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Thermodynamics of hybrid quantum rotor devices
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We investigate the thermodynamics of a hybrid quantum device consisting of two qubits collectively inter-
acting with a quantum rotor and coupled dissipatively to two equilibrium reservoirs at different temperatures.
By modeling the dynamics and the resulting steady state of the system using a collision model, we identify the
functioning of the device as a thermal engine, a refrigerator, or an accelerator. In addition, we also look into
the device’s capacity to operate as a heat rectifier and optimize both the rectification coefficient and the heat
flow simultaneously. Drawing an analogy to heat rectification and since we are interested in the conversion of
energy into the rotor’s kinetic energy, we introduce the concept of angular momentum rectification, which may
be employed to control work extraction through an external load.
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I. INTRODUCTION

The exploration of quantum thermal machines is crucial
in comprehending the intricacies of energy exchange on a
quantum level, as evidenced by extensive research [1–4]. In
particular, one would like to determine the role of genuine
quantum effects, such as quantum coherence and entangle-
ment, on the laws of thermodynamics [2,5]. One of the main
features of quantum thermal machines is their ability to out-
perform their classical counterparts [6–8], which can lead to
a new generation of highly performing and energy-efficient
thermal devices for novel quantum technologies applications.

Autonomous thermal machines [9–13] offer a remarkable
opportunity to study these quantum effects since they are
known for featuring the lowest level of control and ener-
getic cost [14], unlike reciprocating engines that operate in
a cycle which consists of discrete strokes, for example, the
four stroke engines that are employed in the Otto and Carnot
cycles [15]. There are several models of autonomous thermal
machines that utilize various quantum systems. For instance,
a recent implementation of an autonomous quantum absorp-
tion refrigerator involved trapped ions [16], and proposals
for implementation exist in other platforms like circuit-QED
architecture [17] and quantum dots [18,19].

One of the main open problems in the area of quantum
thermal machines is how to convert the work generated by
the machine into mechanical motion. One promising avenue
consists of attaching a quantum rotor to the engine. The work
thus converted into motion can then be extracted by means of
a dissipative load [20–24] or the rotor may act as a quantum
flywheel, storing energy for later use [25–29].
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In this paper we look at a hybrid system consisting of
two qubits and a rotor (see Fig. 1). The system is coupled to
two equilibrium baths at different temperatures through each
qubit. We assume a dissipative load is coupled to the rotor,
enabling us to extract work from the setup as well as bring the
system to a steady state in which the rotor acquires a terminal
angular momentum.

In the first version of the model [Fig. 1(a)], the environ-
ments are modeled using the so-called collision models or
repeated interactions models [30–32], which have recently
been implemented experimentally [33–37]. In the limit of a
short collision time, the evolution of the system is described
by a local master equation (LME) whose thermodynamics is
well understood and does not lead to any inconsistency [38].
Within this framework, we find the conditions required for the
device to operate as an engine, refrigerator, and accelerator.

In the second version of the model, we also investigate the
device’s potential to act as a heat rectifier, which would result
in a nonsymmetrical heat flow. To this end [see Fig. 1(b)],
the environment, made of an infinite number of quantum
harmonic oscillators, is permanently coupled to the system.
In this framework, the system dynamics is well described by
a global master equation (GME) [39,40]. We evaluate and op-
timize the performance of the device in this capacity together
with the maximum amount of heat flow. Note that, in contrast
to Ref. [20], the presence of two qubits with different energy
separations is crucial to achieve heat rectification.

Additionally, motivated by the conversion of heat into
mechanical motion, we introduce the concept of angular mo-
mentum rectification. This phenomenon is observed when
swapping the temperatures of the external baths, resulting in a
significant change in the rotor’s motional response. Similar to
heat rectification, we evaluate this feature and demonstrate the
device’s employability as a switch when coupling a load to the
rotor, allowing for control of its motion. Overall, our findings
showcase the versatility of this hybrid quantum device and
its potential to perform a range of useful functions, which
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FIG. 1. Schematic representation of the two qubit-one rotor sys-
tem. The three subsystems are all coupled to each other with a
coupling strength λ as described by Eq. (3). (a) Collision model. A
series of quantum harmonic oscillators initially in thermal equilib-
rium at inverse temperature β1 (β2) interact sequentially with qubit
1 (2), β2 < β1. (b) Spin-boson model. Qubit 1 (2) is permanently
coupled to an equilibrium bath at inverse temperature β1 (β2).

could have significant implications for the experimental devel-
opment of advanced quantum technologies (see, for instance,
Refs. [41–43]).

In Sec. II we start with a description of the proposed
model before deriving the corresponding master equations to
describe the open dynamics of the system. We discuss several
measures of work for the rotor in Sec. III A and possible
thermodynamic operations that the system may perform in
Sec. III B. The definitions of the rectification parameter and
rectification performance measure for both heat flow and
angular momentum are given in Sec. III C. The results of
our calculations are displayed in Sec. IV. We summarize in
Sec. V.

II. MODEL

Our system consists of two qubits interacting with a rotor
such that the system’s Hamiltonian is (h̄ = 1)

HS = HS,0 + HS,I , (1)

where the first term is composed of the free Hamiltonian of
the two qubits and the kinetic energy of the rotor

HS,0 = B1σ
z
1 + B2σ

z
2 + L2

z

2I
, (2)

with Lz and I the rotor’s angular momentum projection along
z and moment of inertia, respectively. The operators σ x

i , σ
y
i ,

and σ z
i are the Pauli operators for the qubits, while Bi are the

applied magnetic fields, with i = 1, 2. The collective three-
way interaction depicted in Fig. 1 is described by the so-called
quantum mill Hamiltonian [21,44]

HS,I = λ(σ+
1 σ−

2 eiϕ + σ−
1 σ+

2 e−iϕ ), (3)

where σ±
i = (σ x

i + iσ y
i )/2 are ladder operators and ϕ is

the angle operator canonically conjugated to Lz, i.e.,

[eiϕ, Lz] = −eiϕ [20]. The three-body Hamiltonian HS,I allows
energy transfer from one qubit to another concurrently with
the rotation of the rotor. Three-body interactions have been
proposed and experimentally realized in different quantum
platforms, including ultracold atoms, trapped ions, Ryd-
berg ions, and superconducting circuits [29,45–49]. Though
three-body interactions are not necessary to realize thermal
machines [50], they often lead to more powerful and efficient
machines [10].

Qubit 1 is coupled to a cold bath at inverse temperature β1

and qubit 2 is coupled to a hot bath at inverse temperature β2,
with β2 < β1. The rotor is coupled to a dissipative load that
allows it to reach a stationary rotation rate without accelerat-
ing indefinitely. In the weak system-bath coupling regime, we
assume the reduced dynamics of the system to be governed by
a Lindblad-Markovian master equation

ρ̇S = −i[HS, ρS] + L1[ρS] + L2[ρS] + Lr[ρS], (4)

where Li, i = 1, 2, r, are the Lindblad superoperators associ-
ated with the interaction of the system with the cold bath, the
hot bath, and the dissipative load of the rotor, respectively.

In the rest of the paper, we consider two models (see
Fig. 1). In the first model [collision model, Fig. 1(a)], the
environment is modeled as a series of quantum harmonic
oscillators sequentially interacting with the system. The re-
sulting dynamics in the limit of short collisions leads to an
LME. In the second model [spin-boson model, Fig. 1(b)],
each qubit is permanently coupled to an infinite ensemble
of quantum harmonic oscillators in thermal equilibrium. The
resulting dynamics leads to a GME.

A. Collision model

In this section we introduce the first model, depicted in
Fig. 1(a), in which each qubit is coupled to its environment
through repeated interactions. Each bath is modeled by an en-
semble of identical bosonic modes such that their Hamiltonian
is HB = HB,1 + HB,2, where

HB,i = 2Bi

∞∑
k=1

a†
i,kai,k . (5)

The index k labels the bath’s field modes, with ai,k (a†
i,k) their

annihilation (creation) operators, fulfilling the usual bosonic
commutation relations [ai,k, a†

i′,k′ ] = δii′δkk′ and [ai,k, ai′,k′ ] =
0. Each quantum harmonic oscillator interacts with the corre-
sponding qubit for a small time τ and then it is discarded. Each
oscillator in the cold (hot) bath is coupled to qubit 1 (2) with
a coupling strength g1 (g2) so that the system-bath interaction
Hamiltonian is given by

HI =
∑
i=1,2

∞∑
k=1

gi(σ
−
i a†

i,k + σ+
i ai,k ). (6)

Following the collision model approach, as in [30,31,38], we
define

H = HS + HB + 1√
τ

HI . (7)
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We prepare the baths in thermal states at inverse temperature
βi (i = 1, 2),

ρB,i = e−βiHB,i

Tr(e−βiHB,i )
, (8)

and we define ρB = ρB,1 ⊗ ρB,2.
A collision occurring at a time t can be described by a

unitary operator U = e−iHτ such that the state of the system
after the collision is expressed as

ρS (t + τ ) = TrB[UρS (t ) ⊗ ρBU†], (9)

where ρS (t ) is the state of the system before the interaction
with the thermal baths. Then we apply the Baker-Campbell-
Hausdorff formula

eiHτ Ae−iHτ = A + iτ [H, A] + (iτ )2

2!
[H, [H, A]] + · · ·

+ (iτ )n

n!
[H, . . . [H, [H, A]]] + · · · , (10)

which leads to the expansion of Eq. (9) in τ ,

ρS (t + τ ) = ρS (t ) − iτ TrB[H, ρS (t ) ⊗ ρB]

− τ

2
TrB[HI , [HI , ρS (t ) ⊗ ρB]] + O(τ 2). (11)

By dividing both sides by τ and taking the limit of τ → 0, we
find the time derivative

ρ̇S = lim
τ→0

ρS (t + τ ) − ρS (t )

τ
, (12)

which fulfills the LME (dropping the explicit time dependence
of ρS)

ρ̇S = −i[HS, ρS] +
∑

i=1,2,r

L(loc)
i [ρS]. (13)

The local thermal Lindblad superoperators acting on qubits
i = 1, 2 are given by

L(loc)
i [ρS] = g2

i {niD[σ+
i ] + (ni + 1)D[σ−

i ]}, (14)

where D[O] = OρSO† − 1
2 {O†O, ρS} represent the usual

Lindblad dissipators [51]. For later convenience, we define the
coupling constants between the system and each bath as

g1 = g(1 − χ ),

g2 = g(1 + χ ), (15)

so that varying −1 < χ < 1 allows us to study the effect of
the difference in coupling strength of the cold and hot baths.
The thermal occupations ni are related to the baths’ inverse
temperatures by

ni = (e2βiBi − 1)−1. (16)

Employing a similar treatment for the rotor, the action
of the dissipative load corresponds to the Lindblad term Lr

[21,52],

L(loc)
r [ρS] = 2Iγ

βr

[
D

(
cos ϕ − iβr sin ϕLz

4I

)

+ D
(

sin ϕ + iβr cos ϕLz

4I

)]
, (17)

where γ is the dissipation rate and βr is the inverse temper-
ature of the bath modeling the dissipative load. The effect of
the dissipative load is twofold: It provides a frictional force al-
lowing the rotor to reach a steady state, rather than continuing
to accelerate, and it also allows the conversion of mechanical
work from the rotor into the load. In the absence of coupling
to the two qubits, the rotor coupled to the dissipative load will
reach a thermal equilibrium state at inverse temperature βr .

The thermodynamics of collision models can be derived
from the corresponding microscopic model. Since the en-
vironmental harmonic oscillators are initially in thermal
equilibrium, we obtain the heat flows as minus the energy
change in the bath [38],

Q̇(loc)
i = − lim

τ→0

1

τ
Tr(HB,i�ρSB) = Tr

(
HS,0L(loc)

i [ρS]
)
, (18)

where �ρSB = UρS (t ) ⊗ ρBU† − ρS (t ) ⊗ ρB. After some al-
gebra we obtain more explicitly

Q̇(loc)
i = 2Big

2
i [ni〈σ−

i σ+
i 〉t − (ni + 1)〈σ+

i σ−
i 〉t ], (19)

where

〈σ+
i σ−

i 〉t = Tr(ρSσ
+
i σ−

i ). (20)

Similarly, the dissipative load attached to the rotor absorbs the
heat current

Q̇(loc)
r = Tr

(
HS,0L(loc)

r [ρS]
)
, (21)

where L(loc)
r is given in Eq. (17).

For LMEs, besides the usual heat currents, there may be
an additional work source, due to the locality of the collisions
which model microscopically the dissipation (see Ref. [38]).
For the two qubits, this can be found as the total energy change
of both the system and bath

Ẇ (Q) = lim
τ→0

1

τ
Tr[(HS + HB)�ρSB], (22)

which can be expressed as

Ẇ (Q) = − 1
2λ

[
g2

1(2n1 + 1) + g2
2(2n2 + 1)

]
× [〈σ+

1 σ−
2 eiϕ〉t + 〈σ−

1 σ+
2 e−iϕ〉t ]. (23)

The work injected by the local baths into the qubits can be
also expressed as

Ẇ (Q) = Tr
{
HS,I (L(loc)

1 [ρS] + L(loc)
2 [ρS])

}
, (24)

while the corresponding extra work associated with the rotor’s
dissipation can be written as

Ẇ (r) = Tr
(
HS,IL(loc)

r [ρS]
)
. (25)

Using Eqs. (13), (18), (21), (22), and (25), it can be proven
that the first law of thermodynamics holds [38],

U̇S = Q̇(loc)
1 + Q̇(loc)

2 + Q̇(loc)
r + Ẇ (Q) + Ẇ (r), (26)

where U̇S = Tr(ρ̇SHS ) is the rate of change of the system’s
energy (assuming HS to be time independent). Since we are
choosing γ to be small, the magnitude of Ẇ (r) is negligible
compared to the heat flows and to Ẇ (Q).

Throughout this paper, we are using the convention that
heat flowing into the system or work done on the system,
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thus increasing its internal energy, has a positive sign and vice
versa.

B. Spin-boson model

In our second model, we consider a variant of the spin-
boson model, in which each qubit is permanently coupled
to an infinite set of quantum harmonic oscillators in thermal
equilibrium [see Fig. 1(b)]. In the weak-coupling limit, the
dynamics of the system can be described by a global master
equation with respect to the interaction between qubits. In
this case, the jump operators are obtained by deriving the
master equation in the basis of the system’s full Hamilto-
nian’s eigenstates. In order to derive the GME, we need to
write the complete evolution of the system and the bath and
then apply the Born-Markov and secular approximation in the
eigenbasis of HS . The rotor’s dissipative load is, for simplicity,
still described by its local form in Eq. (17) assuming the
corresponding dissipation rate γ is small compared to the
coupling λ. For this reason the resulting equation (27) should
more accurately be dubbed a semiglobal master equation. A
thorough derivation is reported in Appendix A and the result-
ing equation is

ρ̇S = −i[HS, ρS] + L(glob)
1 [ρS] + L(glob)

2 [ρS] + L(loc)
r [ρS],

(27)

where L(glob)
1 , L(glob)

2 , and L(loc)
r are the superoperators that

account for the energy jumps induced by both the interaction
and the thermal baths.

Under these assumptions, Ẇ (Q) = 0. Hence, the first law
now reads

U̇S = Q̇(glob)
1 + Q̇(glob)

2 + Q̇(loc)
r + Ẇ (r). (28)

The work correction Ẇ (r), under the assumption of small γ ,
is much smaller than the magnitude of the heat flows, so we
will neglect it in the following. The heat flows in terms of the
superoperators L(glob)

i from the GME (27)

Q̇(glob)
i = Tr

(
HSL(glob)

i [ρS]
)
, (29)

where L(glob)
i , i = 1, 2, now act on the combined Hilbert space

of the two qubits and the rotor.

III. THERMAL MACHINES

In this section we discuss the possible functionings of our
setup as thermal devices. To do this we will be using the LME,
the heat flows, and power defined in Eqs. (21) and (24). First,
we introduce in Sec. III A the rotor’s mechanical work, which
is a measure of the amount of work that can be extracted
from the rotor’s kinetic energy. Then, in Sec. III B, we list the
possible modes in which the setup can operate as a thermal
machine. Finally, we introduce heat rectification and angular
momentum rectification as well as their measures in Sec. III C.

A. The rotor’s mechanical work

When defining the work done by the rotor, there are several
useful quantities that we may look at [21,22]. The rate of

TABLE I. Possible achievable operations of the system and their
conditions.

Operation Heat flow Q̇1 Heat flow Q̇2 Work Ẇ (Q)

engine Q̇1 < 0 Q̇2 > 0 Ẇ (Q) < 0
refrigerator Q̇1 > 0 Q̇2 < 0 Ẇ (Q) > 0
accelerator Q̇1 < 0 Q̇2 > 0 Ẇ (Q) > 0

change of the rotor’s kinetic energy can simply be defined as

Ẇkin = d

dt

〈
L2

z

〉
2I

= 1

2I
Tr

(
ρ̇SL2

z

)
(30)

= Ẇint + Q̇BA. (31)

In the preceding expression, Ẇkin is split into two terms. The
first term represents the intrinsic power

Ẇint = − i

2I
Tr

(
[HS, ρS]L2

z

)
, (32)

which is the rate of change in the kinetic energy that is due
to the working medium exerting force on the rotor, and the
second term is the backaction heat flow

Q̇BA = 1

2I
Tr

{
(L1[ρS] + L2[ρS] + Lr[ρS])L2

z

}
, (33)

which is due to angular momentum diffusion in the rotor and
does not contribute to useful work. In Eq. (33) the Lindblad
superoperators may be from the local or global master equa-
tion. Note that the kinetic energy could be disordered, as 〈L2

z 〉
does not take into account the direction of the rotor’s rotation.
Also, the kinetic energy could come from the unwanted heat-
ing of the rotor.

To resolve this issue, we can look instead at the net power,
i.e., the rate of change in kinetic energy exclusively in either
the clockwise or counterclockwise direction. This net power
is defined as

Ẇnet = d

dt

〈Lz〉2

2I
= 1

I
Tr(ρSLz )Tr(ρ̇SLz ). (34)

Note that at the steady state, when ρ̇S = 0, the kinetic and net
power are zero. Another useful quantity to study the capacity
of the system to do work is the quantum ergotropy, which
quantifies the maximum amount of extractable work by means
of unitary transformations [53–55]

Werg = maxU {Tr[HS (ρS − UρSU †)]}, (35)

where U is the unitary evolution of the system.

B. Operations

The system may be able to operate in several different ways
depending on the direction of energy flows. These different
operations are summarized in Table I. Note that for studying
the possible operations of this system we will assume β1 >

βr > β2.
To assess the performance of our setup when operating as

an engine, we use the efficiency of the engine, defined as

η = −Ẇ (Q)

Q̇2
. (36)
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Since we are using thermal baths, the efficiency is bounded
by the Carnot value at the lowest and highest temperatures
ηC = 1 − β2/β1.

To assess the functioning of the system as a refrigerator,
we employ the coefficient of performance (COP), defined
as [1]

C = Q̇1

Ẇ (Q)
, (37)

such that it is also upper bounded by the Carnot COP, CC =
β1/(β1 − β2).

C. Rectification

To study rectification, we will be using the GME and the
heat flows that arise from it, as defined in Eq. (29). The global
approach of the system lends itself well to the study of heat
rectification as we may calculate the global heat flows in and
out of the system as there is no external work done on the
system.

Heat rectification is a form of asymmetric transport
through a device when the two heat baths are swapped. It
occurs due to the nonsymmetric arrangement of the micro-
scopic constituents of a system. In our case this may be due
to the different magnetic fields B1 and B2 applied to the two
qubits, as well as the coupling to the baths. In order to study
rectification [56–60], we calculate the heat flow into one of
the baths coupled to the qubits, e.g., Q̇ = Q̇2. We then swap
the temperatures of the two heat baths, β1 and β2, keeping
everything else the same (including the couplings to the baths)
and recalculate the heat currents. The heat flow into the system
is now

Q̇(swap) = Q̇(swap)
1 , (38)

where (swap) indicates that the temperatures of the two heat
baths have been swapped. We can then define the rectification
parameter as

R =
∣∣∣∣ Q̇ − Q̇(swap)

Q̇ + Q̇(swap)

∣∣∣∣. (39)

If R = 0, this means that heat can flow equally in both direc-
tions and there is no rectification, Q̇(swap) = Q̇. For 0 < R � 1,
the system acts as a rectifier. The maximum value R = 1
corresponds to an ideal rectifier where heat can only flow in
one direction.

The problem with this definition of rectification is that we
may be able to achieve a value of R close to 1, but with heat
flows that are almost zero, making the device not practically
useful. To take into account both the rectification and the
magnitude of the heat flow, we can introduce

J = max(|Q̇|, |Q̇(swap)|)/λg2, (40)

which is the maximum of the two heat flows. Note that we
have divided by λg2 so that J is dimensionless. Then we can
define the rectification performance’s measure as [56]


α = αR + (1 − α)J. (41)

The parameter α (0 � α � 1) allows us to study the trade-off
between rectification and heat flow.

Not only can we study heat rectification, but we may also
look at the rectification of the rotor’s angular momentum. In
fact, we can think of the rotor as a windmill that is being
rotated by the heat flowing through the qubits and capable, due
to its angular momentum, of lifting weights (modeled with the
dissipative load).

We define the angular momentum rectification coefficient
to be of the form

Rangular =
∣∣∣∣∣
〈Lz〉 − 〈

L(swap)
z

〉
〈Lz〉 + 〈

L(swap)
z

〉
∣∣∣∣∣, (42)

where 〈Lz〉 and 〈L(swap)
z 〉 are the steady-state expectation values

of the angular momentum operator in one configuration and
in the configuration obtained by swapping the temperatures.
As before, since we are interested not only in the angular
momentum’s rectification but also in its magnitude, we define

Jangular = max
(|〈Lz〉|,

∣∣〈L(swap)
z

〉∣∣). (43)

We may then vary 0 � χ � 1 again and calculate the corre-
sponding R and J . The performance of the angular momentum
rectification can be measured by the quantity


α,angular = αRangular + (1 − α)Jangular. (44)

IV. RESULTS

In this section we report and discuss the numerical results
for the thermodynamics of our model. In order to simulate
the rotor, we need to truncate its infinite Hilbert space. In
Appendix B we discuss how we perform the truncation. All
the obtained results bear no effect from the finiteness of the
Hilbert space.

A. Collision model: Thermal operations

Using the collision model, we calculate both the time evo-
lution of the system’s density matrix and the steady state
obtained by solving the equation ρ̇S = 0. We verify that the
long-time limit of the evolved density matrix agrees with the
steady-state solution within the numerical accuracy.

In Fig. 2(a) we show the results for the steady-state heat
flows and power, by fixing the cold temperature β1 and vary-
ing the hot temperature β2 so that 0 < β2 < βr < β1 (see the
figure’s caption for all the other parameters). In Appendix C
we investigate how the kinetic, intrinsic, and net power vary
over time.

We see that, depending on our choice of β2/β1, the system
can operate in three different regimes: engine, accelerator, or
refrigerator. From Fig. 2(a) we see that, for our choice of pa-
rameters, choosing 0 < β2/β1 < 0.43 gives rise to an engine
operation. The machine generates a work output (Ẇ (Q) < 0)
by using the natural heat flow from the hot bath (Q̇2 > 0)
while dumping a part of it into the cold bath (Q̇1 < 0) (see
Table I). In Fig. 2(b) we plot the corresponding steady-state
efficiency of the engine. We remark that, while it is much
lower than the Carnot efficiency ηC = 1 − β2/β1, it reaches
a maximum around β2/β1 	 0.31 and gets close to ηC at
β2/β1 	 0.37. On the other hand, within the small range
0.43 < β2/β1 < 0.54, the system acts as an accelerator, which
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×

FIG. 2. (a) Steady-state heat flows and power as a function of
β2/β1. The device may operate as an engine, accelerator, or refriger-
ator. (b) Efficiency of the machine η (solid line) while it operates as
an engine and the corresponding Carnot efficiency ηC (dashed line)
as functions of β2/β1. (c) The COP (solid line) and the Carnot COP
(dashed line) for the refrigerator regime as functions of β2/β1. The
parameters are β1 = 0.1, βr = 0.09, B1 = 4, B2 = 10, g = 1, χ = 0,
λ = 0.1, γ = 5 × 10−5.

utilizes a work input (Ẇ (Q) > 0) to speed up the transfer of
heat from the hot bath (Q̇2 > 0) to the cold bath (Q̇1 < 0).

Finally, for 0.54 < β2/β1 < 0.9, the machine functions as
a refrigerator as work is consumed (Ẇ (Q) > 0) while heat
from the cold bath (Q̇1 > 0) is transferred to the hot bath
(Q̇2 < 0). In Fig. 2(c) we can clearly see that the refrigerator’s
COP increases slowly with increasing β2/β1 and reaches its
maximum at β2/β1 	 0.54. Note that, as we have assumed
β1 > βr > β2, it is not possible to choose β2/β1 > 0.9 for our
choice of parameters.

The results provided above can be complemented by ex-
amining the ergotropy [see Eq. (35)] as a quantifier of the
maximum extractable amount of work stored in the system.
In Fig. 3 we analyze the steady-state ergotropy of the total
system along with both qubits and the rotor, respectively,
against β2/β1. The steady-state ergotropies of the two qubits
separately are both zero for all β2/β1 and are therefore omitted
from the plot. This is because each qubit is locally in thermal
equilibrium with the bath it is coupled to and is hence in a
passive state. It can be seen that for the total system, the rotor,
and the combined system containing the two qubits, the maxi-
mum ergotropy occurs when β2/β1 is small, corresponding to
a high-temperature difference. Note that the ergotropy of the
two qubits approaches zero for β2/β1 	 B1/B2 = 0.4. At this
point, the populations of the second and third most populated
energy levels of the two-qubit system switch and the system
stays in an almost passive state as β2/β1 increases further;
therefore, it is unlikely that there is any significant work

FIG. 3. Ergotropy as defined in Eq. (35) as a function of β2/β1.
The parameters are set as in Fig. 2.

being extracted under unitary transformations as thermaliza-
tion occurs.

B. Spin-boson model: Rectification

So far our analysis for the operation of the machine has
been conducted with the use of the collision model whereas
for the study of the system’s rectification we instead use the
spin-boson one (see Sec. II B) with the heat flows given by
Eq. (29). Under these assumptions there is no work contri-
bution Ẇ (Q). Figure 4 displays the rectification parameter R
and the heat currents’ magnitude J as we vary 0 < χ < 1 for
different temperatures of the hot bath β2 and for given values
of α. For each value of χ , we calculate the corresponding
heat currents into the system, before and after swapping the
temperatures β1 and β2. We then plot the corresponding R
and J [see Eqs. (39) and (40), respectively]. As χ increases,
initially so do R and J , until a maximum J is reached. Then J
starts to decrease correspondingly, followed by R.

The dots in Fig. 4 show where the rectification perfor-
mance’s measure 
α [see Eq. (41)] is maximum for a given
value of α. If we are purely interested in having the largest
heat flow into the system, then we can set α = 0 and maximize

0 = J , or if we focus only on the maximum rectification and

FIG. 4. Parametric plot of R and J [defined in Eqs. (39) and (40)]
for 0 � χ � 1 at three different temperatures. The dots correspond
to the values of R and J associated with the maximum rectification
performance’s measure [see Eq. (41)] for a given α. The parameters
are β1 = 0.1, βr = 0.09, B1 = 4, B2 = 10, g = 0.5, λ = 0.1, and
γ = 5 × 10−5.
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FIG. 5. Parametric plot of Rangular and Jangular [defined in Eqs. (42)
and (43)] for 0 � χ � 1 at three different temperatures. The dots
correspond to the values of Rangular and Jangular with the maximum
rectification performance’s measure [see Eq. (41)] for a given α. The
parameters are as in Fig. 4.

not on the heat flow, we consider 
1 = R. Alternatively, if we
value the heat flow’s magnitude and rectification equally, we
may want to set α = 0.5, then maximizing their average value

0.5 = (R + J )/2.

From Fig. 4 we see that a higher temperature leads to a
much larger maximum 
0; however, the maximum of 
1 is
only slightly larger. Consequently, a large rectification pa-
rameter R can be achieved even for a hot bath at a lower
temperature at the expense of a smaller heat current.

In a similar manner, we investigate the angular momentum
rectification quantifiers Rangular and Jangular using Eqs. (42) and
(43). Figure 5 depicts the corresponding Rangular and Jangular

as 0 < χ < 1. We find a result very similar to that in Fig. 4:
A large angular momentum can be achieved when bath 2
is at high temperatures. However, unlike in the case of heat
rectification, we find that decreasing the temperature of the
hot bath can lead to a slightly larger rectification parameter R.

V. CONCLUSION

We studied the out-of-equilibrium thermodynamics of a
system consisting of two qubits and a quantum rotor cou-
pled to two thermal heat baths. Two microscopic environment
models were employed to analyze the dynamics and the sys-
tem’s steady state and find the corresponding heat flows and
external power. Various definitions of work within the rotor
were discussed, and we demonstrated that the addition of a
dissipative load not only provides a way of extracting work
from the rotor, but also enables the system to reach a steady
state. Studying the steady-state energy flows of the system
led to the identification of three operational regimes of the
machine: an engine, a refrigerator and an accelerator.

Finally, we investigated both the heat and angular momen-
tum rectification by introducing a figure of merit that depends
on both the rectification parameter and the maximum heat
current or angular momentum. If we were more interested in
the magnitude of heat flow or angular momentum, then we
would find that a higher-temperature hot bath allows for a
larger J and Jangular. On the other hand, for the case of heat
rectification, a larger rectification parameter can be achievable

with a lower temperature of the hot bath at the expense of
heat, while for angular momentum rectification, we found
that lowering the temperature of the hot bath could lead to
a larger rectification parameter, albeit with a smaller angular
momentum.
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APPENDIX A: DERIVATION
OF THE GLOBAL MASTER EQUATION

To derive the global master equation we follow standard
textbooks on open quantum systems (see, for instance, [51]).
First, we define the eigenvalues and eigenvectors of HS as

HS |ε〉 = ε |ε〉 (A1)

so that the corresponding projection operators are

�(ε) = |ε〉〈ε|. (A2)

In the spin-boson model, we assume each bath i = 1, 2 to
consist of an ensemble of noninteracting harmonic oscillators
with frequencies ωi,k :

HB =
∑

i

∑
k

ωi,ka†
i,kai,k . (A3)

The system-bath interaction Hamiltonian assumes the general
form

HI =
∑

i

Ai ⊗ E†
i + A†

i ⊗ Ei, (A4)

where Ai and Ei are the system’s and bath’s operators, re-
spectively. We set Ai = σ−

i and Ei = ∑
k gi,kai,k , i = 1, 2. The

system’s eigenoperators are defined as

Ai(ω) =
∑

ε′−ε=ω

�(ε)Ai�(ε′) (A5)

and fulfill the relations

[HS, Ai(ω)] = −ωAi(ω), (A6)

[HS, A†
i (ω)] = ωA†

i (ω). (A7)

FIG. 6. Plot of 〈l| ρr (t ) |l〉 for each −5 � l � 10 at increasing
time increments. The parameters are B1 = 10, B2 = 10, β1 = 0.1,
β2 = 0.02, I = 1, g = 1, χ = 0, and λ = 0.1
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In the interaction picture, we have for the system

eiHSt Ai(ω)e−iHSt = e−iωt Ai(ω) (A8)

and for the bath

Ei(t ) = eiHBt Eie
−iHBt =

∑
k

gi,kai,ke−iωi,kt . (A9)

The two-time correlation functions are

〈E†
i (s)Ei(0)〉 =

∑
k

g2
i,keiωi,k sni(ωi,k ), (A10)

〈Ei(s)E†
i (0)〉 =

∑
k

g2
i,ke−iωi,k s[ni(ωi,k ) + 1], (A11)

where ni is the thermal occupation number of bath i,

ni(ω) = Tr(a†
i aiρBi ) = 1

eβiω − 1
. (A12)

Then an integral over a continuum of frequencies is applied∫ ∞

0
ds eiωs〈E†

i (s)Ei(0)〉 = Ji(ω)ni(ω), (A13)
∫ ∞

0
ds eiωs〈Ei(s)E†

i (0)〉 = Ji(ω)[ni(ω) + 1], (A14)

where Ji(ω) is the spectral density. Using these definitions, we
can write the global master equation as

ρ̇S = −i[HS, ρS]

+
∑

i

∑
ω

Ji(ω)ni(ω)[A†
i (ω)ρSAi(ω)

− 1

2
{Ai(ω)A†

i (ω)ρS}]
+

∑
i

∑
ω

Ji(ω)[ni(ω) + 1][Ai(ω)ρSA†
i (ω)

− 1

2
{A†

i (ω)Ai(ω)ρS}]. (A15)

We can add in the dissipative load locally, as in Eq. (17), as
long as γ is small compared to the qubit-rotor coupling λ. This
leads to the compact form of the master equation reported in
Eq. (27). From here on we will choose the spectral density to
be Ohmic with a cutoff frequency �,

J1(ω) = g2(1 − χ )2 ω�2

ω2 + �2
, (A16)

J2(ω) = g2(1 + χ )2 ω�2

ω2 + �2
, (A17)

where we select � = ωmax and −1 � χ � 1.
At this stage it is worth mentioning the intense debate

on the comparison between the LME and GME (see, for
instance, Refs. [39,40]). While alternative solutions that in-
terpolate between the two approaches have been proposed
[61], our GME approach coincides with the LME in the limit
λ → 0.

APPENDIX B: TRUNCATION
OF THE ROTOR’S HILBERT SPACE

The acceleration of the rotor can cause problems when
solving the master equation numerically, as we need to trun-
cate the Hilbert space of the rotor. We assume this to be

FIG. 7. Plot of 〈l| ρr (t ) |l〉 for each −5 � l � 10 at increasing
time increments with added dissipative load. The parameters are the
same as in Fig. 6, with the addition of γ = 5 × 10−4 and βr = 0.09.

spanned by the eigenstates |l〉 of the angular momentum oper-
ator Lz such that Lz |l〉 = l |l〉. Figure 6 shows how the state of
the rotor evolves in time without the action of the dissipative
load, modeled by the Lindblad superoperator Lr . We plot the
populations 〈l| ρr (t ) |l〉, where ρr (t ) is the reduced density
matrix of the rotor obtained using the local master equation for
−5 � l � 10 at a given time t , with the steady state shown
in red. The results in Fig. 6 show that the energy level most
likely occupied by the rotor will increase beyond the truncated
Hilbert space.

In order to solve this problem and extract work (continu-
ously), we add a dissipative load. Figure 7 shows that, with
the addition of the dissipative load, the most populated energy
level of the rotor does not go beyond those included in the
truncated Hilbert space.

APPENDIX C: KINETIC, INTRINSIC, AND NET POWER

The kinetic, intrinsic and net power of the rotor [see
Eqs. (30), (32), and (34)] are shown in Fig. 8 as a function
of time for a given value of β2/β1 = 0.8. We see that the net
power quickly reaches a maximum before decreasing again,
whereas the kinetic and intrinsic power steadily decrease over
time. Note that the kinetic and net power will tend to zero as
the system reaches its steady state, while the intrinsic power
will tend to −Q̇r .

×

FIG. 8. Evolution of the kinetic, intrinsic, net power, and back-
action noise of the rotor in time for a system with coupling described
by Eq. (3). The steady-state solutions of the net and kinetic power
will be zero. The parameters are as in Fig. 2 with β2/β1 = 0.8.

024108-8



THERMODYNAMICS OF HYBRID QUANTUM ROTOR DEVICES PHYSICAL REVIEW E 109, 024108 (2024)

[1] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365
(2014).

[2] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso,
Fund. Theor. Phys. 195, 1 (2018).

[3] M. T. Mitchison, Contemp. Phys. 60, 164 (2019).
[4] N. M. Myers, O. Abah, and S. Deffner, AVS Quantum Sci. 4,

027101 (2022).
[5] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545

(2016).
[6] C. L. Latune, I. Sinayskiy, and F. Petruccione, Sci. Rep. 9, 3191

(2019).
[7] K. Hammam, H. Leitch, Y. Hassouni, and G. De Chiara, New J.

Phys. 24, 113053 (2022).
[8] J. Wang, J. He, and Y. Ma, Phys. Rev. E 100, 052126

(2019).
[9] F. Tonner and G. Mahler, Phys. Rev. E 72, 066118 (2005).

[10] N. Linden, S. Popescu, and P. Skrzypczyk, Phys. Rev. Lett. 105,
130401 (2010).

[11] R. Silva, G. Manzano, P. Skrzypczyk, and N. Brunner, Phys.
Rev. E 94, 032120 (2016).

[12] M. T. Mitchison, M. Huber, J. Prior, M. P. Woods, and M. B.
Plenio, Quantum Sci. Technol. 1, 015001 (2016).

[13] K. Hammam, Y. Hassouni, R. Fazio, and G. Manzano, New J.
Phys. 23, 043024 (2021).

[14] F. Clivaz, R. Silva, G. Haack, J. B. Brask, N. Brunner, and M.
Huber, Phys. Rev. E 100, 042130 (2019).

[15] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044
(2015).

[16] G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet,
S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, Nat.
Commun. 10, 202 (2019).

[17] P. P. Hofer, M. Perarnau-Llobet, J. B. Brask, R. Silva, M. Huber,
and N. Brunner, Phys. Rev. B 94, 235420 (2016).

[18] D. Venturelli, R. Fazio, and V. Giovannetti, Phys. Rev. Lett. 110,
256801 (2013).

[19] J. Bohr Brask, F. Clivaz, G. Haack, and A. Tavakoli, Quantum
6, 672 (2022).

[20] A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V.
Scarani, Phys. Rev. E 95, 062131 (2017).

[21] S. Seah, S. Nimmrichter, and V. Scarani, New J. Phys. 20,
043045 (2018).

[22] S. Seah, S. Nimmrichter, A. Roulet, and V. Scarani, in Thermo-
dynamics in the Quantum Regime: Fundamental Aspects and
New Directions, edited by F. Binder, L. A. Correa, C. Gogolin,
J. Anders, and G. Adesso, Fundamental Theories of Physics
Vol. 195 (Springer, Cham, 2018), pp. 227–245.

[23] A. Roulet, S. Nimmrichter, and J. M. Taylor, Quantum Sci.
Technol. 3, 035008 (2018).

[24] R. Puebla, A. Imparato, A. Belenchia, and M. Paternostro, Phys.
Rev. Res. 4, 043066 (2022).

[25] A. Levy, L. Diósi, and R. Kosloff, Phys. Rev. A 93, 052119
(2016).

[26] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal,
J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler,
and U. G. Poschinger, Phys. Rev. Lett. 123, 080602
(2019).

[27] N. Van Horne, D. Yum, T. Dutta, P. Hänggi, J. Gong, D. Poletti,
and M. Mukherjee, npj Quantum Inf. 6, 37 (2020).

[28] O. Culhane, M. T. Mitchison, and J. Goold, Phys. Rev. E 106,
L032104 (2022).

[29] W. S. Martins, F. Carollo, W. Li, K. Brandner, and I.
Lesanovsky, Phys. Rev. A 108, L050201 (2023).

[30] S. Campbell and B. Vacchini, Europhys. Lett. 133, 60001
(2021).

[31] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M. Palma,
Phys. Rep. 954, 1 (2022).

[32] S. Cusumano, Entropy 24, 1258 (2022).
[33] J. Jin, V. Giovannetti, R. Fazio, F. Sciarrino, P. Mataloni, A.

Crespi, and R. Osellame, Phys. Rev. A 91, 012122 (2015).
[34] A. Cuevas, A. Geraldi, C. Liorni, L. D. Bonavena, A. De

Pasquale, F. Sciarrino, V. Giovannetti, and P. Mataloni, Sci.
Rep. 9, 3205 (2019).

[35] G. García-Pérez, M. A. C. Rossi, and S. Maniscalco, npj
Quantum Inf. 6, 1 (2020).

[36] F. V. Melo, N. Sá, I. Roditi, A. M. Souza, I. S. Oliveira, R. S.
Sarthour, and G. T. Landi, Phys. Rev. A 106, 032410 (2022).

[37] M. Cech, I. Lesanovsky, and F. Carollo, Phys. Rev. Lett. 131,
120401 (2023).

[38] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro, A. J.
Roncaglia, and M. Antezza, New J. Phys. 20, 113024 (2018).

[39] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao, D.
Alonso, and G. Adesso, Open Syst. Inf. Dyn. 24, 1740010
(2017).

[40] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack,
R. Silva, J. B. Brask, and N. Brunner, New J. Phys. 19, 123037
(2017).

[41] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys.
85, 623 (2013).

[42] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. USA 112,
3866 (2015).

[43] A. Clerk, K. Lehnert, P. Bertet, J. Petta, and Y. Nakamura, Nat.
Phys. 16, 257 (2020).

[44] L. Gilz, E. P. Thesing, and J. R. Anglin, arXiv:1304.3222.
[45] J. K. Pachos and M. B. Plenio, Phys. Rev. Lett. 93, 056402

(2004).
[46] M. Abdi, M. Pernpeintner, R. Gross, H. Huebl, and M. J.

Hartmann, Phys. Rev. Lett. 114, 173602 (2015).
[47] W. Feng and D.-w. Wang, Phys. Rev. A 101, 062312 (2020).
[48] W. Liu, W. Feng, W. Ren, D.-W. Wang, and H. Wang, Appl.

Phys. Lett. 116, 114001 (2020).
[49] T. Menke, W. P. Banner, T. R. Bergamaschi, A. Di Paolo,

A. Vepsäläinen, S. J. Weber, R. Winik, A. Melville, B. M.
Niedzielski, D. Rosenberg, K. Serniak, M. E. Schwartz, J. L.
Yoder, A. Aspuru-Guzik, S. Gustavsson, J. A. Grover, C. F.
Hirjibehedin, A. J. Kerman, and W. D. Oliver, Phys. Rev. Lett.
129, 220501 (2022).

[50] A. Hewgill, J. O. González, J. P. Palao, D. Alonso, A. Ferraro,
and G. De Chiara, Phys. Rev. E 101, 012109 (2020).

[51] H. Breuer, F. Petruccione, and S. Petruccione, The Theory
of Open Quantum Systems (Oxford University Press, Oxford,
2002).

[52] B. A. Stickler, B. Schrinski, and K. Hornberger, Phys. Rev. Lett.
121, 040401 (2018).

[53] A. Allahverdyan and T. Nieuwenhuizen, Physica A 305, 542
(2002).

[54] W. Niedenzu, M. Huber, and E. Boukobza, Quantum 3, 195
(2019).

[55] A. Touil, B. Çakmak, and S. Deffner, J. Phys. A: Math. Theor.
55, 025301 (2022).

024108-9

https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1007/978-3-319-99046-0_1
https://doi.org/10.1080/00107514.2019.1631555
https://doi.org/10.1116/5.0083192
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1038/s41598-019-39300-4
https://doi.org/10.1088/1367-2630/aca49b
https://doi.org/10.1103/PhysRevE.100.052126
https://doi.org/10.1103/PhysRevE.72.066118
https://doi.org/10.1103/PhysRevLett.105.130401
https://doi.org/10.1103/PhysRevE.94.032120
https://doi.org/10.1088/2058-9565/1/1/015001
https://doi.org/10.1088/1367-2630/abeb47
https://doi.org/10.1103/PhysRevE.100.042130
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1038/s41467-018-08090-0
https://doi.org/10.1103/PhysRevB.94.235420
https://doi.org/10.1103/PhysRevLett.110.256801
https://doi.org/10.22331/q-2022-03-22-672
https://doi.org/10.1103/PhysRevE.95.062131
https://doi.org/10.1088/1367-2630/aab704
https://doi.org/10.1088/2058-9565/aac40d
https://doi.org/10.1103/PhysRevResearch.4.043066
https://doi.org/10.1103/PhysRevA.93.052119
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1038/s41534-020-0264-6
https://doi.org/10.1103/PhysRevE.106.L032104
https://doi.org/10.1103/PhysRevA.108.L050201
https://doi.org/10.1209/0295-5075/133/60001
https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.3390/e24091258
https://doi.org/10.1103/PhysRevA.91.012122
https://doi.org/10.1038/s41598-019-39832-9
https://doi.org/10.1038/s41534-019-0235-y
https://doi.org/10.1103/PhysRevA.106.032410
https://doi.org/10.1103/PhysRevLett.131.120401
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1038/s41567-020-0797-9
https://arxiv.org/abs/1304.3222
https://doi.org/10.1103/PhysRevLett.93.056402
https://doi.org/10.1103/PhysRevLett.114.173602
https://doi.org/10.1103/PhysRevA.101.062312
https://doi.org/10.1063/1.5140884
https://doi.org/10.1103/PhysRevLett.129.220501
https://doi.org/10.1103/PhysRevE.101.012109
https://doi.org/10.1103/PhysRevLett.121.040401
https://doi.org/10.1016/S0378-4371(01)00605-7
https://doi.org/10.22331/q-2019-10-14-195
https://doi.org/10.1088/1751-8121/ac3eba


LEITCH, HAMMAM, AND DE CHIARA PHYSICAL REVIEW E 109, 024108 (2024)

[56] S. Khandelwal, M. Perarnau-Llobet, S. Seah, N. Brunner, and
G. Haack, Phys. Rev. Res. 5, 013129 (2023).

[57] L. Zhang, Y. Yan, C.-Q. Wu, J.-S. Wang, and B. Li, Phys. Rev.
B 80, 172301 (2009).

[58] B. Bhandari, P. A. Erdman, R. Fazio, E. Paladino, and F. Taddei,
Phys. Rev. B 103, 155434 (2021).

[59] A. Riera-Campeny, M. Mehboudi, M. Pons, and A. Sanpera,
Phys. Rev. E 99, 032126 (2019).

[60] A. Hewgill, G. De Chiara, and A. Imparato, Phys. Rev. Res. 3,
013165 (2021).

[61] M. Cattaneo, G. L. Giorgi, S. Maniscalco, and R. Zambrini,
New J. Phys. 21, 113045 (2019).

024108-10

https://doi.org/10.1103/PhysRevResearch.5.013129
https://doi.org/10.1103/PhysRevB.80.172301
https://doi.org/10.1103/PhysRevB.103.155434
https://doi.org/10.1103/PhysRevE.99.032126
https://doi.org/10.1103/PhysRevResearch.3.013165
https://doi.org/10.1088/1367-2630/ab54ac

