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Concurrence distribution in excited states of the one-dimensional spin-1/2 transverse-field XY
model: Two different regions
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We investigate the variation of concurrence in a spin-1/2 transverse field XY chain system in an excited
state. Initially, we precisely solve the eigenvalue problem of the system Hamiltonian using the fermionization
technique. Subsequently, we calculate the concurrence between nearest-neighbor pairs of spins in all excited
states with higher energy than the ground state. Below the factorized field, denoted as hf =

√
J2 − (Jδ)2, we

find no pairwise entanglement between nearest neighbors in excited states. At the factorized field, corresponding
to a factorized state, we observe weak concurrence in very low energy states. Beyond hf , the concurrence
strengthens, entangling all excited states. The density of entangled states peaks at the center of the excited
spectrum. Additionally, the distribution of concurrence reveals that the midpoint of the nonzero concurrence
range harbors the most entangled excited states.
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I. INTRODUCTION

Quantum entanglement [1–5] is a remarkable prediction
of modern quantum mechanics. It occurs when two or more
particles are so strongly correlated that their quantum states
cannot be described independently, even when they are far
apart. Entanglement describes a quantum property of a non-
separable superposition state involving two or more quantum
systems. Furthermore, it may reveal new connections between
other areas of physics, such as condensed matter and statisti-
cal mechanics. Entanglement can lead to the recognition of
exotic quantum phases, such as spin liquids [6–8], topological
[9–11], and many-body localized systems [12]. The explo-
ration of entanglement in quantum many-body systems can
be facilitated through experiments like full-state tomography
[13,14] and Renyi entropy measurements in ultracold atoms
[15,16]. Recently, an experimental scheme based on inelas-
tic neutron scattering was developed to detect and quantify
entanglement in the solid-state. As an example, Cs2CoCl4, a
quasi-one-dimensional spin-1/2 XXZ model with a transverse
field, was used [17].

Quantifying the entanglement of quantum systems with
many parts, such as a system involving multiple qubits, is
a key theoretical challenge in quantum entanglement theory.
One common method to measure this entanglement is through
the use of concurrence, which applies to both pure and mixed
states of two qubits [18]. The concurrence of a state ranges
from zero for separable states to one for maximally entangled
states.

For two arbitrary spins at position i and j, the two-site
reduced density matrix generally takes the form [19]

ρi, j = 1

4
+

∑
α

(〈
Sα

i

〉
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i + 〈
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j

〉
Sα

j
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i Sβ
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〉
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i Sβ
j , (1)
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where α, β = x, y, z. The concurrence between two spin-1/2
particles at sites i and j can be obtained from the corre-
sponding reduced density matrix ρi j . The reduced density
matrix in the standard basis (| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉) is
expressed as
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where the brackets symbolize the physical state average and
p↑ = 1

2 + Sz, p↓ = 1
2 − Sz, and S± = Sx ± iSy. The concur-

rence between two spins is given through C = max(0, λ1 −
λ2 − λ3 − λ4, where λi is the square root of the eigenvalue of
R = ρi, j ρ̃i, j and ρ̃i, j = (σ y

i ⊗ σ
y
j )ρ�

i, j (σ
y
i ⊗ σ

y
j ). Considering

to the symmetry of the Hamiltonian most of the off-diagonal
elements of the reduced density matrix ρi, j will be zero. First,
the translation invariance require that the density matrix sat-
isfies ρi, j = ρi,i+r for any position i. Then, the 1D spin-1/2
transverse field XY model [Eq. (5)] is a Z2-symmetric model
which means that it is invariant under π rotation around
the z direction. This also implies that the density matrix
commutes with the operator Sz

i Sz
j . Following these symme-

try properties, the density matrix must be symmetrical and
only some elements of the reduced density matrix becomes
nonzero [20,21],

ρi, j =

⎛
⎜⎜⎜⎜⎜⎝
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. (3)
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Finally, the concurrence is given by the following expression:

C = max{0,C1,C2}, 〉,
C1 = 2(|Zi, j | −

√
X +

i, jX
−
i, j ),

C2 = 2(|Fi, j | −
√

Y +
i, jY

−
i, j ). (4)

One-dimensional quantum spin systems exhibit numer-
ous nonclassical properties related to spin entanglement. The
Heisenberg model, along with its special cases like the Ising,
XY, and XXZ models, describes the magnetic behavior of these
systems. Quantum dots can be modeled using systems with XY
interaction [22,23], leading to extensive studies exploring the
key characteristics of this model. An additional advantage is
that the eigenvalues of this model can be precisely determined
through the Jordan-Wigner transformation.

The spin-1/2 transverse field (TF) XY chain model is a
widely studied topic in physics. Its ground state exhibits two
phases: an antiferromagnetic phase with a broken Z2 sym-
metry in the infinite system size limit, and a paramagnetic
phase. These phases are separated by a quantum critical point
at a specific value of the TF, denoted as h = hc [24–26].
The mentioned quantum phase transition has been character-
ized by studying the concurrence [1,27–31]. The concurrence,
serving as a reliable criterion for entanglement measurement,
is maximal close to the critical field, and its derivatives signal
the presence of a quantum phase transition at the critical
points.

Entanglement in excited states of spin chains is a fascinat-
ing topic that reveals various aspects of quantum dynamics,
critical phenomena, and quantum information [32–36]. The
entanglement entropy measures the quantum correlations be-
tween different parts of the system. For the 1D spin-1/2 TF XY
model, some excited states have extensive entanglement en-
tropy, unlike the ground state with logarithmic entanglement
entropy [32]. For one-dimensional spin chains described by
conformal field theory, the entanglement entropy of excited
states follows a universal law that depends on the scaling
dimension and the central charge of the theory [33]. For the
spin-1/2 Heisenberg chain with antiferromagnetic interac-
tions, the entanglement entropy of excited states is reduced
by the bound states of particles [34].

Here, we focus on the concurrence distribution in excited
states which is a topic that examines how the concurrence
of a quantum system varies when it is in an excited state,
i.e., a state with higher energy than the ground state. The
concurrence distribution can have useful applications for ma-
nipulating or measuring the quantum properties of excited
states, such as in quantum metrology, quantum information,
and quantum computation. For example, one can use the
concurrence pattern to find the best states for improving the
accuracy of quantum measurements, such as in interferometry
or spectroscopy [37]. One can also use the concurrence pattern
to design and implement quantum algorithms that use excited
states as resources, such as in quantum phase estimation or
quantum simulation [38]. It can be also applied to understand
and characterize the dynamics and transitions of quantum
systems in their excited states, such as in quantum chaos or
quantum phase transitions [39].

We utilize the 1D spin-1/2 TF XY model and apply the
fermionization technique to diagonalize the system’s Hamilto-
nian, extracting its eigenvalues and eigenvectors. The ground
state corresponds to the vacuum state of the Bogoliubov
fermion number operator. Excited states are then computed
within subspaces defined by different values of this number
operator. Our analysis reveals two distinct regions, separated
by the factorized point. In the first region, where h < h f , near-
est neighbor pairs of spins exhibit no entanglement in excited
states. Conversely, in the second region, they are entangled
across all excited states. Notably, the density of entangled
states peaks at the midpoint of the excited spectrum, and the
most entangled excited states are concentrated in the middle
of the nonzero range of the concurrence.

The paper is organized as follows. In the next section, we
introduce the model and employ the fermionization approach
to derive the system’s spectrum. In Sec. III, we present our
findings regarding the concurrence between nearest-neighbor
pairs of spins in all excited states. Finally, in Sec. IV, we
provide our conclusions and a summary of the results.

II. THE MODEL

The Hamiltonian of the 1D spin-1/2 TF XY model is de-
fined as

H = J
N∑

n=1

[
(1 + δ)Sx

nSx
n+1 + (1 − δ)Sy

nSy
n+1

]

− h
N∑

n=1

Sz
n, (5)

where Sn is the spin operator on the nth site. J > 0 denotes the
antiferromagnetic exchange coupling. 0 � δ � 1 and h are the
anisotropy parameter and the homogeneous TF, respectively.
N is the system size (or number of spins) and we consider the
periodic boundary condition Sμ

n+N = Sμ
n (μ = x, y, z). J = 1

is considered without losing generality.
A notable feature occurs on the circle defined by h2

f +
(Jδ)2 = J2, referred to as the factorized point. At this point,
the ground state wave function factorizes into a product of
single-spin states [40,41]. The factorized point introduces dis-
tinct regimes in the model’s phase diagram, particularly in
terms of the revivals observed in the Loschmidt echo [42]. The
Loschmidt echo serves as a metric for gauging how suscepti-
ble a quantum system is to minor changes or imperfections.
In an ideal scenario of perfect isolation and reversibility, the
time-reversal procedure should seamlessly restore the system
to its initial state. However, when subjected to sources of
decoherence, such as experimental errors or environmental
interactions, the time-reversal procedure fails to fully recover
the initial state. The Loschmidt echo quantifies this deviation
by comparing the final state with the initial state.

The ground state phase diagram also splits into two re-
gions: h < h f where there is no spin squeezing, and h > h f

where there is spin squeezing. The boundary between the two
regions, h = h f , supports spin coherence [43]. Spin squeezing
is a quantum process that decreases the uncertainty of one of
the angular momentum components in a group of particles
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with a spin. The resulting quantum states obtained are referred
to as spin squeezed states.

The Hamiltonian can be diagonalized [33,44]. First, apply-
ing the Jordan-Wigner transformation,

S+
n = a†

neiπ
∑n−1

m=1 a†
mam ,

S−
n = e−iπ

∑n−1
m=1 a†

mam an,

Sz
n = a†

nan − 1

2
, (6)

where a†
n and an are the fermionic operators; the fermionized

form of the Hamiltonian is obtained as

H =
N−1∑
n=1

[
1

2
a†

nan+1 + δ

2
a†

na†
n+1 + H.c.

]
− h

N∑
n=1

a†
nan

− μp

2

[
a†

N a1 + δ

2
a†

N a†
1 + H.c.

]
. (7)

While the boundary terms in the Hamiltonian are typically
negligible in the thermodynamic limit, where the number of
particles and the system size are very large, they play a crucial
role in determining the symmetry of the system. These terms
establish the boundary conditions for the fermions, which are
created or destroyed in pairs. As a consequence, the total
number of fermions is either even or odd. This parity property
is encapsulated by the parity operator μp = 
N

n=1Sz
n, which

commutes with the Hamiltonian, i.e., [μp,H] = 0. This im-
plies that the system can be categorized into two sectors with
different parity, denoted by μp = ±1. The positive parity cor-
responds to the even sector, characterized by fermions with
antiperiodic boundary conditions (an+N = −an). Conversely,
the negative parity corresponds to the odd sector, where
fermions exhibit periodic boundary conditions (an+N = an).
With these definitions, the Hamiltonian can be written as

H =
N∑

n=1

[
1

2
a†

nan+1 + δ

2
a†

na†
n+1 + H.c.

]

− h
N∑

n=1

a†
nan. (8)

Next, implementing a Fourier transformation an =
1√
N

∑
k e−iknak , and then applying a Bogoliubov transforma-

tion ak = cos(θk )βk + i sin(θk )β†
−k , yields the diagonalized

Hamiltonian

H =
∑

k

εk

(
β

†
k βk − 1

2

)
, (9)

with energy spectrum given by

εk =
√
A2

k + C2
k , (10)

where Ak = cos(k) − h and Ck = −δ sin(k) are associated
with the Bogoliubov angle θk by tan(2θk ) = −Ck/Ak . It
should be noted that the summation in Eq. (9) runs
over k = 2πm/N , with m = 0,±1, ...,± 1

2 (N − 1) [m =
0,±1, ...,±( 1

2 N − 1), 1
2 N] for N odd [N even] (with pe-

riodic boundary conditions imposed on the Jordan-Wigner
fermions).

The Hamiltonian and the total Bogoliubov fermion num-
ber operator, N̂B = ∑

k β
†
k βk , commute with each other. The

number operator N̂B has eigenvalues NB = 0, 1, 2, ...., N , cor-
responding to the number of fermions in the system. The
lowest energy state is the vacuum state with NB = 0. For each
value of NB = m, there are N!

m!(N−m)! possible ways to arrange
the fermions in the excited states. These states form energy
bands that are indexed by NB = m.

III. RESULTS

We use concurrence, a measure of entanglement, to as-
sess the degree of entanglement between two spins at sites
i and j. Focusing exclusively on spins that are adjacent (i.e.,
j = i + 1), we calculate the concurrence using the reduced
density matrix. This matrix describes the two-point corre-
lation functions in terms of fermion operators, providing a
comprehensive view of the entanglement between the pairs
of spins

X + = f 2
0 − | f1|2 + | f2|2, X − = 1 − 2 f0 + X +

n,n+1,

Y + = Y −
n,n+1 = f0 − X +

n,n+1, Z = f1, F = f2, (11)

where

f0 = 1

N

∑
k

[cos(2θk ) 〈β†
k βk〉 + sin2(θk )],

f1 = 1

N

∑
k

cos(k) [cos(2θk ) 〈β†
k βk〉 + sin2(θk )]

− i

N

∑
k

sin(k) 〈β†
k βk〉,

f2 = 1

N

∑
k

[sin(k) sin(2θk )]

[
−1

2
+ 〈β†

k βk〉
]
. (12)

One should note that the energy levels of the chain system are
also obtained as

E =
∑

k

εk

(
〈β†

k βk〉 − 1

2

)
. (13)

Before delving into our findings regarding the correlation of
spins in excited states, it’s essential to examine the impact of
the TF on the ground state of the model. For this investigation,
we utilize a chain system with N = 1000 and δ = 0.8, varying
the TF from 0 to 3.0. The same calculations were performed
for chains with both odd and even numbers of spins. We
discovered that the concurrence remains independent of the
parity of the number of spins, a result expected for very large
systems.

Figures 1(a) and 1(b) show how the results depend on the
ground state energy and the TF. It is important to note that
the ground state energy decreases with increasing TF, and this
trend holds significance for our analysis. We observe that the
model’s ground state is entangled throughout the parameter
space, except for a special point. At this particular point, the
system undergoes factorization, occurring at h f = √

1 − δ2 =
0.6 (with EG ∼ −0.5) [31,40,41]. The concurrence increases
as the field surpasses the factorized point, but it does not reach
a maximum at the quantum critical field hc = 1.0. It is well
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FIG. 1. The concurrence between nearest-neighbour pair spins as
a function of (a) the ground state energy and (b) the TF. It should
be noted that the ground state exists in the subspace NB = 0 and in
addition the concurrence disappears at the factorized point. (c) The
first derivative of the concurrence with respect to the TF.

known that quantum correlation measures do not necessarily
attain a maximum precisely at the quantum critical point.
Instead, they often exhibit nonanalytic behavior at criticality
[1,31,45,46]. It implies that quantum correlation measures
are not smooth functions of the control parameter and may
exhibit discontinuities or singularities at the quantum critical
point. This characteristic is evident when plotting the first
derivative of the concurrence with respect to the TF, as illus-

trated in Fig. 1(c). The derivative exhibits a sharp peak at the
quantum critical point, signifying nonanalytic behavior in the
concurrence.

Next, we explore the variations in concurrence when the
system is in an excited state. The results are depicted in Fig. 2
for a chain size N = 1000 and a subspace with NB = 1. It is
important to note that we conducted additional calculations
for the concurrence in subspaces with up to NB = 5 fermions,
and consistent behavior was observed across all subspaces.
As Fig. 2(a) shows, there is no concurrence between nearest-
neighbour spins in any excited state when h < h f . Using h =
0.5 as an example. Weak concurrence is predominantly con-
centrated in very low-energy states at the factorized field, as
illustrated in Fig. 2(b). Notably, there is no nearest-neighbor
pairwise entanglement in the middle states in this subspace.
As the TF increases, the concurrence strengthens, leading to
entanglement in all excited states, as evident in Figs. 2(c)
and 2(d). The maximum concurrence for the subspace with
NB = 1 is illustrated as a function of the TF in Fig. 2(e).
We employed various chain sizes (N = 500, 700, 1000) and
observed no size effect. Nearest-neighbor spin pairs remain
unentangled in all chain systems until the factorized field h f

is reached. Additionally, we noted that the concurrence of
excited states increases with the anisotropy parameter δ, while
the behavior remains consistent across different values of δ.

In our pursuit to better comprehend the nature of the ex-
cited states in the model, we have introduced the concept
of the density of entangled states in a subspace NB = m. To
achieve this, we initially calculate the width of the spectrum in
the subspace NB = m as  = Emax − Emin. Subsequently, we
partition this width into m′ equal parts, denoted as ′ = 

m′ .
Finally, we define the density of the entangled states as

DoES(E ) = NC
m!(N − m)!

N!
, (14)

where NC is the number of entangled states in the interval E +
′. We also look at the distribution of the concurrence. To
achieve this we partition the width of the entanglement range
into m′′ equal parts and then count the number of pairwise
entangled states, N ′

C , within each part. The distribution of the
concurrence is represented by

Dis = N ′
C

m!(N − m)!

N!
. (15)

The results are graphically illustrated in Fig. 3 for a con-
stant transverse field h = 1.2 and a chain size N = 1000. We
focus on calculating the excited states within the subspace
NB = 2. As previously mentioned, all the excited states in
each subspace exhibit entanglement, as depicted in Fig. 3(a)
specifically for the subspace NB = 2. The concurrence range
is notably narrow (� 0.2355 − 0.2325 = 0.0030), and nu-
merous excited states with high concurrence span the entire
energy spectrum. This observation aligns with the characteris-
tics of integrable systems, quantum systems solvable precisely
through analytical methods due to their abundant symmetries
or conserved quantities [47].

In Fig. 3(b), we present the density of entangled states
(chosen as m′ = 50), reaching its peak at the center of the
excited spectrum. Notably, as we shift the energy away
from the spectrum’s midpoint, the density of entangled states
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FIG. 2. The concurrence between nearest-neighbour pair spins
as a function of the energy in the subspace with one Bogoliubov
fermion, NB = 1, and chain size N = 1000. (a) TF h = 0.5 below
the factorized point, (b) TF equal to factorized hf = 0.6, (c) TF at the
quantum critical point hc = 1 and above the factorized point, (d) TF
hc = 2 much higher than the factorized point. (e) The maximum
concurrence in the subspace with one Bogoliubov fermion, NB = 1
with respect to the TF and different chain sizes N = 500, 700, 1000.

drops more rapidly in the lower excited states compared
to the higher excited states. To conclude our investigation,
Fig. 3(c) illustrates the distribution of concurrence (chosen
as m′′ = 10 000). Notably, the most entangled excited states

E

D
oE
S

-0.674 -0.673 -0.672 -0.671 -0.67
0

0.01

0.02

0.03

0.04

0.05

NB = 2

h = 1 . 2

(b)

C

D
is

0.23 0.232 0.234
0
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0.04
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0.08 NB = 2

h = 1 . 2

(c)

FIG. 3. (a) The concurrence between nearest-neighbour pair
spins as a function of the energy in the subspace with two Bogoli-
ubov fermion, NB = 2, and chain size N = 1000. Transverse field
is h = 1.2 higher than the factorized and quantum critical points.
(b) The density of the entangled states as a function of the excited
energies in the same subspace. (c) The distribution of the concurrence
on its spectrum in the same subspace.

are prominently concentrated in the middle range where the
concurrence is nonzero.

We can interpret our findings through the lens of the con-
cept of typicality, asserting that the majority of states in a
large Hilbert space share similar properties such as energy,
entropy, and entanglement [36,48]. These “typical states”
represent the prevalent states within the Hilbert space and
often have energies close to the average, typically situated
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at the center of the energy spectrum. To assess the density
of entangled states in the energy spectrum, we examine the
nearest-neighbor pairwise entanglement of typical states. Our
results consistently reveal that typical states exhibit significant
entanglement between nearest-neighbor pairs of spins and, in
general, are highly entangled. Consequently, the density of
entangled states is notably high at the center of the energy
spectrum. This pattern arises because typical states, being
complex and random, embody substantial information in their
correlations. Importantly, this outcome holds true for generic
quantum systems lacking special symmetries or constraints
that might otherwise reduce their complexity.

Alternatively, our results may find partial explanation in the
context of the eigenstate thermalization hypothesis [49–51].
This hypothesis provides insights into how an isolated quan-
tum system can attain a state of thermal equilibrium even
without interacting with its environment. According to this
hypothesis, the matrix elements of any observable in the en-
ergy eigenbasis exhibit a specific structure resembling random
numbers. Consequently, the expectation value of any observ-
able in an energy eigenstate closely approximates the thermal
average, with minimal fluctuations. As depicted in Fig. 3(a),
our findings align with the strong eigenstate thermalization
hypothesis, indicating that for a sufficiently large chain system
(e.g., N = 1000), the concurrence between nearest-neighbor
pair spins in subspace NB = 2 smoothly depends on the en-
ergy, rather than being contingent on the specific eigenstate
chosen within this subspace.

IV. CONCLUSION

We conducted a study on the one-dimensional spin-1/2
XY model incorporating a TF. To diagonalize the Hamilto-
nian, we employed the fermionization technique. Notably, the
diagonalized Hamiltonian and the total Bogoliubov number
operator share identical eigenstates due to their commutative
nature. The vacuum state of the Bogoliubov number oper-
ator corresponds to the ground state of the chain system,
while the excited states are confined to subspaces with fixed
values.

This model exhibits a well-established ground state with
two distinct phases. For h < hc = J , there exists an anti-
ferromagnetic phase characterized by order, while for h >

hc, a paramagnetic phase with disorder emerges. Quantum
fluctuations prevent saturation at zero temperature. Addition-
ally, there is a noteworthy point, h2

f + (Jδ)2 = J2, termed

the factorized point. At this point, the ground state becomes
one of the eigenstates of the total spin’s z component. This
ground state at the factorized point lacks quantum correla-
tion, such as entanglement, and is separable from a quantum
information perspective. However, excluding the factorized
point, entanglement persists among nearest-neighbor spin
pairs throughout the entire ground state phase diagram.

Recent studies have highlighted the significance of the
factorized point as a boundary in this model, particularly
concerning two distinct regions. The first region pertains to
the Loschmidt echo, suggesting the possibility of complete
revivals of quantum states after a quantum quench within a
time period proportional to the system size [52]. However,
it has been demonstrated that full revivals are absent in the
one-dimensional spin-1/2 XY model with a TF [42]. Instead,
two distinct regimes with different behaviors were identified.
The quasiparticle picture with maximum group velocity ap-
plies well for h > h f , but not for h � h f . In this latter region,
the revivals cannot be explained by quasiparticles with fixed
velocities. Another aspect related to the factorized point is the
spin squeezing parameter. At zero temperature, the system’s
behavior is dictated by its ground state, revealing two distinct
regimes of squeezing in the ground state phase diagram: h <

h f with no spin squeezing, and h > h f with spin squeezing.
In this study, we have examined the distribution of con-

currence in the excited states of the chain model. Specifically,
we computed the concurrence between nearest-neighbor spins
in all excited states above the ground state. For h < h f , no
nearest-neighbor pairwise entanglement is observed in any
excited state. At the factorized point, we identify weak con-
currence between nearest-neighbor spins in very low energy
states. Conversely, for h > h f , the concurrence increases, and
all excited states exhibit entanglement. Notably, the entangled
states are most densely concentrated at the center of the ex-
cited spectrum.

We have also provided an explanation for our results based
on the eigenstate thermalization hypothesis. According to
this hypothesis, matrix elements of any observable in the
energy eigenbasis exhibit a structure reminiscent of random-
ness. Consequently, the expectation value of any observable
in an energy eigenstate closely approximates the thermal av-
erage, with minimal fluctuations. Our findings align with this
hypothesis, indicating that the concurrence between nearest-
neighbor spins varies smoothly with the energy in a subspace,
and importantly, it does not rely on the specific choice of an
excited eigenstate.
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