, the situation becomes different for materials with
nanocrystalline grains. Experimental studies [76–78] have
shown that the grains in such materials behave like single-
domain particles and that the boundaries of crystal grains
may play the role of quenched and random pinning centers
which are likely to be normally distributed due to many small
factors present during the melt-spinning technique of the

sample production. Although due to this production method
the grains are not regularly distributed in space (see, e.g.,
Product details tab in Ref. [79]), for simplicity here we treat
them to be positioned on the (nonequilateral) 3D cubic lattice.

As the Curie temperature for VITROPERM 800 R is Tc =
600◦C, the magnetization of its grains at room temperatures
is close to the saturation value and is dominantly parallel to
the longitudinal axis of the sample which is its easy axis of
magnetization. Magnetic interaction of the grains is of the
dipole-dipole type but, owing to the relatively large separation
between the dipole centers, may be coarsely considered to
affect only nearby dipoles. For these reasons, and due to a
narrow Gaussian distribution of grain size (ranging between
10 and 15 nm), the RFIM may be considered to be a suitable
model, specifically its athermal nonequilibrium version for the
reasons already mentioned in the penultimate paragraph of
Sec. I and the first paragraph of Sec. III C 2, respectively. In
this respect, the question about the most appropriate choice
of the random field is of minor importance because the model
behavior is essentially not affected by this choice [44,45] and,
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FIG. 18. Time sequences of the BN signal vt extracted at the
same position on the rising part of two adjacent cycles of the external
field H ; the signal shown by the full (red) line is here inverted for the
sake of easier comparison with the one from the next cycle shown
by the dashed (blue) line. Although the sequences are rather similar,
their differences are noticeable.

therefore in this work, we used the normal distribution as the
most standard.

Nevertheless, one can also pose an additional objection
which reads: RFIM is a fully deterministic model, meaning
that once the random quenched field hi is chosen the system
will exactly repeat its response when cycled by the external
magnetic field. This is not the case for the real BN emissions

FIG. 19. The same as in Fig. 18, but for the RFIM response
signal from the saturation loop (full red line) and its slightly smaller
subloop in the next cycle (dashed black line).

as illustrated in Fig. 18 by two sections of the BN emissions
recorded in the same window of the external magnetic field on
the rising part of two adjacent cycles. Although their overall
appearance is quite similar, on closer inspection the differ-
ences are noticeable. One of many possible causes might be a
slightly different maximum of the driving field profile which
should correspond to two different loops at the same ran-
dom field configuration (e.g., saturation loop and its slightly
smaller subloop) in simulations leading to somewhat different
response signals, as is shown in Fig. 19.
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