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Inspired by the process of mRNA translation, in which the stochastic degradation of mRNA-ribosome
machinery is modeled by the resetting dynamics, we study an open totally asymmetric simple exclusion process
with local resetting at the entry site in a resource-constrained environment. The effect of constrained resources
on the stationary properties of the system has been comprehended in the form of the filling factor. The mean-field
approximations are utilized to obtain stationary state features, such as density profiles and phase diagrams. The
phase diagram possesses pure phases as well as coexisting phases, including a low-density–high-density phase
separation, which did not manifest under periodic boundary conditions despite the system being closed there as
well. The role of the resetting rate has been investigated on the stationary properties of the system, depending
on how the filling factor scales with the system size. In contrast to the resetting model for infinite resources,
two distinct phase transitions are observed for the smaller values of the filling factor leading to a change in the
topology of the phase diagram. The impact of the resetting rate along with the finite-size effect has also been
examined on the shock dynamics. All the mean-field results are found in remarkable agreement with the Monte
Carlo simulations.
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I. INTRODUCTION

Transport, being a universal phenomenon, falls in the do-
main of nonequilibrium statistical physics and is ubiquitous,
starting from the microscopic world of cellular processes to
macroscopic vehicular flow, etc. Some intriguing examples
of such systems range from man-made to natural systems,
including traffic flow in vehicles, biological transport mech-
anisms, pedestrian movement, etc. [1–4]. While the long-term
behavior of their counterparts can be comprehended through
a unified theory attributed to Boltzmann and Gibbs [5],
nonequilibrium systems, employed to represent a broader
spectrum of natural phenomena, remain less understood in
terms of their behavior. The nonequilibrium systems have
constant contact with the net driving force acting upon them
and tend to remain in nonequilibrium [6]. These systems
undergo evolution based on rules that defy detailed balance,
and their distinctive characteristic is the presence of a nonzero
current in a steady state. A significant challenge with such
systems is that, despite showcasing complex behaviors like
phase transition and phase separation, all these characteristics
are defined by a time-independent state referred to as nonequi-
librium steady states (NESS) [7,8].

A mathematically tractable model that provides a frame-
work in which issues of NESS are well-posed and cap-
tured is the totally asymmetric simple exclusion process
(TASEP) [4,9–12]. It captures the essence of many parti-
cle nonequilibrium systems interacting with each other on a
one-dimensional lattice with the help of random walkers that
can hop unidirectionally and follow the hard-core exclusion
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principle. From an analytical point of view, the exact solv-
ability of TASEP serves as an archetype for the studies of
systems where underlying physical principles involve NESS
[13–19]. The dynamics of the model in NESS are crucially
sensitive to the boundary conditions and develop a complex
phase diagram controlled by the system’s interactions with its
environment. For a system with periodic boundary conditions,
the stationary state is trivial, with all configurations having
equal probability (i.e., a flat distribution) [9]. In contrast,
the open boundary conditions produce distinct phases includ-
ing an entry-dominated (or low-density), an exit-dominated
(or high-density), a maximal-current phase as well as ex-
hibits a delocalized shock on the transition line between the
low-density and high-density phases. Moreover, it captures
richer phenomena such as boundary-induced phase transitions
[20–22], etc. In open systems, the entry and exit rates are con-
trolled by considering the particle reservoirs having constant
densities at the left and right boundaries [7].

TASEP being a minimal model to study stochastic trans-
port has been extended to incorporate realistic features among
various transport systems [23–26]. One such generalization
is the TASEP with Langmuir kinetics (TASEP-LK) where
particles can attach to or detach from the one-dimensional
lattice [27]. It integrates the equilibrium process namely Lang-
muir kinetics (LK) dynamics represents the attachment and
detachment of particles on a lattice with the nonequilibrium
process TASEP. This model comprehends various complex
features at a stationary state such as a rich phase diagram, with
high and low-density phases, two and three-phase coexistence
regions, a boundary-independent Meissner phase, and a lo-
calized domain wall leading to a low-high coexistence phase
[28–30].
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To model the observables in various real-life dynamical
systems that are interrupted and resumed from a certain point
in the phase space, the diffusion process in the conventional
TASEP is accompanied by a nonequilibrium process called
stochastic resetting. For example, resetting the Brownian par-
ticle to its initial position with some fixed rate [31]. This
simple act of resetting leads to many nontrivial findings,
such as nontrivial stationary state, nonmonotonic mean first
passage time, etc. In recent times, the concept of stochas-
tic resetting dynamics has been applied to address several
microbiological issues such as the interplay of degradation
of random mRNA and ribosome loading of mRNA in the
translation process [32]. It has many further applications,
ranging from the search and optimization algorithms [33],
predator-prey system model [34], chemical reactions [35],
and biopolymerization [36], etc. Stochastic resetting occurs
in two ways either global or local. Much of the literature has
already been vigorously explored under the global aspect -
where resetting is either applied to a single degree of freedom
or it is simultaneously applied to multiple degrees of free-
dom [37–40]. Local resetting where particles can reset their
position independently of one another is more challenging
than the global resetting considered, where the whole system
is simultaneously reset to some reference state. The local
resetting was first introduced and investigated in a symmetric
simple exclusion process with periodic boundary conditions
[41,42]. The analysis was then extended to the TASEP with
periodic boundary conditions, showing that the intermediate
resetting regime arises for the resetting rate of the order in-
verse lattice length [41,42]. A similar situation is observed
in the TASEP-LK model, where the attachment-detachment
rates of particles are rescaled in the order of the inverse lattice
length to observe the competition between boundary and bulk
dynamics. This highlights a crucial connection between the
resetting process and the LK dynamics, demonstrating how
the resetting process is a unique instance of the LK process in
which only the detachment process is present (from the bulk
of the system) [41,42].

Many TASEP models and their extensions are based on
the assumption that the system is connected to an infinite
reservoir [43], despite the fact that many physical systems
in nature, such as ribosomes in a cell for protein synthesis,
vehicles in the context of traffic, pedestrian traffic or filament
length kinetics, all these compete for resources in a pool of
limited availability [44–46]. To take into account the impact
of restricted availability of resources, studies have lately been
expanded by linking a finite reservoir (or pool) to the open
TASEP [47–52]. In contrast to the open TASEP connected
to an infinite reservoir, the particles remain conserved in the
system with a finite pool and the system exhibits a novel fea-
ture such as the transition line separating the low-density and
high-density phases is expanded to a region where a localized
domain wall is formed [53–55].

While much of the literature has focused on TASEP models
with stochastic resetting, either in open boundary conditions
or with periodic boundary conditions, most real-life systems,
as discussed above, only compete in a finite pool of resources.
Our interest here is to review work along this line of inves-
tigation by considering a TASEP with local resetting at the
injection node under the availability of limited resources. The

stationary state features will be studied theoretically using
mean-field approximations and validated using Monte Carlo
simulations. Our focus is to explore the consequences of the
interplay between local resetting and the filling factor in the
presence of finite resources and understand the stationary state
behavior of the TASEP-LR in the thermodynamic limit.

In a manner similar to the original TASEP model, which
serves as a model for simulating the movement of mRNA and
ribosomes during protein synthesis [56], or the TASEP-LK
model, which includes both attachment and detachment pro-
cesses, thought to be a fundamental illustration of molecular
motor dynamics on microtubules for intracellular transport
processes [30]. As a result, our LR-inclusive model might
be used as a mechanism for ribosome rescue and recycling
or to address premature translation termination brought on
by ribosome detachment prior to reaching the stop codon
(drop-off phenomenon) [57,58]. The resetting node represents
the mRNA site where ribosomes bind to start the translation.

II. MODEL DESCRIPTION

We consider a one-dimensional discrete lattice with L
sites in which particles diffuse on the lattice as well as lo-
cally reset following the Markovian stochastic rules, (see
Fig. 1). The lattice sites are labeled as i = 1, 2, . . . , L, where
i = 1(L) represents the entry(exit), and the remaining sites
(i = 2, . . . , L − 1) are referred to as the bulk of the lattice.
The open boundaries of the lattice are connected to a finite
reservoir of particles from which the particles enter the lattice
through the first site and rejoin the reservoir back through its
last site. The particles on the lattice hop uni-directionally from
left to right and the resetting phenomena of particles occur at
the entry site only. Each lattice site adheres to the hardcore
exclusion principle and follows the restriction that only one
particle can occupy a lattice site. The proposed model can also
be viewed as a periodic TASEP model having a special site
that violates the exclusion principle.

The following describes the particle dynamics and the cor-
responding rates that take place at the entry, bulk, and exit
lattice sites: If the entry site is occupied, then the particle hops
to the site on the right with a unit rate, provided it is vacant.
For an unoccupied entry site, a particle from the reservoir
enters the first site with a rate αeff. For an occupied bulk and
exit site, the particle initially tries to reset itself with a rate r
from this lattice site to the entry site, provided the entry site
is vacant. Otherwise, the bulk particle will attempt to hop to
its adjacent empty site on the right with a unit rate or if the
particle is at the last site, then it returns to the reservoir with a
rate β.

The proposed model is motivated by the dynamical aspects
of the so-called drop-off phenomenon, which is the premature
cessation of the translation process as a result of stalled ri-
bosomes along with their rescue and recycling [56–58]. But
from the theoretical point of view, our study is general and it
may serve as a basis for more detailed investigations along
the lines [57,59]. The model described in Fig. 1 can non-
trivially be linked to the TASEP-LK model for some entry
rate ˜αeff, exit rate β, attachment rate wA = 0 and detachment
rate wD = r(1 − ρ1). Furthermore, in the proposed model,
the reservoir can additionally be considered a unique lattice
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FIG. 1. Schematic diagram of the TASEP with local resetting at the entry site. The rate of each process is represented by a matching
symbol, and it is believed that lattice sites are arranged from left to right. If the arrival site is unoccupied, then the hopping process has a unit
rate; otherwise, it is prohibited (zero rate).

site connected to both ends of the lattice. Furthermore, the
relation αeff = αg(Nr ) is used to establish the effective entry
rate, or αeff, which is based on the number of particles in the
reservoir (Nr). The system dynamics and the inflow rate of
particles that is proportional to the number of particles in the
reservoir are determined by the choice of g [47]. As a result,
g can be thought of as a monotonically growing function,
defined as g(Nr ) = Nr

Ntot
where Ntot denotes the total number

of particles in the system (lattice and reservoir combined). To
investigate the impact of the total population of the particles
relative to the size L of the lattice on the system dynamics,
we utilize the notion of filling factor, which is defined as
μ = Ntot

L [48]. It describes the average number of particles
available for each lattice site and it lies in the range [0,∞).
The limiting situation, μ → ∞, corresponds to the case of an
infinite reservoir where the entry rate becomes a constant, i.e.,
αeff = α.

III. THEORETICAL ANALYSIS UNDER MEAN-FIELD
APPROXIMATION

Let τi be the binary random variable that specifies the
occupational number for the ith lattice site since the lattice
meets the exclusion requirement. The random variable τi takes
the value 0 or 1 depending on whether the site is occupied
or unoccupied. The following master equation describes the
evolution of the average site occupancy number in the bulk of
the lattice (2 � i � L − 1):

d〈τi〉
dt

= 〈τi−1(1 − τi )〉 − 〈τi(1 − τi+1)〉 − r〈(1 − τ1)τi〉. (1)

The first two terms in the above equation represent the gain
and loss current due to particle hopping whereas the third
term also represents a loss term due to the resetting process
of the particle in the bulk. The average site occupancy num-
ber changes at the lattice boundaries in accordance with the

following equations:

d〈τ1〉
dt

= αeff〈(1 − τ1)〉 − 〈τ1(1 − τ2)〉 + r

〈
(1 − τ1)

L∑
i=2

τi

〉
,

(2)

d〈τL〉
dt

= 〈τL−1(1 − τL )〉 − β〈τL〉 − r〈(1 − τ1)τL〉. (3)

Due to the existence of one- and two-point correlators, the
aforementioned system of equations cannot be directly solved.
Therefore, we utilize the mean-field approximation, which
ignores any potential correlations inherent in the aforemen-
tioned set of equations, i.e., 〈τiτ j〉 = 〈τi〉〈τ j〉.

Now, to understand the behavior in the bulk of the system
in its continuum limit (or thermodynamic limit), we coarse
grain the lattice by introducing a quasicontinuous position
variable x = i

L ∈ [0, 1], the lattice constant as ε = 1
L and a

rescaled time t ′ = t
L .

Replacing the binary discrete variable τi with a continu-
ous local average density at ith site as ρi = 〈τi〉 ∈ [0, 1] and
retaining the terms up to the first order of ε in the Taylor
series expansion of ρ(x ± ε) and substituting it in the density
evolution Eq. (1) for the bulk. Further, we drop the subscript i
due to the spatial homogeneity on the lattice to reform Eq. (1)
into

∂ρ

∂t ′ + ∂J

∂x
= −λρ, (4)

where λ = R(1 − ρ1), R = rL is the modified resetting rate
and J = (− ε

2
∂ρ

∂x + ρ(1 − ρ)
)

denotes the average particle cur-
rent in the bulk of the lattice for a finite ε, whereas in the
thermodynamic limit (ε → 0+), it becomes J = ρ(1 − ρ).
The following can explain the necessity of introducing a mod-
ified resetting rate: the struggle between bulk and boundary
dynamics in large systems will only be evident if particles
get enough time to spend on the lattice before resetting
themselves to the first site, therefore, a macroscopic resetting
rate R is introduced, which remains constant for L → ∞.
The macroscopic resetting rate R is a crucial variable whose
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behavior in the thermodynamic limit L → ∞ establishes the
importance of the resetting process in comparison to conven-
tional TASEP.

On similar grounds, the master equation for boundary con-
ditions is reformed into

dρ1

dt
= αeff(1 − ρ1) + r(1 − ρ1)

L∑
i=2

ρi − ρ1(1 − ρ2), (5)

dρL

dt
= ρL−1(1 − ρL ) − βρL − r(1 − ρ1)ρL. (6)

In the following, we shall drop the time index to focus on the
stationary state of the differential Eq. (4) and obtain

∂J

∂x
= −λρ. (7)

Integration of the above equation w.r.t. x yields

ρ(x) exp(−2ρ(x)) = ρ(x0) exp(−2ρ(x0) − λ(x − x0)), (8)

where x0 is some reference point that can assume the value
0 or 1 corresponding to the left and right boundary sites,
respectively. Equation (8) has an explicit solution for particle
density in terms of the Lambert-W function [60] given by

ρ(x) = − 1
2W (−2ρ(x0) exp(−2ρ(x0) − λ(x − x0)). (9)

The function W (x) is a multivalued function that has two
real branches W0(x) and W−1(x). The branch W0(x) is defined
for x � −1/e whereas W−1(x) is defined for −1/e � x � 0
and both the branches meet at x = −1/e. The branch W0(x)
(W−1(x)) is bound within the interval [−1,∞] ([−∞,−1])
and corresponds to the ρ(x) � 1/2 (ρ(x) � 1/2).

At stationary state, the density solution in an entry-
dominated low-density phase is obtained by matching the
boundary condition on the left end, i.e., ρ(x = 0) = ρ1 and
is written as

ρLD(x) = − 1
2W0(−2ρ1 exp(−2ρ1 − λx)), (10)

whereas the boundary condition on the right end, i.e., ρ(x =
1) = 1 − β is utilized to obtain the density solution in an exit-
dominated high-density phase and is given by

ρHD(x) = − 1
2W−1(−2(1 − β ) exp(−2(1 − β ) + λ(1 − x))).

(11)

Note that the density solution in the LD (HD) phase given by
Eq. (10) [Eq. (11)] clearly satisfies the left (right) boundary
condition as well as matches in the bulk. However, due to the
presence of boundary layers, these expressions do not satisfy
the right (left) boundary, respectively. The stationary state
density solution in the maximal current phase is specified by
the condition: ρ(x = 0) = 1

2 and is obtained as

ρMC(x) = − 1
2W0(− exp(−1 − λx)). (12)

Till now, we have discussed the density profiles in one of
the three following phases, namely, low-density (LD), high-
density (HD), and maximal-current (MC) phases. Further,
there may be the possibility of having the bulk density as
the combination of the above-mentioned phases which can be
obtained utilizing the current continuity principle and depend-
ing on how the combination of the above-obtained solutions
is matched [30]. Taking into account the nature of phases,

there are a total of twelve possible combinations of coexisting
phases. However, the current-continuity principle restricts to
only two possible coexisting phases: an LD-HD phase and an
MC-HD phase both representing a localized shock in the lat-
tice. Now, we analyze the aforementioned phases theoretically
to obtain the density profiles and the existence conditions.

The density profile exhibiting the coexistence of the LD
and HD phase is given by:

ρLD-HD(x) =
{

ρLD(x); 0 � x � xw,

ρHD(x); xw � x � 1,
(13)

whereas the density profile representing the coexistence of the
MC and HD phase is given by

ρMC-HD(x) =
{

ρMC(x); 0 � x � xw,

ρHD(x); xw � x � 1.
(14)

Here, the xw corresponds to the position of the shock in the
coexistence phases LD-HD phase and MC-HD phase. It can
be obtained utilizing the fact that in both cases the density
jumps from ρ(xw ) < 1/2 to 1 − ρ(xw ) > 1/2 maintaining
the current continuity. Hence, the domain-wall position xw

along with the density ρ(xw ) can be obtained from conditions
limx→x−

w
ρ(x) = ρ(xw ) and limx→x+

w
ρ(x) = 1 − ρ(xw ), which

together can be reformed into the relation given as

W0(−2ρ1 exp(−2ρ1 − λxw )) − W−1(−2(1 − β )

× exp(−2(1 − β ) + λ(1 − xw ))) = 2, (15)

where the numerical value of ρ1 clearly depends on the choice
of the coexisting phase. The expression for the height of the
shock is given as

	 = ρHD(xw ) − ρLD(xw ). (16)

The following set of equations is utilized to determine ρ1 in
each stationary phase:

ρ(0) exp(−2ρ(0)) = ρ(1) exp(−2ρ(1) − 1) (17)

and

αeff(1 − ρ1) = ρ(1)(1 − ρ(1)). (18)

Equation (17) is a direct implication from Eq. (8), whereas
Eq. (18) follows from the current-continuity principle. Table I
lists the phase boundaries computed using the extremal cur-
rent principle as well as the boundary densities [10,61]. The
upcoming section will explore the steady-state features like
density profiles and phase diagrams of the lattice.

IV. EXISTENCE OF STATIONARY PHASES AND PHASE
BOUNDARIES UNDER THE COMPETITION OF FINITE

RESOURCES

The assumption of finite resources in the reservoir only
affects the entry rate of particles, whereas the exit rate of
particles is independent of Nr. It is assumed that the free
particles in the reservoir are homogeneously distributed and
not correlated within the reservoir. To determine the modified
entry rate (αeff), the conservation of the number of particles in
the system is utilized, which in its continuum form states that
Ntot= Nr + L

∫ 1
0 ρ(x) dx. Since the dynamics pertaining to
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TABLE I. Expressions for the existence conditions of the density phases in the lattice with finite resources through mean-field theory.

Density Phase Phase Region

LD αeff < −W0

(− exp
(−(

1 + R
2

)))(
1 + 1

2W0

(− exp
(−(

1 + R
2

))))
, αeff <

β(1−β )
1− 1

(R−2) W0 ((R−2)β exp(R−2β ))
.

HD αeff >
β(1−β )

− 1
(R+2) W−1((−R−2)(1−β ) exp(2β−2))

, αeff >
β(1−β )

− 1
R (1−2β−ln(2−2β ))

.

MC αeff > −W0

( − exp
(−(

1 + R
2

)))(
1 + 1

2W0

(− exp
(−(

1 + R
2

))))
, αeff <

β(1−β )
1
R (2β−1−ln(2β ))

.

LD-HD αeff >
β(1−β )

1− 1
(R−2) W0 ((R−2)β exp(R−2β ))

, αeff <
β(1−β )

− 1
(R+2) W−1((−R−2)(1−β ) exp(2β−2))

.

MC-HD αeff <
β(1−β )

− 1
R (1−2β−ln(2−2β ))

, αeff >
β(1−β )

1
R (2β−1−ln(2β ))

.

the reservoir significantly affect the system, we define ρr = Nr
L

to be the density of the reservoir and utilize particle number
conservation to retrieve the following relationship:

μ = ρr +
∫ 1

0
ρ. (19)

Considering the fact that the lattice can accommodate a max-
imum of L particles, the standard open-TASEP with local
resetting (corresponding to infinite particles) is approached
when Ntot � L. The interplay of the finite reservoir and re-
setting comes into play when the total number of particles in
the system is of the order of Ntot ∼ L or smaller [52]. So far,
we have deduced that there are five possible stationary phases
that can exist in the phase diagram. Now, we utilize Eq. (19)
with the results obtained in the previous section to derive the
condition for the existence of the above-discussed stationary
state phases in the presence of finite resources. Clearly, the
explicit form of existence conditions is difficult to obtain for
all the phases but the following implicit relation is ensured for
the existence of a stationary phase:

ρr = μ −
∫ 1

0
ρ(x)dx, (20)

where ρ(x) denotes the density profile to the corresponding
stationary phase. In the next section, we will utilize the nu-
merical methods to solve Eq. (4) along with Eqs. (5) and (6).

V. SIMULATIONS

In the previous section, we obtained the density profile and
condition for the existence of phases in the implicit form using
the Lambert-W function. In this section, first, we would like
to provide a numerical scheme that can be used to solve the
system of coarse-grained differential Eqs. (4), (5), and (6).
Moreover, this scheme can also be utilized for the extended
or generalized version of the proposed model. The differ-
ential equations (or continuum master equations) for which
the numerical scheme is adopted are derived using the mean-
field approximations; hence, we also utilize the Monte Carlo
simulations to validate these approximations and compute the
steady-state density profiles and the average current.

A. Direct simulation

We have obtained a generalized analytical formulation of
the density profile at the stationary state [Eq. (9)]. Now, we
provide an alternative method to obtain the numerical solution

to the second-order continuum mean-field equation [Eq. (4)].
An important aspect of providing the numerical scheme is that
the computation of the stationary state reservoir density ρR

utilizing the system of Eqs. (20) and (2) make the problem
complex as Eq. (2) itself is dependent on the local densities of
all other sites. The time derivative is retained in the system and
the density solutions at a steady state are procured in the limit
t → ∞. In this numerical solution, the geometric domain is
discretized into grid points of the form (i
x, n
t ′), where

x = 1/L and 
t ′ are the grid spacing corresponding to the
spatial and temporal variables, respectively. Assuming ρn

i as
the numerical approximation of the particle density at each
grid point, we utilize the forward-in-time and central-in-space
(FTCS) scheme to obtain the finite-difference equation corre-
sponding to differential Eq. (4) as

ρn+1
i = ρn

i + 
t ′
(

ε

2

(
ρn

i+1 − 2ρn
i + ρn

i−1


x2

)

+
(

ρn
i+1 − ρn

i−1

2
x

)
(2ρn

i − 1) − R(1 − ρ1)ρn
i

)
. (21)

Analogously, Eqs. (2) and (3) are utilized to obtain the
finite-difference equations at the left and right boundary, re-
spectively, as

ρn+1
1 = ρn

1 + L
t
′
((

1−ρn
1

)(
α + r

L∑
i=2

ρn
i

)
− ρn

1

(
1−ρn

2

))
.

(22)

and

ρn+1
L = ρn

L + L
t
′(
ρn

L−1

(
1 − ρn

L

) − ρn
L

(
β + r

(
1 − ρn

1

)))
.

(23)

The above system of explicit finite difference scheme will be
stable against small amplitude perturbations for 
t ′/
x2 � 1.

B. Monte Carlo simulations

As the implicit density profile computed in Secs. III and IV,
and the density obtained via direct simulation utilizes mean-
field approximation. To validate them, we perform Monte
Carlo simulations using a Gillespie algorithm with a random
sequential update rule [62]. Each step of the algorithm con-
sists of choosing an event in accordance with the dynamical
rules as defined in Sec. II. An event (a particle attempts to
hop or resets to the first site) is selected with a probability
proportional to the rates. Accordingly, the time increments
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FIG. 2. Stationary state phase diagrams for μ = 0.1 and different values of R. The markers are results from Monte Carlo simulations
(MCS) and the solid lines are results from a continuum mean-field (CMF) approximation. The transition from LD to the LD-HD phase is
discontinuous, resulting in a first-order transition. The transition from LD to the MC phase displays a continuous transition and hence is a
second-order phase transition.

are chosen from exponentially distributed random numbers.
The lattice length is taken to be L = 500 and the simulations
are run for 108 time steps. To facilitate the onset of a steady
state, we ignore the first 5% of time steps and the average
particle density is calculated for an interval of 10L. The results
wherever obtained from Monte Carlo simulations are denoted
by markers.

VI. RESULTS AND DISCUSSION

In the following section, we investigate the influence of
the filling factor and the resetting rate on the phase diagrams
which will further be utilized to scrutinize their impact on the
stationary properties of the system.

A. Phase diagram: Role of filling factor and resetting rate

We derive the phase diagrams in the α-β ∈ [0, 1] × [0, 1]
parameter space using the results discussed in the previous
sections to study the role of the total number of particles and
the macroscopic resetting rate on the stationary properties
of the system. The resetting dynamics in the bulk and the
boundary-induced nonequilibrium dynamics mutually interact
and, eventually, produce collective effects if the particles stay
long enough on the lattice before resetting to the first site.
Hence, it is expected that R plays a crucial role in the topology
of the phase diagram. However, the filling factor μ represents
the average number of particles available for each lattice site,
and due to the global constraint on the number of particles
imposed by μ, it is expected that μ will also significantly
affect the composition of the phase diagram. As a result, we
chose to construct the phase diagrams for different values of μ

and R. The phase diagrams are constructed corresponding to
those values of R, which shows a reasonable amount of change
in the topology of the phase diagrams.

For a smaller value of μ, i.e., μ = 0.1, Fig. 2(a) illustrates
the phase diagram for a smaller value of R consisting of two
distinct phases, the LD and LD-HD phases. The LD phase
dominates the phase plane, and an LD-HD phase only appears
for the smaller values of β. This can be explained as follows:
the system’s scarcity of particles leads to a reduced effective
entry rate. As a result, the phase plane mostly exhibits an LD
phase. But for smaller values of β, the exit of the particle is

hindered, causing a boundary layer that enters the lattice in
the form of a stationary shock. It is also evident that as the
value of R increases in the range (0,5), it causes the boundary
layer to exit the bulk of the lattice. This, in turn, leads to a
shrinkage in the LD-HD phase and an expansion in the LD
phase. For R = 5, the LD-HD phase completely vanishes and
the LD phase covers the whole space in the phase diagram.
For R > 5, the resetting phenomena cause the MC phase to
begin appearing in the phase diagram. These findings are in
contrast with the conventional TASEP (without resetting) in
the presence of finite resources. The further increase in the
value of R observes no significant topological changes in the
phase plane except for the shift in the phase boundary due
to the expansion of the MC phase and the shrinkage of the
LD phase. For larger values of R, the phase plane is mostly
dominated by the MC phase.

For a relatively larger value of μ, i.e., μ = 0.3, the phase
diagram for R ∈ [0, 1] behaves similarly corresponding to the
smaller value of μ as shown in Fig. 3(a). As R increases from
1, two more phases, namely MC and MC-HD, also join the
phase diagram for larger values of α; see Fig. 3(b). Contrary to
the case R ∈ [0, 1], the LD phase shrinks for R > 1, whereas
the MC phase and MC-HD phase expand; see Fig. 3(c). As
R increases, the MC phase continues to expand, whereas the
rest of the three phases (the LD phase, LD-HD phase, and
MC-HD phase) shrink, and finally, for R = 5, the LD-HD
phase completely vanishes from the phase diagram leaving
behind four stationary phases: LD, MC, and MC-HD phases.
The further increase in the value of R causes further expansion
of the MC phase, whereas both the LD phase and the MC-HD
phase continue to shrink. Moreover, in contrast to the phase
diagram of TASEP-LR corresponding to infinite resources
[63], we also observe a transition in the stationary phase from
the LD-HD phase to the LD phase and further to the MC phase
in the phase diagram corresponding to μ = 0.3 and R = 1.5;
see Fig. 6(a).

When the total number of particles in the system is the
same as the number of lattice sites is considered, i.e., μ = 1,
the phase diagram for a smaller value of R becomes much
richer as compared to the case μ < 1. Here, the MC phase
appears for much smaller values of R in contrast to the case
μ < 1. Moreover, a new stationary phase, namely, the HD
phase also appears in the phase diagram for a very smaller
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FIG. 3. Stationary state phase diagrams for μ = 0.3 and different values of R. The markers are results from Monte Carlo simulations
(MCS) and the solid lines are results from a continuum mean-field (CMF) approximation. The transition from MC to the MC-HD phase is
discontinuous, whereas in panel (c), the transition from LD-HD to the MC-HD phase displays a continuous transition.

value of R which was not observed earlier (μ < 1) for any
value of R; see Fig. 4(a). Increasing the value of R to 0.25
leads to the formation of an additional phase, MC-HD phase
and as a result, the phase diagram exhibits all possible five
stationary phases as shown in Fig. 4(b). The subsequent rise
in the value of R up to 1 causes contraction in the LD phase,
LD-HD phase, and HD phase, whereas the MC phase and
the MC-HD phase expand; see Fig. 4(c). For larger values
of R, the LD-HD phase vanishes completely and the MC
phase continues to expand whereas now MC-HD phase also
contracts along with the LD and HD phases; see Fig. 4(d).
Finally, we discuss the impact of the resetting rate for the
larger value of μ. For the sake of simplicity, we assumed
μ = 10 and observed that now even for a very small R,
the phase diagram consists of all possible five stationary
phases; see Fig. 5(a). The effect of increasing R remains the
same as discussed for previous cases; see Figs. 5(b), 5(c),
and 5(d).

As a result, after carefully examining the phase diagrams
for different values of μ and R, we discuss the stationary
state features in both the small and large resetting scenarios.
In the small resetting regime, the resetting rate r vanishes
faster than 1/L, which makes it simple to verify that the
stationary state phase diagram trivially reduces to that of a
conventional TASEP with finite resources. In the latter case
(large resetting regime), the resetting dominates over the in-
jection, extraction as well as hopping process, and the phase
diagram is mostly occupied by the MC phase. To validate
this, Fig. 6(b) illustrates a density profile in the large reset-
ting regime corresponding to a specific parameter choice. It

exhibits both finite-difference and Monte Carlo results of a
stationary density profile for increasingly large and finite-size
L which is characterized by ρ1 → 1 and ρL → 0. The nu-
merical inspection suggests that the bulk density profile for
L → ∞ is similar to the MC phase. To support this statement,
the analytically obtained stationary density profile for the MC
phase in Eq. (12) is written as a function of a scaled position
variable ξ = λi/L. Hence, Fig. 6(b) clearly shows that the
analytically obtained expression for the MC phase profile
matches with the Monte Carlo results.

B. Influence of R and μ on stationary state density and current

In this section, we will scrutinize the impact of the resetting
rate and filling factor on the stationary state density profiles
and the current in the system. Initially, for a fixed choice of
μ, we examine the significance of the resetting rate on the
density, followed by an analysis of the exit, entry, and bulk
current in the system, as shown in Fig. 7(a). The top and the
bottom panels in Fig. 7(a) illustrates the density profile and
the current across the lattice, respectively, for a fixed μ and
varying R. With an increase in R, the left end density of the
lattice increases while the right end density decreases. This
can also be explained as follows: when the reset rate is high,
the particles at the bulk or the exit site detach easily and attach
to the first site leading to an increase in the density at the entry.
The bulk density profile exhibits a nonmonotonic behavior
with respect to R. The density in the left part of the lattice
increases, while the density in the right part decreases. From
the bottom panel, it is evident that an increase in the resetting

FIG. 4. Stationary state phase diagrams for μ = 1 and different values of R. The markers are results from Monte Carlo simulations (MCS)
and the solid lines are results from a continuum mean-field (CMF) approximation. The transition from LD-HD as well as the MC-HD phase
to the HD phase is discontinuous.
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FIG. 5. Stationary state phase diagrams for μ = 10 and different value of R. The markers are results from Monte Carlo simulations (MCS)
and the solid lines are results from continuum mean-field (CMF) approximation.

FIG. 6. (a) Transition of the stationary state density profile from the LD-HD phase to the LD phase and thereafter to the MC phase for
μ = 0.3, R = 1.5. The black dotted line is marked to show ρ = 0.5. (b) Stationary density profile as a function of the scaled position variable
ξ ≡ λi/L, in the large resetting regime: r = R/L = 0.1 and μ = 1. The solid lines denote the mean-field continuum profile and the markers
denote Monte Carlo results.

FIG. 7. Stationary state density and current displaying (a) the effect of R and (b) the effect of μ. The markers represent outcomes obtained
through Monte Carlo simulations (MCS), while the solid lines depict results derived from the continuum mean-field (CMF) approximation.
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rate results in a decrease in the exit current, whereas the
entry current increases. Conversely, the bulk current increases
in the left segment of the lattice and decreases in the right
segment with an increase in the resetting rate. The resetting
rate induces similar effect on both the stationary state density
and current due to a relationship between them.

Subsequently, we explore the effect of the filling factor for
a fixed choice of the resetting rate on the density as well as
current, as illustrated in Fig. 7(b). The effect of μ is shown
on the density profile and the lattice current, respectively, in
the top and bottom panels of Fig. 7(b). Unlike the previous
case, it is evident from the top panel that as μ increases, the
density increases uniformly throughout the lattice. This can
be argued as: with the increase in the filling factor, there is
an increase in the average number of particles available for
each site resulting in a uniform increase in the density of the
lattice. It is also evident from the top panel of Fig. 7(b) that
the increase in the average densities is reasonable when μ

increases from 0 to 1. For further increase in the μ, the suffi-
cient particles enter the lattice resulting in the saturation of the
density profile. Finally, it converges to the one corresponding
to the resetting model for infinite resources as μ → ∞ [63].
The bottom panel reveals that all entry, bulk, and exit currents
increase relative to the filling factor which is in accordance
with the correlation between the current in the system and its
densities.

C. Comparison of the proposed model with TASEP-LK
detachment only

Due to the local resetting of particles from all the bulk sites
to the entry site, the proposed model can be thought of as a
special TASEP-LK model with detachment-only [57]. Now,
we will swiftly discuss this connection. For low values of
the detachment rate, the phase diagram in the Ref. [57] also
contains the same set of five stationary phases as we observed
in the proposed model: LD, HD, MC, LD-HD, and MC-HD.
As the detachment rate increases, there is a loss of particles
from the bulk of the lattice leading to the expansion of the LD
and MC phase and the HD phase shrinks whereas the LD-HD
phase and the MC-HD phase expand initially. As the detach-
ment rate is increased to a certain threshold value, the phase
diagram in Ref. [57] stops exhibiting the HD phase whereas
the LD-HD phase and MC-HD phase begin to contract beyond
this value while the LD and the MC continue to expand. Last,
for large values of the detachment rate, the phase diagram
becomes equally occupied by both LD and MC phases about
the transition line at α = 1/2.

In contrast, Fig. 5 of the proposed model for larger val-
ues of μ illustrates that the region containing LD-HD phase
shrinks from the beginning itself along with the HD phase
whereas only the MC-HD phase expands together with the
growth of the MC phase as the resetting rate increases. It
appears that the HD phase occurs for even high values of
the resetting rate, in contrast to the scenario in Ref. [57],
albeit existing in a relatively tiny region. Additionally, for
large values of the resetting rate, the particles free themselves
from the bulk of the lattice to re-enter the lattice and making
the effective entry rate larger. Therefore, only the MC phase
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FIG. 8. Fixed-point diagram.

dominates the phase diagram in the resetting model, however,
the rest of the phases shrink.

D. Shock dynamics and finite-size effect

Now, we discuss the features of the localized shock that
appear either in the LD-HD phase or MC-HD phase where the
position of the shock does not vary stochastically with respect
to time. The stationary density profiles for the LD-HD (MC-
HD) shock exhibit a low-density (maximal-current) profile on
the left and a high-density profile on the right, separated by
a domain wall or shock. Both these shocks are categorized as
upward shocks since the density profile on the left end of the
domain wall connects to a high density on the right end. Note
that our system cannot possess any downward shock, which
can be justified by utilizing fixed point theory [64]. Assuming
the nonconserving terms to be zero, the integration of Eq. (4)
gives

ε

2

∂ρ

∂x
− ρ(1 − ρ) = c, (24)

where c is the integration constant. Figure 8 illustrates the
two-dimensional fixed-point diagram in the c-ρ plane that
is obtained from the fixed points of Eq. (24). It shows that
no point on the upper (unstable) branch of this curve can be
connected to a point in the lower (unstable) branch utilizing a
vertical line.

The implicit expression for the stationary state density
profile, the position and the height of the domain wall has been
obtained in Sec. III. Now, we study the impact of the resetting
rate on the shock profiles starting with the LD-HD profile.
Figure 9(a) shows that both the height and the position of the
LD-HD shock profile change with respect to the resetting rate.
The top panel of Fig. 9(b) shows the nonmonotonic behavior
of the height of the LD-HD shock with respect to the resetting
rate. The shock height initially decreases up to some critical
value of the resetting rate and increases afterward. However,
the position of the LD-HD shock monotonically increases
with the resetting rate [see bottom panel of Fig. 9(b)]. Initially,
the position of the domain wall increases linearly with R and
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FIG. 9. Effect of R on the (a) LD-HD shock profile and (b) its height and position for μ = 1 and α = 0.2, β = 0.1.

saturates to 1 as the shock exits from the right end of the
lattice. This finding can be validated by the phase diagram,
where the transition of the LD-HD phase to the LD phase
occurs with an increase in the resetting rate. The effect on the
shock in the MC-HD phase with respect to the resetting rate
is illustrated in Fig. 10(a). Clearly, both the height and the
position of the shock change with respect to R. In the MC-HD
phase, the position as well as the height of the shock show a
monotonic increasing behavior with R before saturating, see
Fig. 10(b).

Last, we examine the finite-size effect on the shock pro-
files. We have plotted the density profiles for a point in the
LD-HD region as well as the MC-HD region with μ = 1 and
for different values of L (see Fig. 11). As expected, the shock
profile is primarily sharpened by an increase in the value of L,
proving that no finite-size effect occurs in our system.

VII. CONCLUSION

Motivated by the biological process of mRNA translation
where the resetting dynamics models the observed stochastic
decay of mRNA-ribosome machinery, involve lanes whose
dynamics depend on competition for a pool of limited par-
ticles. Hence, we made an effort to extensively investigate
the characteristics of a single-channel TASEP with stochas-
tic local resetting in a resource-constrained environment. To
study the stationary state of a TASEP-LR where local re-
setting occurs at the entry node, we used the mean-field
approximation to solve the master equations in the continuum
limit and determine the explicit expression of the density
profiles in terms of a Lambert-W function. The existence
region of the stationary phases is obtained numerically using
finite difference schemes. All these steady-state characteris-
tics such as phase diagrams, and particle density accord very
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FIG. 10. Effect of R on the (a) MC-HD shock profile and (b) its height and position for μ = 1 and α = 0.9, β = 0.2.
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FIG. 11. Finite-size effect on (a) the LD-HD density profile as well as (b) the MC-HD density profile for μ = 1 and R = 0.25.

well with the Monte Carlo simulations in the thermodynamic
limit.

The total number of particles remains constant in the
system and is characterized by the filling factor. Another
important factor is the macroscopic resetting rate, whose be-
havior in the thermodynamic limit L → ∞ establishes the
significance of the resetting process. While the filling factor
intends to investigate the influence of the total number of
particles on the system dynamics. We scrutinized the sta-
tionary properties of the system for different choices of the
filling factor while scaling the resetting rate simultaneously.
The phase diagram has the possibility of the following five
stationary phases: the LD phase, the MC phase, the HD
phase, the LD-HD phase, and the MC-HD phase depending
upon the choice of the filling factor and resetting rate. In the
large resetting regime, the phase diagram becomes completely
dominated by the MC phase irrespective of the choice of the
filling factor. In contrast to the standard TASEP with finite
resources, the proposed model for smaller values of the filling
factor possesses an MC phase whereas the LD-HD phase van-
ishes completely in the intermediate as well as large resetting
regime. However, as soon as the resetting rate vanishes, the
phase diagram of the proposed model behaves likewise to
the standard TASEP with finite resources. In contrast to the
resetting model corresponding to infinite resources [63], we
observe two new phase transitions which arguably induce a

change in the topology of the phase diagram. The first phase
transition has been observed for a smaller value of the filling
factor and an intermediate choice of the resetting rate. It oc-
curs in the following manner: LD-HD → LD → MC phase
whereas the second phase transition is observed when the
system has a number of particles equivalent to the lattice size
with an intermediate resetting rate, it takes place as follows:
HD → LD-HD → MC-HD → MC phase. We also established
a relationship with the TASEP-LK detachment-only model,
where the stationary properties of both models have been
compared. Lastly, we investigated the role of the resetting rate
on the shock dynamics and examined the finite-size effect on
their stationary state properties.

Now, we conclude the proposed theoretical work with its
potential applications in the microscopic realm of biological
systems where the conventional TASEP describes the ribo-
some dynamics. While the model is generic in nature, it holds
versatile potential for applications in situations involving the
attachment or detachment of particles. For instance, it has the
capability to simulate the dynamic facets of phenomena such
as the drop-off phenomenon. This refers to the premature halt
of the translation process caused by stalled ribosomes, en-
compassing their subsequent rescue and recycling processes
[30,57,58]. The work can be extended to incorporate more
realistic features related to diverse physical and biological
systems.
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