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Persistence of weak ferromagnetism in antiferromagnetic systems
on the body-centered octahedral lattice
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The possibility of existence of weak ferromagnetism in antiferromagnetic systems on the body-centered
octahedral lattice is investigated in the framework of the corresponding spin-1/2 J1-J2 model in the recursive-
lattice approach. The exact solution of the model is found and its phase diagram is determined. The magnetic
and thermodynamic properties of all phases are studied, the nature of all phase transitions is established,
and an equation that determines the positions of all second-order phase transitions of the model is found.
The magnetic and entropy properties of all ground states of the model are also determined. It is shown that the
weak ferromagnetism predicted earlier in the pure spin-1/2 antiferromagnetic system on the octahedral lattice
remains present even in the case of the model on the body-centered octahedral lattice with antiferromagnetic
as well as ferromagnetic interactions between the central site of each elementary octahedron and each of its
vertices. However, the presence of the interacting central site suppresses the weak ferromagnetism at very
low temperatures, where the standard antiferromagnetic phase emerges. At the same time, the temperature
region with the antiferromagnetic phase increases with simultaneous decreasing of the region, where the weak
ferromagnetism can be observed, when the strength of the interaction between the central site of each elementary
octahedron and each of its vertices increases. Moreover, the phenomenon of weak ferromagnetism disappears
completely when this interaction becomes sufficiently stronger than the nearest-neighbor antiferromagnetic
interaction between spin variables placed in vertices of each elementary octahedron of the lattice. Moreover,
the possibility of the existence of the classical spin-liquid behavior in such magnetic systems is also discussed.

DOI: 10.1103/PhysRevE.109.024106

I. INTRODUCTION

Geometrically frustrated antiferromagnetic systems
[1–10], for which the impossibility of an unambiguous
spin ordering in the zero-temperature limit is determined
by the geometry of the lattice [11], exhibit many intriguing
magnetic and thermodynamic properties. Among the most
interesting properties of such magnetic systems are the
formation of nontrivial discrete systems of ground states
with high macroscopic degeneracy [12–14], the existence of
the anomalous low-temperature behavior of the specific heat
that leads to the appearance of significant magnetocaloric
effects that can be used for the effective adiabatic
(de)magnetization cooling to very low temperatures [15–28],
and various theoretically described [5,9,29–47] and
potentially experimentally observed [45,48–61] exotic
quantum states such as states with spin-liquid behavior.
Another interesting nontrivial phenomenon experimentally
observed especially in various perovskite-type magnetic
materials is the existence of the weak ferromagnetic behavior
even in the antiferromagnetic systems [62–81].

From a theoretical point of view, it is quite clear that the
full description of various frustrated magnetic systems can
be achieved only by investigating relevant quantum models.
However, as was pointed out, e.g., in Ref. [34], one of the
main problem in the theoretical investigation of fundamental
quantum properties of two-dimensional (and therefore also
three-dimensional) spin systems is the nonexistence of even

nearly exact analytical or at least computational methods for
analysis of such quantum systems on infinite lattices. In this
situation, classical models can be helpful since it is well
known that many basic properties of the frustrated magnetic
systems can be understood even in the framework of the
corresponding simplified classical models (such as the Ising
and Ising-like models), which can be studied in a much more
precise way, and therefore the obtained results can have fun-
damental relevance. Moreover, it is also well known that even
exact solutions of some classical frustrated systems can be
found in the case of the two-dimensional models, although
only in the zero external magnetic field [12,13].

In this respect, recent theoretical investigations of the
corresponding classical models [82,83] have shown that the
presence of the aforementioned weak ferromagnetism seems
to be a quite natural behavior of the antiferromagnetic sys-
tems with octahedral structure, which is the basic geometric
structure of the perovskites. More specifically, it was shown
in Ref. [82] in the framework of the exactly solvable spin-
1/2 antiferromagnetic Ising model on the octahedral recursive
lattice that the simultaneous presence of geometric frustration
and bipartite properties of the antiferromagnetic model on the
octahedral lattice can naturally lead to the appearance of weak
ferromagnetic behavior with small but nonzero total magneti-
zation below the critical (Néel) temperature. The possibility of
the existence of such a nontrivial behavior was subsequently
confirmed within a completely different theoretical approach,
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namely, using the six-site cluster effective field theory approx-
imation [83].

At the same time, due to the simplicity of the model studied
in Refs. [82,83], in the sense that the model contains only
pure nearest-neighbor antiferromagnetic interaction and the
geometry of the octahedral lattice, it seems that the theoretical
studies [82,83] describe the simplest possible mechanism for
the very existence of weak ferromagnetism in the frustrated
antiferromagnetic systems. As was already mentioned, weak
ferromagnetism is generated through the simultaneous pres-
ence of the geometric frustration (given by the presence of
eight triangles in each elementary octahedron of the octahe-
dral lattice) and the bipartite properties of the model (given by
presence of three four-site cycles in each elementary octahe-
dron of the octahedral lattice).

However, it is also clear that, on the one hand, the ideal
lattice magnetic systems do not exist and, on the other hand,
very often, various additional interactions can be present in
the studied systems that can significantly change their total
magnetic properties. In this respect, a quite natural question
immediately arises, namely, whether weak ferromagnetism in
the antiferromagnetic system on the octahedral lattice will
exist (or preserve its existence) in such magnetic systems
when various additional interactions are present since, without
a doubt, their presence can significantly change the afore-
mentioned geometric properties of the pure antiferromagnetic
model on the octahedral lattice, which are responsible for
the very existence of the phenomenon of the weak ferromag-
netism.

In this respect, in this paper we intend to investigate in
detail the influence of the presence of the interacting spin
variables in the centers of all elementary octahedra on the
magnetic and thermodynamic properties of the pure antifer-
romagnetic system on the octahedral lattice. Our main goal is
to determine whether the weak ferromagnetism, which seems
to be a natural aspect of pure antiferromagnetic systems on
the octahedral lattice, can preserve its existence even under
the influence of additional antiferromagnetic or ferromagnetic
interactions between spin variables placed in the centers of all
elementary octahedra and spin variables placed in their ver-
tices. This problem will be studied using the recursive-lattice
approximation, i.e., we will analyze the corresponding classi-
cal spin-1/2 J1-J2 Ising model on the recursive body-centered
octahedral lattice that takes into account basic geometric
properties of the regular three-dimensional body-centered
octahedral lattice responsible for frustration. It is worth men-
tioning that the recursive approximation used represents an
extension of the well-known Bethe lattice approximation [84].
The main advantage of such an approach is the fact that the
exact solution of the model can be found and, as a result, all
magnetic and thermodynamic properties of the model can be
studied in the exact way. As will be shown, the presence of
such additional interaction in the antiferromagnetic system on
the octahedral lattice not only preserves the possibility of the
existence of the weak ferromagnetic behavior but, under some
conditions, can also lead to the appearance of the classical
spin-liquid behavior in such magnetic systems.

The paper is organized as follows. In Sec. II the model is
defined and its exact solution is presented. In Sec. III the phase

FIG. 1. Basic structure of the regular octahedral lattice.

diagram of the model is found, its magnetization properties
are discussed, and all phase transitions are identified. The ther-
modynamics of the model is discussed in Sec. IV. In Sec. V
the main results of the paper are reviewed and discussed.

II. FORMULATION OF THE MODEL
AND ITS EXACT SOLUTION

As was already mentioned in Introduction, our aim is to
investigate in detail the influence of the presence of the central
spin in each elementary octahedron on the magnetic as well as
thermodynamic properties of the antiferromagnetic system on
the octahedral lattice (see Fig. 1) in the framework of the cor-
responding classical spin-1/2 J1-J2 model on the octahedral
recursive lattice (see Fig. 2), where each elementary octahe-
dron has the internal structure explicitly shown in Fig. 3. In
what follows, the regular three-dimensional octahedron lattice
with the elementary structure shown in Fig. 3 will be referred
to as the body-centered octahedral (BCO) lattice. Similarly,
the recursive octahedron lattice with this elementary structure
will be referred to as the recursive BCO lattice.

As follows from Fig. 3, the model exhibits two different
interactions between adjacent sites, namely, the interaction
J1 between all nearest-neighbor pairs of spin variables in
the vertices of each elementary octahedron, which is always
antiferromagnetic (J1 < 0), and the interaction J2 between the
spin variable placed in the center of each elementary octahe-
dron (denoted by D in Fig. 3) and each individual spin variable
placed in the corresponding vertex of the same octahedron.
In addition, we will suppose that this interaction can have

FIG. 2. Basic structure of the octahedral recursive lattice.
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FIG. 3. Structure of each elementary octahedron of the BCO
lattice and of the recursive BCO lattice. The symmetry of the model
requires one to consider the existence of four different sublattices
denoted by A, B, C, and D. All solid lines represent the antiferromag-
netic interaction J1 and all dashed lines represent pair interactions
J2 between the central site (sublattice D) and sites in all vertices of
the elementary octahedron (sublattices A, B, and C), which can be
antiferromagnetic as well as ferromagnetic.

antiferromagnetic (J2 < 0) as well as ferromagnetic (J2 > 0)
character.

Thus, the Hamiltonian of the model has the form

H = −J1

∑
〈i j〉

sis j − J2

∑
〈ik〉′

sisk, (1)

where each spin variable si acquires one of the two possible
values ±1 and J1 and J2 are the aforementioned two interac-
tions of the model. Therefore, the first sum in Eq. (1) runs
over all nearest-neighbor lattice sites placed in the vertices
of elementary octahedrons of the BCO lattice (the solid lines
in Fig. 3) and the second sum runs over all nearest-neighbor
pairs of the spin variables, one of which is placed in the center
of an elementary octahedron of the lattice and the second is
placed in one of its six vertices (the dashed lines in Fig. 3).
Note that the analysis of the geometrically frustrated model
studied dictates the necessity to consider the existence of four
independent sublattices denoted by A, B, C, and D (see Fig. 3).

Since we intend to analyze the model described by the
Hamiltonian (1) on the corresponding recursive lattice that
approximates the regular BCO lattice (see Fig. 2), the general
partition function of the model

Z ≡
∑

s

e−βH =
∑

s

exp

⎛
⎝K1

∑
〈i j〉

sis j + K2

∑
〈ik〉′

sisk

⎞
⎠, (2)

where β = 1/kBT , T is the temperature, kB is the Boltzmann
constant, K1 = βJ1, K2 = βJ2, and the sum over s is taken
over all possible spin configurations on the lattice, can be
rewritten in the recursive form (see Ref. [84] for the general
technical details of the recursive-lattice technique)

Z =
∑

s
(Ai )
n ,s

(Bi )
n ,s

(Ci )
n ,s(D)

n

exp
{
K1

[(
s(A1 )

n + s(A2 )
n

)(
s(B1 )

n + s(B2 )
n + s(C1 )

n + s(C2 )
n

) + (
s(B1 )

n + s(B2 )
n

)(
s(C1 )

n + s(C2 )
n

)]}

× exp
[
K2s(D)

n

(
s(A1 )

n + s(A2 )
n + s(B1 )

n + s(B2 )
n + s(C1 )

n + s(C2 )
n

)]
un

(
s(A1 )

n

)
un

(
s(A2 )

n

)
vn

(
s(B1 )

n

)
vn

(
s(B2 )

n

)
wn

(
s(C1 )

n

)
wn

(
s(C2 )

n

)
. (3)

Here it is supposed that the recursive BCO tree has n lay-
ers, s(Xi )

n for X ∈ {A, B,C} and i ∈ {1, 2} represent the spin
variables of two different sites on the sublattice X within
the central octahedron, s(D)

n represents the corresponding spin
variable of the central site of the central octahedron, and
un(s(Ai )

n ), vn(s(Bi )
n ), and wn(s(Ci )

n ) represent the partition func-
tions of six independent branches of the whole recursive BCO
tree with base sites Ai, Bi, and Ci, respectively, through which
they are connected to the central octahedron. The quantities
un(s(Ai )

n ), vn(s(Bi )
n ), and wn(s(Ci )

n ) for i = 1 and 2 can be de-
termined recursively by solving the corresponding system of
recursive relations. However, it is more suitable to work with
a simpler system of three independent recursion relations for

quantities xn, yn, and zn defined by the ratios

xn = un(+)/un(−), (4)

yn = vn(+)/vn(−), (5)

zn = wn(+)/wn(−). (6)

For instance, the recursion relation for xn has the explicit
form

xn = X1(xn−1, yn−1, zn−1)

X0(xn−1, yn−1, zn−1)
, (7)

where

X1(a, b, c) = a{2b[c2e4K1 cosh(4K2) + 2c cosh(2K2) + e−4K1 ] + b2[c2e12K1 cosh(6K2) + 2ce4K1 cosh(4K2)

+ e−4K1 cosh(2K2)] + (c2 + 1)e−4K1 cosh(2K2) + 2ce−4K1} + b2[c2e4K1 cosh(4K2) + 2c cosh(2K2)

+ e−4K1 ] + 2b[(c2 + 1) cosh(2K2) + 2c] + c2e−4K1 + e4K1 cosh(4K2) + 2c cosh(2K2) (8)

and

X0(a, b, c) = a{b2[c2e4K1 cosh(4K2) + 2c cosh(2K2) + e−4K1 ] + 2b[(c2 + 1) cosh(2K2) + 2c] + c2e−4K1

+2c cosh(2K2) + e4K1 cosh(4K2)} + b2[(c2 + 1)e−4K1 cosh(2K2) + 2ce−4K1 ] + e12K1 cosh(6K2)

+2b[c2e−4K1 + 2c cosh(2K2) + e4K1 cosh(4K2)] + c2e−4K1 cosh(2K2) + 2ce4K1 cosh(4K2). (9)
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At the same time, due to the symmetry of the studied model,
the recursion relations for yn and zn in Eqs. (5) and (6) are
also defined by functions X1 and X0 with the appropriate
interchange of the variables, namely,

yn = X1(yn−1, xn−1, zn−1)

X0(yn−1, xn−1, zn−1)
, (10)

zn = X1(zn−1, yn−1, xn−1)

X0(zn−1, yn−1, xn−1)
. (11)

The physical properties of all possible phases of the studied
model are driven by the physically relevant (real and positive)

stable fixed points of the system of three recursion rela-
tions (7), (10), and (11) with coordinates x, y, and z obtained
in the limit n → ∞, i.e., x = limn→∞ xn, y = limn→∞ yn, and
z = limn→∞ zn.

For completeness, let us also note that the coordinates
x, y, and z of each stable fixed point of the recursion rela-
tions (7), (10), and (11) must belong to the set of all solutions
of the system of three polynomial equations with respect to
x, y, and z obtained from the recursion relations (7), (10),
and (11) in the limit n → ∞. For instance, the corresponding
polynomial equation obtained from the recursion relation (4)
can be written as

− e8K1 cosh(4K2){x2(y2z2 + 1) − 2x[y2z + y(z2 − 1) − z] − y2z2 − 1} − cosh(2K2)(yz + 1)

× [2e4K1 (x2 − 1)(y + z) + x(yz − 1)] + e16K1 x cosh(6K2)(y2z2 − 1) − 4e4K1 (x2 − 1)yz − x2(y2 + z2)

− 2x(y2z + yz2 − y − z) + y2 + z2 = 0. (12)

At the same time, due to the symmetry of the studied problem, the equations that correspond to the recursion relations (10)
and (11) can be again obtained directly from Eq. (12) by a simple interchange of variables x ↔ y and x ↔ z, respectively.

When (for given values of the parameters of the model) a single physically relevant stable fixed point of the recursion
relations (7), (10), and (11) exists it describes the magnetic as well as thermodynamic properties of the corresponding unique
phase of the model. However, more than one such recursively stable fixed point can exist for given values of the model
parameters that correspond to possible different phases of the model. In such situations, the knowledge of the free energy
can be used to determine which phase represents the genuine thermodynamically stable phase of the model. In this respect, the
thermodynamically stable phase is the phase described by the recursively stable fixed point, for which the value of the free energy
is the smallest. In our case, the free energy per site f of the studied model can be derived using, e.g., the technique described in
Ref. [85] and has the form

β f = 1

4
ln

(
e4K1+6K2 F 2

1

F2F3F4

)
, (13)

where

F1 = e16K1 (e12K2 + 1)(x2y2z2 + 1) + 2(e8K2 + 1)e8K1+2K2 [x2yz(y + z) + xy2z2 + x + y + z]

+ 4[x2yz + x(y2z + yz2 + y + z) + yz](e4K2 + 1)e4(K1+K2 ) + 16xyze4K1+6K2 + 4e6K2 [x2(y + z)

+ x(y2 + z2) + yz(y + z)] + e4K2 (e4K2 + 1)[x2(y2 + z2 + 1) + y2(z2 + 1) + z2], (14)

F2 = (e8K2 + 1)e8K1+2K2 (x2y2z + 2x + 2y + z) + 2(e4K2 + 1)e4(K1+K2 )[x2yz + x(y2z + 2y + z) + yz] + 8xyze4K1+6K2

+ e16K1 (e12K2 + 1) + 2e6K2 (x2(2y + z) + 2xy2 + y2z) + e4K2 (e4K2 + 1)[x2(y2 + 1) + y2], (15)

and the explicit form of the functions F3 and F4 can be ob-
tained from the function F2 by the interchange of the variables
z ↔ x and z ↔ y, respectively.

Finally, let us note that the existence of the explicit expres-
sion for the free energy per site of the model as a function
of the model parameters and of the coordinates of the fixed
points of the system of the recursion relations makes the
model exactly solvable, i.e., it allows one to perform not
only a complete analysis of the phase transitions but also to
investigate in detail its thermodynamics.

III. PHASE DIAGRAM AND MAGNETIZATION
PROPERTIES OF THE MODEL

Let us start with the investigation of the magnetization
properties of the model, which will also allow us to identify
all model phases. Since four different sublattices denoted by

A, B, C, and D must be considered for an unambiguous de-
scription of the model (see Fig. 3), four different sublattice
magnetizations per site mA, mB, mC , and mD have to be defined
(mX ≡ 〈s(X )

n 〉, X = A, B, C, or D) with the total magnetization
per site m = (mA + mB + mC + mD)/4, which has the explicit
form

m = m1

2m0
, (16)

where

m1 = e16K1 (2e12K2 + 1)(x2y2z2 − 1) + (3e8K2 + 1)

× e8K1+2K2 [x2yz(y + z) + x(y2z2 − 1) − y − z]

+ 4e4K1+8K2{x2yz + x[y2z + y(z2 − 1) − z] − yz}
+ e8K2 (x2(y2 + z2 − 1) + y2(z2 − 1) − z2) (17)
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and

m0 = e16K1 (e12K2 + 1)(x2y2z2 + 1) + 2(2e8K2 + 1)

× e8K1+2K2 [x2yz(y + z) + xy2z2 + x + y + z]

+ 4[x2yz + x(y2z + yz2 + y + z) + yz](e4K2 + 1)

× e4(K1+K2 ) + 16xyze4K1+6K2 + 4e6K2 [x2(y + z)

+ x(y2 + z2) + yz(y + z)] + e4K2 (e4K2 + 1)

× [x2(y2 + z2 + 1) + y2(z2 + 1) + z2], (18)

where, as always, x, y, and z are coordinates of the correspond-
ing physically relevant stable fixed point of the system of the
recursion relations given in Eqs. (7), (10), and (11).

As was already mentioned, our aim is to investigate the
influence of the presence of the central spin variables in each
elementary octahedron of the BCO lattice on its properties in
the framework of the studied recursive-lattice approximation.
For this purpose, it is convenient to define the parameter
α = J2/|J1| as well as the reduced temperature kBT/|J1| and
to investigate various model properties as functions of these
two independent dimensionless parameters. In this case, the
assumption α = 0 leads to the pure antiferromagnetic model
on the recursive octahedral lattice studied in Ref. [82] but
with noninteracting spin-1/2 atoms present in the centers of
all elementary octahedra of the lattice. Note, however, that
the presence of such noninteracting particles in the model
changes the numerical values of some quantities such as the
total magnetization per site, but qualitatively the model is
completely equivalent to the model without the presence of
such a “decoration” studied in Ref. [82].

The analysis performed in Ref. [82] in the framework
of the antiferromagnetic model on the recursive octahedral
lattice without the spin variables present in the centers of
the elementary octahedra has predicted the existence of the
weak ferromagnetic behavior below the critical temperature
with a very small but nonzero total magnetization. It is worth
mentioning that the possibility of the existence of weak ferro-
magnetism in the antiferromagnetic system on the octahedral
lattice was also confirmed in the framework of the correspond-
ing effective field theory analysis [83].

In this respect, as follows from Figs. 4 and 5, where the
dependence of the absolute value of the total magnetization
of the model on the reduced temperature kBT/|J1| is shown
for various relatively small negative and positive values of the
parameter α (0 � |α| � 1), i.e., for small antiferromagnetic as
well as ferromagnetic values of the interaction J2, the presence
of the weak ferromagnetic behavior remains preserved even
when the interaction J2 is switched on but is restricted to
a temperature interval, the length of which decreases with
the increasing of the absolute value of α. At the same time,
these temperature intervals are the same for the antiferromag-
netic and ferromagnetic cases. However, the absolute value
of the total magnetization exhibits different behavior for the
ferromagnetic (J2 > 0) case in comparison to the antiferro-
magnetic (J2 < 0) case. For convenience, let us denote these
two phases with weak ferromagnetism present by WF1 (for
α < 0) and WF2 (for α > 0).

The analysis also shows that the presence of the antiferro-
magnetic form of the weak ferromagnetism (i.e., for J2 < 0)

FIG. 4. Absolute value of the total magnetization of the model as
a function of the reduced temperature kBT/|J1| for various negative
values of the parameter α from the interval −1 � α � 0, i.e., when
the interaction J2 has antiferromagnetic character.

as well as of the ferromagnetic form (i.e., for J2 > 0) com-
pletely disappears when |α| > 1.31. Moreover, for any given
value of the parameter α from the interval 0 < |α| < 1.31,
there exists an interval of low temperatures for which an
another phase is realized with zero value of the total mag-
netization. At the same time, as it also follows from Figs. 4
and 5, the transition between this phase and the phase WF1 or
WF2 (for a given value of the parameter α from the interval
0 < |α| < 1.31) is realized at the corresponding transition
temperature of the first-order phase transition, at which the
phase with zero total magnetization and the phase WF1 or

FIG. 5. Temperature dependence of the absolute value of the
total magnetization of the model for various positive values of the
parameter α from the interval 0 � α � 1, i.e., when the interaction
J2 is ferromagnetic. The corresponding total magnetization curves
for negative values of α are also shown for comparison (see also
Fig. 4).
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FIG. 6. Dependence of the sublattice magnetizations mA, mB,
mC , and mD on the reduced temperature kBT/|J1| for α = −1
with the first-order phase transitions between the antiferromagnetic
phase AFN (see the text) and weak ferromagnetic phase WF1 at
the corresponding transition temperature kBTt/|J1| as well as with
the second-order phase transitions between the weak ferromagnetic
phase WF1 and the paramagnetic phase P at the corresponding criti-
cal temperature kBTc/|J1|.

WF2 coexist. To understand the essence of this phase, it is nec-
essary to analyze the behavior of all sublattice magnetizations
of the model as functions of the reduced temperature. In this
respect, the typical behavior of all sublattice magnetizations of
the model in the interval 0 < |α| < 1.31 is shown explicitly
in Figs. 6 and 7 for α = −1 and α = 1, respectively, in the
case with positive total magnetization of phases WF1 and
WF2 (see Figs. 4 and 5). Note that, due to the symmetry
among sublattices A, B, and C, there also exist physically
equivalent solutions with mutual exchange of the sublattice
magnetizations mA, mB, and mC .

As follows from Figs. 6 and 7, the phase realized at low
temperatures with the zero total magnetization behaves as
a genuine antiferromagnetic (Néel) phase with two nonzero
sublattice magnetizations that have the same absolute value
but different signs (the sublattice magnetizations mA and mB in
Figs. 6 and 7) and with zero value of the sublattice magnetiza-
tion mD as well as of one of the other sublattice magnetizations
(the sublattice magnetization mC in Figs. 6 and 7). It is also
worth mentioning that this antiferromagnetic phase has com-
pletely the same magnetization properties as in the case with
−1.31 < α < 0 as well as for 0 < α < 1.31 and, in what
follows, will be referred to as the AFN phase.

It is interesting that, as also follows from Figs. 6 and 7,
the difference between weak ferromagnetic phases WF1 and
WF2 is given only by a different behavior of the sublattice
magnetization mD, i.e., of the magnetization on the central
sites of the elementary octahedra. More specifically, in the
case of a positive value of the total magnetization m, the mD is
negative for the phase WF1 and is positive for the phase WF2.
Note that the absolute value of mD is the same in both cases.

FIG. 7. Dependence of the sublattice magnetizations mA, mB, mC ,
and mD on the reduced temperature kBT/|J1| for α = 1 with the first-
order phase transitions between the antiferromagnetic phase AFN
(see the text) and weak ferromagnetic phase WF2 at the correspond-
ing transition temperature kBTt/|J1| as well as with the second-order
phase transitions between the weak ferromagnetic phase WF2 and
the paramagnetic phase P at the corresponding critical temperature
kBTc/|J1|.

At the same time, the sublattice magnetizations mA, mB, and
mC behave completely identically, namely, two of them are
equal to each other (mA = mB in Figs. 6 and 7) and the third
one has a different value as well as sign.

The realization of the first-order phase transitions between
phase AFN and phases WF1 and WF2 at the corresponding
reduced transition temperature kBTt/|J1| is also clearly vis-
ible on the sublattice magnetization level in Figs. 6 and 7.
On the other hand, the transitions from phases WF1 and WF2

to the paramagnetic phase (denoted by P in Figs. 6 and 7) are
the second-order phase transitions realized at the correspond-
ing critical temperature kBTc/|J1|.

For completeness, let us also note that for α = 0 the weak
ferromagnetic phase exists down to zero temperature, where
the corresponding ground state is formed with the absolute
value of the total magnetization |m| ≈ 0.015 81. This mag-
netization value is equal to 3/4 of the absolute value of
the total magnetization |m| = 0.021 08 obtained in Ref. [82]
within the antiferromagnetic spin-1/2 Ising model on the
pure octahedral recursive lattice (without the presence of cen-
tral sites within each elementary octahedron). The difference
is caused by different numbers of spin variables in these
two cases, with respect to which the total magnetization is
calculated.

As was already mentioned, the weak ferromagnetic phases
WF1 and WF2 are realized in the interval 0 < |α| < 1.31. On
the other hand, the analysis shows that the antiferromagnetic
phase AFN exists up to |α| < 4 with the same magnetization
properties and with direct transition from the phase AFN to
the paramagnetic phase P at the corresponding critical tem-
peratures of the second-order phase transitions in the interval
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FIG. 8. Behavior of the total magnetization m and of the sublat-
tice magnetizations mA, mB, mC , and mD of the model (in the case
with positive values of the total magnetization) as a function of the
reduced temperature kBT/|J1| for various values of the parameter
α � −4 with the explicit formation of two different ground states
for α = −4 and α < −4.

1.31 < |α| < 4. Also note that, for a given absolute value of α

from the interval 1.31 < |α| < 4, the value of the correspond-
ing reduced critical temperature is again the same for α < 0
and α > 0.

Finally, the behavior of the total magnetization m of the
model in the case of its positive value together with the cor-
responding behavior of the sublattice magnetizations mA, mB,
mC , and mD as a function of the temperature is shown for vari-
ous values |α| � 4 in Figs. 8 and 9. The analysis shows (as it is
also clear from Figs. 8 and 9) that, for a given absolute value
of the parameter |α| � 4, the sublattice magnetizations mA,
mB, and mC are always equal to each other. Moreover, their
values do not depend on the sign of the parameter α. At the
same time, the absolute value of the sublattice magnetization
mD is also independent of the sign of α, but mD is negative
when α < 0 and is positive when α > 0 (in the case when total
magnetization is positive). Note also that the absolute value of
mD is equal to the value of mA = mB = mC at zero temperature
but only for α > 4. In this case, mA = mB = mC = |mD| = 1
at zero temperature.

It is also evident in Fig. 9 that the phase formed for α � 4
has clear ferromagnetic properties with the saturated mag-
netization |m| = 1 in the zero-temperature limit for α > 4
and with the second-order phase transitions to the paramag-
netic phase at the corresponding reduced critical temperature.
Therefore, for convenience, let us denote this phase by F.
However, it is also evident that two different ground states are
formed from this phase in the zero-temperature limit. One of
them is a single-point-like ground state formed for α = 4 with
the absolute value of the total magnetization

|m| = 23
√

3 − √
2

60
≈ 0.640 38 (19)

FIG. 9. Behavior of the total magnetization m and of the sublat-
tice magnetizations mA, mB, mC , and mD of the model (in the case
with positive values of the total magnetization) as a function of the
reduced temperature kBT/|J1| for various values of the parameter
α � 4 with the explicit formation of two different ground states for
α = 4 and α > 4.

and the second one is the aforementioned saturated plateaulike
ground state with the absolute value of the total magnetization
|m| = 1 realized for α > 4 in the zero-temperature limit.

On the other hand, the phase formed for α � −4 also
exhibits a nonzero value of total magnetization (see Fig. 8).
However, since in this case all interactions are antiferromag-
netic within the spin-1/2 model, for convenience, let us denote
this phase by AF. At the same time, it is again easy to see that
this phase also splits into two different ground states in the
zero-temperature limit. One of them is another single-point-
like ground state formed for α = −4 with the absolute value
of the total magnetization

|m| = 7
√

3 + √
2

60
≈ 0.225 64 (20)

and the second one is the plateaulike ground state with |m| =
0.5.

Thus, all phases of the model are identified now with first-
order phase transitions between the antiferromagnetic phase
AFN and the weak ferromagnetic phases WF1 and WF2. On
the other hand, all phase transitions into the paramagnetic
phase P are second-order phase transitions at the correspond-
ing critical points. All of them are determined by the same
general equation, the explicit form of which can be written as

(−4e4(K1+K2 ) + e2(4K1+K2 ) − 4e4(K1+2K2 )

+ e4(4K1+3K2 ) − 4e4K1+6K2 + e8K1+10K2

+ e16K1 − e4K2 − 6e6K2 − e8K2 )(8e4(K1+K2 )

+ 4e2(4K1+K2 ) + 8e4(K1+2K2 ) + e4(4K1+3K2 )

+ 8e4K1+6K2 + 4e8K1+10K2 + e16K1 − e4K2 − e8K2 ) = 0,

(21)
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FIG. 10. Phase diagram of the model in the plane α versus
kBT/|J1| with six different phases (see the text). All solid curves
represent the second-order phase transitions between any ordered
phase and the paramagnetic one (P). The dashed curves between
the genuine antiferromagnetic phase AFN and two phases WF1

and WF2 with weak ferromagnetism present denote the first-order
phase transitions, which end on the corresponding curves of the
second-order phase transitions at the critical points with coordinates
{α, kBTc/|J1|} ≈ {±1.31, 1.6522} (see the two black circles). The
dashed line for α = 0 that ends at the critical point kBTc/|J1| ≈
1.592 59 represents the weak ferromagnetic phase of the model with-
out the interaction J2.

and, after simple algebraic manipulations, one can find that
the critical temperature kBTc/|J1| for a given value of the
parameter α is given as

kBTc

|J1| = 2

ln qc
, (22)

where qc is the unique real solution of the equation

(q6α − 4q3(α+2) − q4(α+2) − 4q2(α+3) + qα+4 − q2(α+4)

− 4q2(2α+3) − 6q3α+8 + q5α+4 + 1)(q6α + 8q3(α+2)

− q4(α+2) + 8q2(α+3) + 4qα+4 − q2(α+4) + 8q2(2α+3)

+ 4q5α+4 + 1) = 0 (23)

with respect to q with the natural condition q > 1. Note that
both factors in Eq. (23) are important since they determine the
second-order phase transitions from different phases into the
paramagnetic one.

The full phase diagram of the model in the plane α versus
kBT/|J1| is shown in Fig. 10, where all solid curves repre-
sent positions of the second-order phase transitions from all
ordered phases into the paramagnetic phase P. At the same
time, the first-order phase transitions between the phase AFN
and any of two phases with the weak ferromagnetic behav-
ior present (phases WF1 and WF2) are denoted by the two
corresponding dashed curves. Note that these curves end on
the curves of the second-order phase transitions at the criti-
cal points with coordinates {α, kBTc/|J1|} ≈ {±1.31, 1.6522}
(see the two corresponding black circles in Fig. 10). Finally,

FIG. 11. Behavior of the total magnetization m and of the sub-
lattice magnetizations mA, mB, mC , and mD of the model (in the case
with positive values of the total magnetization) as a function of the
reduced temperature kBT/|J1| for α = −3.88 with the existence of
three consecutive second-order phase transitions.

the central dashed line, i.e., the dashed line for α = 0 that
separates phases WF1 and WF2, which ends at the critical
point {α, kBTc/|J1|} ≈ {0, 1.592 59} (see the central circle in
Fig. 10), represents the weak ferromagnetic phase in the
model without the interaction J2, which corresponds to the
weak ferromagnetic phase studied in Ref. [82].

The form of the curves of the second-order phase tran-
sitions between the antiferromagnetic phase AF and the
paramagnetic phase as well as between the ferromagnetic
phase F and the paramagnetic one (see Fig. 10) shows that
there exist a small interval of the parameter α, namely, 3.78 <

|α| < 4, for which the phase AF exists even for α > −4
and the phase F exists even for α < 4. The existence of
this reentrant phenomenon in the studied model can also be
seen in the behavior of the magnetization. In this respect, the
temperature dependence of the total and sublattice magnetiza-
tions of the model (in the case with the total magnetization
m � 0) is shown in Figs. 11 and 12 for α = −3.88 and
α = 3.88, respectively, where three consecutive second-order
phase transitions are present, namely, the phase transition
from the phase AFN to the paramagnetic phase P followed
by the phase transition from the paramagnetic phase to the
antiferromagnetic phase AF (for α = −3.88) or ferromagnetic
phase F (for α = 3.88) and, finally, from the phase AF or from
the phase F back to the paramagnetic phase. Note that the
existence of the reentrant behavior is a relatively widespread
type of magnetic behavior especially in spin glasses (see, e.g.,
Refs. [86–89] and references cited therein).

It is also instructive to discuss briefly the typical de-
pendence of the total magnetization and all sublattice
magnetizations as a function of the parameter α for a given
value of the reduced temperature. In this respect, such a
dependence is shown in Figs. 13 and 14 for kBT/|J1| = 1
in the case with a positive value of total magnetization m.
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FIG. 12. Behavior of the total magnetization m and of the sub-
lattice magnetizations mA, mB, mC , and mD of the model (in the
case with positive values of the total magnetization) as a function
of the reduced temperature kBT/|J1| for α = 3.88 with the existence
of three consecutive second-order phase transitions.

As follows from Fig. 13, from the pure total magnetization
behavior of the model, one can unambiguously identify the
positions of two second-order and two first-order phase tran-
sitions. At the same time, as follows from Fig. 14, where the
behavior of all sublattice magnetizations is present, the model
exhibits two additional second-order phase transitions, which
are invisible in the total magnetization behavior. Finally,
the magnetization properties of all ground states of the model
are shown in Fig. 15, where the existence of three different

FIG. 13. Behavior of the total magnetization m of the model as a
function of the parameter α for the reduced temperature kBT/|J1| = 1
with the evident presence of two second-order and two first-order
phase transitions.

FIG. 14. Same behavior of the total magnetization m as in Fig. 13
together with the corresponding behavior of all sublattice mag-
netizations mA, mB, mC , and mD with the clear presence of four
second-order and two first-order phase transitions between various
phases of the model.

plateaulike ground states and three different single-point-like
ground states can be clearly seen.

For completeness, let us also note that, since, in terms of
critical phenomena, the studied model on the BCO lattice
(like any model on an arbitrary recursive lattice) belongs
to the mean-field class of universality, all critical exponents
of the model are equal to those of the mean-field theory.

FIG. 15. Magnetization properties of all ground states of the
model. The plateaulike ground states are formed for the AF phase
with |m| = 0.5 (formed forα < −4), for the AFN phase with m = 0
(formed in the interval 0 < |α| < 4), and for the F phase with satu-
rated magnetization |m| = 1 (formed for α > 4), which are separated
by three different single-point-like ground states formed at α = −4
with |m| ≈ 0.225 64, at α = 0 with |m| ≈ 0.015 81, and at α = 4
with |m| ≈ 0.640 38.
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FIG. 16. Entropy properties of all ground states of the model.
The entropy of all plateaulike ground states is equal to zero. On
the other hand, all single-point-like ground states are highly macro-
scopically degenerated with the same values of the residual entropy
s ≈ 0.242 03 kB as the ground states formed at α = ±4 and s ≈
0.385 33 kB as the most degenerated ground state of the model
formed at α = 0.

IV. ENTROPY AND SPECIFIC HEAT OF THE MODEL

Having the explicit expression for the free energy per site
of the model given in Eqs. (13)–(15) as a function of the
model parameters and of the coordinates of the fixed points
of the recursive relations (7), (10), and (11), one not only can
investigate the phase transitions of the model but also study its
thermodynamic properties. In this respect, in what follows, we
will be interested in its entropy properties through the analysis
of the entropy per site s ≡ −∂ f /∂T of the model as well
as in its specific-heat properties through the analysis of the
specific heat at the constant magnetic field cH ≡ T ∂s/∂T =
−T ∂2 f /∂T 2.

First, it is important to stress that the thermodynamic
properties of the model depend on the absolute value of the
parameter α but are independent of its sign. This nontrivial
property of the studied model is seen, e.g., in Fig. 16, where
the entropy properties of all model ground states are shown.
As follows from this figure, all plateaulike ground states of
the model have zero entropy. On the other hand, all three
single-point-like ground states realized for α = 0 and ±4 are
highly macroscopically degenerated with the residual entropy
per site

s = kB

4
ln

(
1 + 2

√
2

3

)
≈ 0.242 03 kB (24)

valid for α = ±4 and

s ≈ 0.385 33 kB (25)

obtained for α = 0. Note that this value is different
from the corresponding residual entropy per site s ≈
0.282 72 kB of the antiferromagnetic model on the recursive
octahedral lattice without the central spin variables [90] since,
in the case of the presence of the noninteracting (α = 0)

FIG. 17. Dependence of the entropy of the model on the reduced
temperature for |α| = 0 and 4 with the explicit formation of nonzero
residual entropies as well as for |α| = 1, which represents typical
entropy behavior of the model in the interval 0 < |α| < 1.31 with
the first- and second-order phase transitions present at the corre-
sponding transition (kBTt/|J1|) and critical (kBTc/|J1|) temperatures,
respectively.

central sites with spin 1/2, they contribute to the total entropy
per site of the system by the maximal entropy kB ln 2. This fact
increases the total value of the residual entropy per site of the
studied system to the value given in Eq. (25).

The formation of these two residual entropies is explicitly
shown in Fig. 17, where the temperature dependence of the
entropy per site of the model is shown for |α| = 0 and 4
as well as for |α| = 1, which represents the typical entropy
behavior of the model in the interval 0 < |α| < 1.31, where
two consecutive phase transitions are present. The first of
them is the first-order phase transition from the phase AFN
into the phase WF1 or WF2 at the corresponding transition
temperature kBTt/|J1| with very small discontinuity in the
entropy behavior and the second one is the second-order phase
transition from the phase WF1 or WF2 into the paramagnetic
phase P (see Fig. 10) at the corresponding critical temperature
kBTc/|J1|. The presence of these two consecutive phase tran-
sitions is more clearly visible in the behavior of the specific
heat shown in Fig. 18.

The existence of the highly macroscopically degenerated
ground states formed at |α| = 0 and 4 should naturally lead to
the formation of the anomalous second (Schottky) peak in the
temperature dependence of the specific heat at low tempera-
tures in their vicinity related to the presence of large entropy
changes. Such behavior is demonstrated in Figs. 19 and 20,
where the temperature dependence of the entropy (Fig. 19)
and of the specific heat (Fig. 20) is shown for |α| = 4.2 with
the explicit presence of the Schottky peak in the specific-heat
behavior at low temperatures as well as with discontinuity
at the reduced critical temperature of the second-order phase
transition from the phase AF (for α = −4.2) or F (for α =
4.2) into the paramagnetic one. Of course, similar behavior is
also expected for α from the left vicinity of |α| = 4. However,

024106-10



PERSISTENCE OF WEAK FERROMAGNETISM IN … PHYSICAL REVIEW E 109, 024106 (2024)

FIG. 18. Temperature dependence of the specific heat of the
model for |α| = 1, which represents typical behavior of the specific
heat in the interval 0 < |α| < 1.31 with two discontinuities present
at the transition and critical temperatures.

as can be seen in Figs. 21 and 22, where the temperature
dependence of the entropy and specific heat of the model
is shown for |α| = 3.88, the anomalous low-temperature be-
havior of the specific heat is completely suppressed by the
large changes of the specific heat related to the presence of
the second-order phase transition from the phase AFN into
the paramagnetic phase at the critical temperature denoted by
kBTc1/|J1|.

For completeness, it is also instructive to present a typical
dependence of the entropy per site as well as of the specific

FIG. 19. Temperature dependence of the entropy per site of the
model for |α| = 4.2, which leads to the appearance of the anomalous
(Schottky) behavior of the specific heat (see Fig. 20). The critical
temperature kBTc/|J1| denotes the position of the second-order phase
transition from the AF or F phase to the paramagnetic one (see
Fig. 10).

FIG. 20. Temperature dependence of the specific heat of the
model for |α| = 4.2 with the explicit presence of the additional
(Schottky) peak at low temperatures.

heat of the model on the parameter α at low enough temper-
atures. Such a dependence is shown in Figs. 23 and 24 for
kBT/|J1| = 1, where the presence of all six phase transitions
between various phases is demonstrated. The explicit forma-
tion of giant entropy spikes at low temperatures in the vicinity
of α = 0 and |α| = 4 is also visible here, which is related to
the existence of two different highly macroscopically degen-
erated single-point-like ground states formed for α = 0 and
|α| = 4 in the zero-temperature limit (see Fig. 16). Note that
such behavior of the entropy is typical for frustrated magnetic
systems (see, e.g., Refs. [22,91]).

Finally, let us also briefly discuss the following interesting
fact that allows one to think about the possibility of the ex-
istence of spin-liquid-like behavior within the studied model.

FIG. 21. Temperature dependence of the entropy per site of the
model for |α| = 3.88 with three consecutive second-order phase
transitions.
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FIG. 22. Temperature dependence of the specific heat of the
model for |α| = 3.88 with three consecutive second-order phase
transitions.

As follows from the phase diagram of the model shown ex-
plicitly in Fig. 10, the paramagnetic phase exists even down
to zero temperatures in the close vicinity of the frustrated
highly macroscopically degenerated ground states formed at
α = ±4. The closeness to these highly macroscopically de-
generated ground states means that the paramagnetic phase
in these regions is also highly degenerated. Moreover, as
also follows from Fig. 10, the paramagnetic phase in these
regions is bounded from the left and from the right by the
curves of the second-order phase transitions. This means
that the paramagnetic phase in these regions is (i) highly

FIG. 23. Dependence of the entropy per site of the model on the
parameter α for kBT/|J1| = 1 with two first-order (dashed vertical
lines) and four second-order (dotted vertical lines) phase transitions
explicitly present between corresponding phases.

FIG. 24. Dependence of the specific heat of the model on the
parameter α for kBT/|J1| = 1 with two first-order (dashed vertical
lines) and four second-order (dotted vertical lines) phase transitions
explicitly present between corresponding phases.

degenerated, (ii) highly correlated, and (iii) without the pres-
ence of strong thermal fluctuations, i.e., it has the properties
of the so-called cooperative paramagnet [5,92]. At the same
time, the ground states formed directly at α = ±4 are critical
points, i.e., they also represent strongly correlated states of the
model. All these facts allow one to consider the ground states
formed at α = ±4 as well as their close paramagnetic sur-
roundings as regions with classical spin-liquid-like behavior
present.

V. CONCLUSION

Let us recapitulate the main results obtained in the present
paper, where we have investigated the antiferromagnetic spin-
1/2 Ising model on the three-dimensional octahedral lattice
influenced by the presence of spin variables in the cen-
ters of all elementary octahedra with the ferromagnetic or
the antiferromagnetic interactions between these central sites
and the vertices of elementary octahedra. The properties of
such a model on the BCO lattice were investigated using
the recursive-lattice technique (approximation), in the frame-
work of which the model was considered on the recursive
BCO lattice that takes into account basic geometric prop-
erties of the regular BCO lattice responsible for frustration.
The exact solution of the model was found, in the sense
that the explicit expression for the free energy of the model
was derived as a function of the parameters of the model
as well as of the coordinates of the physically relevant sta-
ble fixed points of the corresponding system of recursion
relations.

The phase diagram of the model was found and the po-
sitions of all phase transitions between various phases were
determined. Moreover, the explicit form of the equation that
drives the positions of all second-order phase transitions of
the model was derived. It was shown that the general form
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of the phase diagram is symmetric with respect to the sign of
the interaction between the central sites and the vertex sites
of elementary octahedra, i.e., it is the same regardless of the
ferromagnetic or antiferromagnetic nature of this interaction.
It was also shown that while the magnetization properties of
the corresponding phases depend on whether the interaction
is ferromagnetic or antiferromagnetic, their thermodynamic
properties are completely the same.

One of the most interesting and important result of the
present study is the fact that the so-called weak ferro-
magnetism, the existence of which in the antiferromagnetic
systems on the octahedral lattice was predicted recently in the
framework of the recursive-lattice approach [82] as well as
in the framework of the corresponding effective field theory
approximation [83], is preserved even in the studied classical
spin-1/2 J1-J2 model on the recursive BCO lattice regard-
less of the character (sign) of the interaction J2 between the
central sites and the vertex sites of the elementary octahedra.
However, since the magnetization properties of the weak fer-
romagnetic phase for J2 < 0 (the antiferromagnetic case) and
J2 > 0 (the ferromagnetic case) are different (see Figs. 4–7),
two different weak ferromagnetic phases could be identified,
which were denoted by WF1 and WF2 (see Fig. 10). From a
physical point of view, this nontrivial conclusion can indicate
that the phenomenon of weak ferromagnetism in antiferro-
magnetic systems on lattices with the octahedral structure is
rather stable, in the sense that it can be observed even in rather
large intervals of the parametric space of generalized models

(e.g., as in the studied model with spin variables in the centers
of all elementary octahedra).

Our analysis also showed that another interesting phe-
nomenon can exist under some conditions (at least in
principle) in the magnetic systems on the BCO lattice. More
specifically, it was shown that the paramagnetic phase can
exist down to zero temperature in the studied magnetic system
in the close vicinity of the highly macroscopically degener-
ated single-point-like ground states formed at |α| = |J2/J1| =
4. Note that this high macroscopic degeneracy (the nonzero
residual entropy) of these ground states is caused by the
presence of frustration. Moreover, the paramagnetic phase in
this region is bounded from the left and from the right by the
curves of the second-order phase transitions (see Fig. 10) and
therefore forms the so-called cooperative paramagnet [5]. All
these facts, together with the fact that the ground states formed
at |α| = 4 are also critical points, allows one to consider the
single-point-like ground states formed at α = ±4 together
with their immediate paramagnetic surroundings as potential
regions with the existence of the classical spin-liquid-like
behavior [5].
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Pristáš, E. Gažo, J. Bačkai, P. Diko, A. Dukhnenko, N.
Shitsevalova, K. Siemensmeyer, and K. Flachbart, Phys. Rev.
B 102, 174422 (2020).

[26] N. Terada and H. Mamyia, Nat. Commun. 12, 1212 (2021).
[27] X. Tang, A. Sepehri-Amin, N. Terada, A. Martin-Cid, I.

Kurniawan, S. Kobayashi, Y. Kotani, H. Takeya, J. Lai, Y.
Matsushita, T. Ohkubo, Y. Miura, T. Nakamura, and K. Hono,
Nat. Commun. 13, 1817 (2022).
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