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There are a large variety of hybrid stochastic systems that couple a continuous process with some form of
stochastic switching mechanism. In many cases the system switches between different discrete internal states
according to a finite-state Markov chain, and the continuous dynamics depends on the current internal state. The
resulting hybrid stochastic differential equation (hSDE) could describe the evolution of a neuron’s membrane
potential, the concentration of proteins synthesized by a gene network, or the position of an active particle.
Another major class of switching system is a search process with stochastic resetting, where the position of a
diffusing or active particle is reset to a fixed position at a random sequence of times. In this case the system
switches between a search phase and a reset phase, where the latter may be instantaneous. In this paper, we
investigate how the behavior of a stochastically switching system is modified when the maximum number of
switching (or reset) events in a given time interval is fixed. This is motivated by the idea that each time the
system switches there is an additive energy cost. We first show that in the case of an hSDE, restricting the number
of switching events is equivalent to truncating a Volterra series expansion of the particle propagator. Such a
truncation significantly modifies the moments of the resulting renormalized propagator. We then investigate how
restricting the number of reset events affects the diffusive search for an absorbing target. In particular, truncating
a Volterra series expansion of the survival probability, we calculate the splitting probabilities and conditional
MFPTs for the particle to be absorbed by the target or exceed a given number of resets, respectively.
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I. INTRODUCTION

There are a wide range of stochastic processes in cell biol-
ogy that involve the coupling between continuous and discrete
random variables (stochastic hybrid systems) [1,2]. The con-
tinuous process could represent the concentration of proteins
synthesized by a gene [3–8], the membrane voltage of a neu-
ron [9–17], the position of a swimming bacterium [18–21],
or a molecular motor [22–26]. The corresponding discrete
process could represent the activation state of the gene,
the conformational state of an ion channel, or the velocity state
of an active particle. Let (X(t ), N (t )) denote the state of the
system at time t with X(t ) ∈ Rd and N (t ) ∈ �, where � is a
discrete set. Assuming that N (t ) = n, the continuous variables
typically evolve according to a hybrid stochastic differen-
tial equation (hSDE) of the form dX = An(X)dt + √

2DdW,
where W is a vector of independent Wiener processes and
An is an n-dependent drift term. (The diffusivity could also
depend on n.) The discrete variable switches between the dif-
ferent discrete states according to a continuous time Markov
chain whose matrix generator could itself depend on X(t ). In
the limit D → 0, the dynamics reduces to a so-called piece-
wise deterministic Markov process [27].
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In many applications of hSDEs, there is a separation of
time scales, whereby the switching between discrete states of
the Markov chain is fast compared to the relaxation dynamics
of the continuous process. Suppose that τ is the characteristic
time-scale of the relaxation dynamics and ετ is the character-
istic time-scale of the Markov chain for some small positive
parameter ε. Taking the limit ε → 0 then leads to an effective
continuous dynamical system that is obtained by averaging
the piecewise dynamics with respect to the corresponding
unique stationary measure of the Markov chain (assuming the
latter exists). In the weak-noise regime 0 < ε � 1, various
approaches have been used to study noise-induced transitions
between metastable states of the averaged system. These in-
clude large deviation theory [28–31], WKB approximations
and matched asymptotics [6,7,12,15,16], and stochastic hy-
brid path integrals [32–34].

Another important example of a randomly switching pro-
cess is a search process with stochastic resetting. (See the
review in Ref. [35] and references therein.) The simplest
version of a resetting protocol is to instantaneously reset the
position of a diffusing particle to some fixed point xr at a
constant rate r [36–38]. One of the characteristic properties
of a search process with stochastic resetting is that the mean
time for a Brownian particle to find a hidden target in an
unbounded domain is finite, and has an optimal value as a
function of the resetting rate r. This is a consequence of
the fact that the mean first passage time (MFPT) to find the
target diverges in the limits r → 0 and r → ∞. Analogous
behavior has been observed in other search processes with
resetting, including diffusion with time-dependent resetting

2470-0045/2024/109(2)/024103(13) 024103-1 Published by the American Physical Society

https://orcid.org/0000-0002-7714-9853
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.024103&domain=pdf&date_stamp=2024-02-07
https://doi.org/10.1103/PhysRevE.109.024103
https://creativecommons.org/licenses/by/4.0/


PAUL C. BRESSLOFF PHYSICAL REVIEW E 109, 024103 (2024)

[39], nondiffusive search processes such as Levy flights [40],
active run and tumble particles [41,42] and directed velocity
jump processes [43,44], diffusion in potential landscapes [45]
or switching environments [46–48], resetting followed by a
refractory period [49,50], resetting with finite return times
[51–56], and encounter-based models of absorbing targets
[57–59].

In this paper we consider a different aspect of stochas-
tically switching systems, namely, conditioning the process
on the maximum number of switching events that can occur.
That is, if M(t ) denotes the number of switching events in
the interval [0, t], then we impose the condition M(t ) � μ <

∞ for all t . One motivation for such a construction is that
state transitions in an hSDE tend to cost energy, so that the
maximum number of such transitions could be limited. Alter-
natively, conditioning on the number of transitions provides
another type of statistic that could be measured experimen-
tally. For example, in the case of gene networks, transitions
from the inactive to active state often results on some form of
bursting. In the case of search processes, the cost of stochastic
resetting has been explored in a recent paper [60], which
assumes that the cost is additive, and the contribution of each
reset is a function of the distance a particle must travel to
the reset position xr . These authors focus on the mean cost
accrued by a search process that is terminated when the target
is found. In contrast, we take the cost to be equal to the number
of reset events, and terminate the search process as soon as one
or other of the following occurs: the particle finds the target or
the number of reset events crosses some threshold.

The structure of the paper is as follows. In Sec. II we
give a general definition of an hSDE and write down the
evolution equation for the associated propagator. In Sec. III
we construct an integral equation for the propagator, which is
expanded as a Volterra series, whose individual terms corre-
spond to fixing the number of state transitions. Truncating the
Volterra series is then equivalent to restricting the maximum
number of allowed state transitions. We use this to define
a renormalized propagator and its associated moments. The
theory is illustrated in Sec. IV using the example of an OU
process with random drift, which has previously been used
to model the motion of an RTP with diffusion in a harmonic
potential [61,62] and protein synthesis in a two-state gene
network [4,5]. We use the corresponding diagrammatic expan-
sion to calculate moments of the hSDE that are conditioned
on the maximum number of switching events. In Sec. V, we
develop the analogous theory for a diffusive search process
with stochastic resetting. In this case, we expand the standard
last renewal equation for the survival probability as a Volterra
series in the number of resetting events. Truncating the series
now corresponds to restricting the maximum number of resets.
We use this to calculate the splitting probabilities and condi-
tional MFPTs for the particle to be absorbed by the target or
exceed a given number of resets, respectively.

II. HYBRID SDE IN Rd

Consider a system whose states are described by a pair
of stochastic variables (X(t ), N (t )) ∈ Rd × {0, · · · , K − 1}.
When the discrete state is N (t ) = n, the system evolves

according to the SDE

dX(t ) = An(X(t ))dt +
√

2DdW(t ), (2.1)

where W is a vector of d independent Wiener processes.
The discrete stochastic variable N (t ) evolves according to a
K-state continuous-time Markov chain with a K × K matrix
generator Q, which is taken to be independent of X(t ). That
is, the probability distribution Pn(t ) = P [N (t ) = n] evolves
according to the X(t )-independent master equation

dPn(t )

dt
=

K−1∑
m=0

QnmPm(t ), (2.2)

with

Qnm = Wnm − δn,m�m, �m =
K−1∑
k=0

Wkm, (2.3)

where Wnm is the rate of the transition n → m. Given the
definition of �m, we can introduce the decomposition Wnm =
Pnm�m with

∑
n Pnm = 1. The positive quantity �m is the rate

at which a transition from the state m occurs and Pnm is the
probability that such a transition is to the state n. We assume
that the generator is irreducible so that there exists a stationary
density ρ for which

∑
m Qnmρm = 0. In the case of a two-state

hSDE (n = 0, 1), the matrix generator takes the form

Q =
(−β α

β −α

)
, (2.4)

and

ρ0 = α

α + β
, ρ1 = 1 − ρ0 = β

α + β
. (2.5)

Note that α is the rate of the transition 0 → 1 and β is the rate
of the transition 1 → 0.

Given the initial conditions X(0) = x0, N (0) = n0, we in-
troduce the propagator Gnn0 (x, t |x0, 0) with

Gnn0 (x, t |x0, 0)dx = P [X(t ) ∈ (x, x+dx), N (t ) = n|x0, n0],

(2.6)

and Gnn0 (x, 0|x0, 0) = δn,n0δ(x − x0). It can be shown that
Gnn0 evolves according to the forward differential Chapman-
Kolmogorov (CK) equation [2]

∂Gnn0

∂t
= −∇ · [An(x)Gnn0 ] + D∇2Gnn0 +

K−1∑
m=0

QnmGmn0 .

(2.7)

The first two terms on the right-hand side represent the prob-
ability flow associated with the SDE for a given n, whereas
the third term represents jumps into or out of the discrete
state n. Integrating Eq. (2.7) with respect to x and setting
Gnn0 = ∫

Rd Gnn0 (x, t |x0, 0)dx shows that Gnn0 satisfies the
master equation (2.2). In addition, since

∑
n Qnm = 0 for all

m, it follows that d
∑

n Gnn0/dt = 0. We thus have
K−1∑
n=0

∫
Rd

Gnn0 (x, t |x0, 0)dx = 1, (2.8)

which expresses conservation of probability. In the absence of
switching with n fixed, the system reduces to a single SDE
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whose corresponding Fokker-Planck (FP) equation takes the
form

∂ pn

∂t
= −∇ · [An(x)pn] + D∇2 pn, (2.9)

and pn(x, 0|x0, 0) = δ(x − x0). We will refer to pn as the bare
(no switching) propagator.

III. INTEGRAL EQUATION AND VOLTERRA
SERIES EXPANSION

The propagator Gnm satisfies an integral equation of the
form

Gnm(x, t |x0, 0) = δn,me−�mt pm(x, t |x0, 0) +
∑

l

Wnl

∫ t

0
dτ

∫
dy e−�n (t−τ ) pn(x, t |y, τ )Glm(y, τ |x0, 0). (3.1)

The first term on the right-hand side is the contribution from all paths that never switch in the interval [0, t], which only occurs
if n = m. The probability of no switching from the state m is e−�mt . The second term on the right-hand side represents the sum
over all trajectories that switch at least once, with the final transition occurring at the time τ . Iterating the integral equation (3.1)
generates a Volterra series representation of the propagator:

Gnm(x, t |x0, 0)

= δn,me−�mt pm(x, t |x0, 0) + Wnm

∫ t

0
dτ

∫
dy e−�n (t−τ ) pn(x, t |y, τ )e−�mτ pm(y, τ |x0, 0)

+
∑

l

WnlWlm

∫ t

0
dτ2

∫ τ2

0
dτ1

∫
dy2

∫
dy1 e−�n (t−τ2 ) pn(x, t |y2, τ2)e−�l (τ2−τ1 ) pl (y2, τ2|y1, τ1)e−�mτ1 pm(y1, τ1|x0, 0)

+ . . . (3.2)

The jth term in the series expansion, j � 0, has the following interpretation: it specifies the contribution to the propagator from
paths that undergo exactly j switching events. For example, if n �= m, then the j = 1 term has a factor Pnm�me−�n (t−τ )e−�mτ ,
after setting Wnm = Pnm�m. The probability that the first transition occurs in the time interval [τ, τ + dτ ] is �me−�mτ dτ , the
probability that m → n is Pnm, and the probability that there are no transitions from the state n is e−�n (t−τ ). Hence, the total
probability that there is a single transition m → n in the time interval [0, t] is

P(1)
nm (t ) = Wnme−�nt

∫ t

0
e−[�m−�n]τ dτ = Wnm

�m − �n
[e−�nt − e−�mt ]. (3.3)

Similarly, the probability that there are two transitions in the interval [0, t] is

P(2)
nm (t ) =

∑
l

WnlWlm

∫ t

0
dτ2

∫ τ2

0
dτ1e−�n (t−τ2 )e−�l (τ2−τ1 )e−�mτ1 =

∑
l

WnlWlm

�m − �l

[
e−�nt − e−�l t

�l − �n
− e−�nt − e−�mt

�m − �n

]
. (3.4)

In addition, integrating Eq. (3.2) with respect to x, summing
over n, and then using the unit normalization of the propaga-
tor, see Eq. (2.8), shows that

1 = e−�mt +
∑
j�1

∑
n

P( j)
nm (t ). (3.5)

Again this is an expression of conservation of probability.
For the sake of illustration, consider a two-state hSDE with

matrix generator (2.4). Suppose that the system starts in the
state n0 = 0. Then

G00(x, t |x0, 0)

= e−βt p0(x, t |x0, 0)

+ α

∫ ∞

0
dτdy e−β(t−τ ) p0(x, t |y, τ )G10(y, τ |x0, 0),

(3.6a)

G10(x, t |x0, 0)

= β

∫ ∞

0
dτ

∫
dy e−α(t−τ ) p1(x, t |y, τ )G00(y, τ |x0, 0).

(3.6b)

Similarly, if n0 = 1, then

G01(x, t |x0, 0)

= α

∫ ∞

0
dτ

∫
dy e−β(t−τ ) p0(x, t |y, τ )G11(y, τ |x0, 0)

(3.6c)

G11(x, t |x0, 0)

= e−αt p1(x, t |x0, 0)

+ β

∫ ∞

0
dτdy e−α[t−τ ] p1(x, t |y, τ )G01(y, τ |x0, 0).

(3.6d)

The first term on the right-hand side of Eq. (3.6a) repre-
sents the contribution from all trajectories that never switch
to the state n = 1. The latter occurs with probability e−βt .
However, the integral term sums over all trajectories that
switch at least once, with the last switch 1 → 0 occurring at a
rate β at a time τ , 0 < τ < t . Similar interpretations apply to
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FIG. 1. First few terms in the diagrammatic expansions of the full propagators G00(x, t |x0, 0) and G10(x, t |x0, 0) in terms of the bare
propagators pn(x, t |x0, t0) for the two-state Markov chain. α and β are the transition rates for 1 → 0 and 0 → 1, respectively. Time flows from
right to left.

Eqs. (3.6b)–(3.6d). Iterating Eq. (3.6a) gives

G00(x, t |x0, 0)

= e−βt p0(x, t |x0, 0) + αβ

∫ t

0
dτ2

∫ τ2

0
dτ1

∫
dy2

∫
dy1

× e−β(t−τ1 ) p0(x, t |y2, τ2)e−α(τ2−τ1 ) p1(y2, τ2|y1, τ1)

× e−βτ2 p0(y1, τ12|x0, 0) + . . . . (3.7)

Since the initial and final discrete states are the same, the
number of switches has to be even. Using similar arguments,
we obtain analogous series expansions of G11, G01, and G10.
For example, contributions to G11 involve sequences of tran-
sitions of the form 1 → 0 → 1, whereas contributions to G10

involves the transition 1 → 0 followed by additional tran-
sitions of the form 0 → 1 → 0. The first few terms in the
diagrammatic expansions of G00 and G10 are shown in Fig. 1.

A few comments are in order. First, as we show in Sec. IV,
the series expansion (3.7) is not uniformly convergent due to
the presence of secular terms involving powers of αt and βt .
Thus one cannot interpret Eq. (3.7) as a perturbation expan-
sion in the slow switching limit α, β → 0. However, as we
have already highlighted, the terms in Eq. (3.7) have a natu-
ral probabilistic interpretation based on the number of state
transitions. In particular, truncating the series is equivalent
to conditioning the propagator with respect to the maximum
number of transitions. For a general hSDE, let G(μ)

nm (x, t |x0, 0)
denote the contribution to the propagator from paths that have
a maximum of μ transitions, which is given by the first μ + 1
terms in the corresponding diagrammatic expansion. Taking
the random variable M(t ) to denote the number of transitions
over the interval [0, t], it follows that

P [M(t ) � μ] =
∫
Rd

G(μ)
nm (x, t |x0, 0)dx

= δn,me−�nt +
μ∑

j=1

P( j)
nm (t ). (3.8)

We then introduce a renormalized propagator that is condi-
tioned to undergo a maximum of μ transitions:

G (μ)
nm (x, t |x0, 0) = G(μ)

nm (x, t |x0, 0)∑K−1
l=0

∫ ∞
−∞ G(μ)

lm (x, t |x0, 0)dx
. (3.9)

IV. OU PROCESS WITH RANDOM DRIFT

In this section we illustrate the theory by considering the
particular example of an OU process with random drift. This
has previously been used to model an RTP with diffusion
in a harmonic potential [61,62] and protein synthesis in a
gene network [4,5]. In the former case, X (t ) ∈ R represents
the position of the RTP at time t , whereas N (t ) = n ∈ {0, 1}
specifies the current velocity state vn of the particle. If v0 = v

and v1 = −v, then the motion becomes unbiased when the
mean time spent in each velocity state is the same (α = β).
However, in the case of the gene network, X (t ) represents
the concentration of synthesized protein and N (t ) specifies
whether the gene is active or inactive. That is, vn is the rate
of synthesis with v0 > v1 � 0. In both examples, the variable
X (t ) evolves according to the piecewise SDE

dX (t ) = [−κ0X (t ) + vn]dt +
√

2DdW (t ), N (t ) = n,

(4.1)

where κ0 represents an effective “spring constant” for an
RTP in a harmonic potential, whereas it corresponds to a
protein degradation rate in the case of a gene network. Com-
parison with Eq. (2.1) implies that An(x) = −κ0x + vn. One
major difference between an RTP and a gene network is that
the continuous variable X (t ) has to be positive in the latter
case. However, we will assume that the effective “harmonic
potential” for v0 > v1 � 0 restricts X (t ) to positive values
with high probability so that we do not have to impose the
condition X (t ) � 0 explicitly. (If D = 0, then X (t ) ∈ � =
[v0/κ0, v1/κ0] and the CK equation can be restricted to the
finite interval � with reflecting boundary conditions at the
ends. In this case, the steady-state CK equation can be solved
explicitly [3–5].)

A. Bare propagator

First suppose that there is no switching (α = β = 0). The
FP equation for the bare propagator pn is

∂ pn

∂t
= ∂ (κ0x − vn)pn

∂x
+ D

∂2 pn

∂x2
. (4.2)

One way to determine the propagator pn(x, t |x0, 0) is to use
the fact that we have a Gaussian process so we only need
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to determine the first and second moments of pn. The kth
moment is defined according to

m(k)
n (x0, t ) = 〈X (t )k〉 ≡

∫ ∞

−∞
xk pn(x, t |x0, 0)dx. (4.3)

Taking expectations of both sides of Eq. (4.1) and using
〈dW (t )〉 = 0 yields the deterministic differential equation

d〈X 〉
dt

= −κ0〈X 〉 + vn.

This has the solution

〈X (t )〉 = x0e−κ0t + vn

κ0
(1 − e−κ0t ). (4.4)

Similarly, using 〈dX (t )dW (t )〉 = 0 and dW (t )2 = dt , we
have

〈X (t + dt )2〉 = 〈[X (t ) + dX (t )]2〉
= 〈[(1 − κ0dt )X (t ) + vdt +

√
2DdW (t )]2〉

= (1 − κ0dt )2〈X (t )X (t )〉
+ vndt2 + 2vn(1 − κ0dt )X (t )dt + 2Ddt .

Subtracting 〈X (t )X (t )〉 from both sides, dividing through by
dt and taking the limit dt → 0 leads to the second-order
moment equation

d〈X 2〉
dt

= −2κ0〈X 2〉 + 2vn〈X 〉 + 2D, (4.5)

which has the solution

〈X (t )2〉 = e−2κ0t x2
0 + D

κ0
(1 − e−2κ0t )

+ 2vnx0

κ0
e−κ0t (1 − e−κ0t ) +

(
vn

κ0

)2

[1 − e−κ0t ]2.

(4.6)

It immediately follows that

Var[X (t )] = D

κ0
(1 − e−2κ0t ). (4.7)

Hence, the bare propagator pn has the explicit solution

pn(x, t |x0, 0)

= 1√
2π�(t )

exp

(
− [x − x0e−κ0t − vn(1 − e−κ0t )/κ0]2

2�(t )

)
,

(4.8)

where

�(t ) = D

κ0
(1 − e−2κ0t ). (4.9)

B. Conditional moments

When switching is included, the moments of the hSDE are
determined by the full propagator Gnn0 , which satisfies the
equation

∂Gnn0

∂t
= ∂ (κ0x − vn)Gnn0

∂x
+ D

∂2Gnn0

∂x2
+

∑
m=0,1

QnmGmn0 ,

(4.10)

where Q is given by Eq. (2.4). The corresponding moments
are

M (k)
nn0

(x0, t ) =
∫ ∞

−∞
dx xkGnn0 (x, t |x0, 0). (4.11)

Although calculating the full propagator is nontrivial, exact
expressions for the moments M (k)

nn0
(x0, t ) can be obtained using

statistical field theory [62]. However, as we now illustrate, the
truncated and conditional moments can be evaluated in terms
of the bare propagators pn. The truncated moments are defined
according to

M (k,μ)
nn0

(x0, t ) =
∫ ∞

−∞
dx xkG(μ)

nn0
(x, t |x0, 0), (4.12)

and the conditional moments are given by

M(k,μ)
nn0

(x0, t ) =
∫ ∞

−∞
dx xkG (μ)

nn0
(x, t |x0, 0)

= M (k,μ)
nn0

(x0, t )∑
l=0,1 M (0,μ)

ln0
(x0, t )

, (4.13)

with G (μ) defined in Eq. (3.9).
For the sake of illustration, consider the first moment for

n = n0 = 0 and μ = 2:

M(1,2)
00 (x0, t ) =

∫ ∞

−∞
dx xkG (2)

00 (x, t |x0, 0), (4.14)

= M (1,2)
00 (x0, t )

M (0,2)
00 (x0, t ) + M (0,2)

10 (x0, t )
, (4.15)

Using Eq. (3.7) we have

M (0,2)
00 (x0, t )

= e−βt + P(2)
00 (t )

= e−βt + αβ

∫ t

0
dτ2

∫ τ2

0
dτ1e−β(t−τ2 )e−α(τ2−τ1 )e−βτ1

= e−βt + αβ

β − α
e−βt

[
e(β−α)t − 1

β − α
− t

]
. (4.16)

In the limit β → α this reduces to

M (0,2)
00 (x0, t ) = e−αt

[
1 + α2t2

2

]
. (4.17)

Similarly,

M (0,2)
10 (x0, t ) = P(1)

10 (t ) = β

α − β
[1 − e−(α−β )t ]

→ αte−αt as β → α. (4.18)

The corresponding expressions for the full zeroth moments
are [62].

M (0)
00 (x0, t ) = e−αt cosh(αt ), M (0)

10 (x0, t ) = e−αt sinh(αt ).

(4.19)
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FIG. 2. (a) Plot of conditional first moment M(1,2)
00 (x0, t ) given by Eq. (4.22) as a function of time for different values of α. The thick

curve represents the first moment m(1)
0 (x0, t ) of the bare propagator (α = 0). Other parameter values are v0 = −v1 = 1, κ0 = 1 and x0 = 0.

The curves approach unity as t → ∞. (b) Comparison of M(1,2)
00 (x0, t ) (solid curves) with the unconditional first moment M (1)

00 (x0, t ) (dashed
curves) given by Eq. (4.21).

Turning to the numerator in Eq. (4.15) we find that for α = β

(see the Appendix)

M (1,2)
00 (x0, t ) = x0

(
1 + α2t2

2

)
e−[κ0+α]t

+ v0

κ0

(
1 + α2t2

2

)
(1 − e−κ0t )e−αt

+ 2α2(v0 − v1)

κ3
0

(1 − e−κ0t )e−αt

− α2t (v0 − v1)

κ2
0

(1 + e−κ0t )e−αt . (4.20)

The basic steps in the derivation of Eq. (4.20) are as follows.
First, we substitute the 1D version of the series expansion
(3.7) into the definition of M (1,2)

00 (x0, t ), see Eq. (4.11). This
reduces the calculation of the various terms to the evaluation
of moments of the bare propagator p0, which can be carried
out explicitly. If v0 = −v1 = v, then our result is consistent
with Taylor expanding the exact expression [62], which can
be written in the form

M (1)
00 (x0, t ) = x0e−κ0t cosh(αt )

+ vκ0(1 − e−κ0t ) cosh(αt )e−αt

κ2
0 − 4α2

− 2vα(1 + e−κ0t ) sinh(αt )e−αt

κ2
0 − 4α2

. (4.21)

(All α-dependent terms are expanded except for the expo-
nential factors e−αt .) Note that Eqs. (4.17), (4.18), and (4.20)
involve the secular terms αt and (αt )2. Hence, M (1,2)

00 does not
yield a good approximation of M (1)

00 unless t � 1/α. Similarly
for the zeroth moments.

Finally, substituting Eqs. (4.17), (4.18), and (4.20) into
Eq. (4.15) yields the following expression for the conditional

first moment given a maximum of two transitions:

M(1,2)
00 (x0, t )

= 1 + α2t/2

1 + αt + α2t2/2

[
x0e−κ0t + v0

κ0
(1 − e−κ0t )

]
+ α2

1 + αt + α2t2/2

2(v0 − v1)

κ3
0

(1 − e−κ0t )

− α2t

1 + αt + α2t2/2

(v0 − v1)

κ2
0

(1 + e−κ0t ). (4.22)

Note that,

lim
t→∞M(1,2)

00 (x0, t ) = v0

κ0
= lim

t→∞ m(1)
0 (x0, t ). (4.23)

The fact that this limit is independent of the leftward ve-
locity v1 reflects the fact that restricting the dynamics to
two switching events means that the fraction of time spent
in the right-moving state approaches unity in the limit t →
∞. Note, however, that the behavior of the conditional mo-
ment M(1,2)

00 (x0, t ) differs significantly from the bare moment
m(1)

0 (x0, t ) for finite t . In particular, the conditional moment
takes much longer to approach the steady-state v0/κ0, and is
a nonmonotonic function of t . This is illustrated in Fig. 2(a)
for the initial position x0 = 0. The nonmonotonicity reflects
the fact that all paths that switch twice include a finite time
interval over which the particle is moving leftward, and thus
appears to be returning towards the initial position x0 = 0.
In Fig. 2(b), we compare the conditional moment M(1,2)

00 (t )
with the unconditional moment M (1)

00 given by Eq. (4.21) for
v0 = −v1 = v. The latter has the asymptotic limit

lim
t→∞ M (1)

00 (x0, t ) = v

κ0 + 2α
. (4.24)
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FIG. 3. Domain  ⊂ Rd containing a single target U with a
totally absorbing surface ∂U . Particle starts at x0 and resets to the
point xr at a constant rate r.

As expected, the difference between the two moments in-
creases with α.

V. TRUNCATED SEARCH PROCESS
WITH STOCHASTIC RESETTING

We now turn to another example of a randomly switching
process, namely, a search process with stochastic resetting
[35]. Consider a particle (searcher) subject to Brownian mo-
tion in  ⊆ Rd , and resetting to a fixed point xr at a constant
rate r. Suppose that there exists some target U ⊂  whose
boundary ∂U is totally absorbing and xr /∈ U , see Fig. 3. The
probability density pr (x, t |x0) for the particle to be at position
x at time t given the initial position x0 evolves according to
the master equation

∂ pr (x, t |x0)

∂t
= ∇2 pr (x, t |x0) − r pr (x, t |x0) + rδ(x − xr ).

(5.1)
This is supplemented by the absorbing boundary condition
pr (x, t |x0) = 0 for all x ∈ ∂U and the reflecting boundary
condition J (x, t |x0) = 0 for all x ∈ ∂. Here J (x, t |x0) =
−∇p(x, t |x0) · n with n the outward normal on ∂. Let
Qr (x0, t ) be the survival probability of the particle that started
at x0:

Qr (x0, t ) =
∫

\U
pr (x, t |x0)dx. (5.2)

Integrating Eq. (5.1) with respect to x ∈ \U and using the
divergence theorem shows that

∂Qr (x0, t )

∂t
=

∫
∂U

∇pr (x, t |x0) · n0dx − rQr (x0, t )

+ rQr (xr, t ), (5.3)

with n0 the normal into U , see Fig. 3. Let T denote the FPT
for absorption at ∂U . The MFPT can be expressed in terms of
Qr according to

Tr (x0) ≡ E[T ] = −
∫ ∞

0
t
dQr (x0, t )

dt
dt

=
∫ ∞

0
Qr (x0, t )dt . (5.4)

We have used the fact that the FPT density fr (x0, t ) is
related to the survival probability according to fr (x0, t ) =
−dQr (x0, t )/dt .

It is well known that Qr is related to the survival prob-
ability without resetting, Q0, according to a last renewal
equation [36–39]:

Qr (x0, t ) = e−rt Q0(x0, t )

+ r
∫ t

0
e−r(t−τ )Q0(xr, t − τ )Qr (x0, τ )dτ. (5.5)

The first term on the right-hand side represents trajectories
with no resettings. The integrand in the second term is the con-
tribution from trajectories that last reset at time τ ∈ (0, t ), and
consists of the product of the survival probability starting from
x0 with resetting up to time t − τ and the survival probability
starting from xr without any resetting for the time interval τ .
The standard method for solving the renewal equation (5.5) is
to introduce the Laplace transform

Q̃r (x0, s) =
∫ ∞

0
Qr (x0, t )e−st dt, (5.6)

and use the convolution theorem. Thus, Laplace transforming
Eq. (5.5) and rearranging shows that

Q̃r (x0, s) = Q̃0(x0, r + s)

1 − rQ̃0(xr, r + s)
. (5.7)

The MFPT to reach the target is then given by

Tr (x0) = Q̃r (x0, 0) = Q̃0(x0, r)

1 − rQ̃0(xr, r)
. (5.8)

A. Splitting probabilities and conditional MFPTs

Following our analysis of hybrid SDEs, we now consider
a truncated version of the search process, in which the maxi-
mum number of resets is fixed. This is equivalent to truncating
the Volterra series expansion of the renewal equation, which
in the time domain takes the form

Qr (x0, t ) = e−rt Q0(x0, t ) + re−rt
∫ t

0
Q0(x0, τ )Q0(xr, t − τ )dτ

+ r2e−rt
∫ t

0
dτ1

∫ t−τ1

0
dτ2Q0(x0, τ1)Q0(xr, τ2)Q0(xr, t − τ1 − τ2) + . . . . (5.9)
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The corresponding expansion in Laplace space is a geometric
series in powers of rQ̃0(xr, r + s). The �th term in the series
(5.9), � � 0, is the joint probability Qr,�(x0, t ) that the particle
hasn’t been absorbed and has reset exactly � times:

Qr,�(x0, t ) = r�e−rt [Q0(x0, ·) ⊗ Q0(xr, ·)
�⊗ Q0(xr, ·)](t ),

(5.10)

where Q0
�⊗ Q0 denotes the �th order convolution:

Q0
�⊗ Q0(xr, t )

=
∫ t

0
dτ1

∫ t−τ1

0
dτ2 . . .

∫ t−∑�−1
j=1 τ j

0
dτ�−1

× Q0(xr, τ1)Q0(xr, τ2) · · · Q0

⎛⎝xr, t −
�∑

j=1

τ j

⎞⎠. (5.11)

The probability that there are � reset events in the interval
[0, t] is given by the Poisson distribution

P�(t ) = (rt )�e−rt

�!
. (5.12)

Hence, Qr,�(x0, t )/P�(t ) is the survival probability condi-
tioned on exactly � reset events in [0, t].

In Ref. [60] the joint probability distribution for the num-
ber of resets, the time of absorption, and a general cost was
calculated. One result from that analysis was an expression
for the probability distribution P(N |x0) given N resets up to
the time of absorption with xr = x0. In our notation,

P(N |x0)

=
∫ ∞

0

[∫ t

0
e−r(t−τ ) f0(t − τ, x0)rQr,N−1(τ, x0)dτ

]
dt,

(5.13)

where f0(t, x0) is the reset-free first passage time density for
absorption. This equation can be interpreted as follows. First,
we suppose that the N th reset occurs in the time interval
[τ, τ + dτ ] and the particle has not yet been absorbed, which
is given by the probability rQr,N−1(τ, x0)dτ . The probability
density that there are no more resets and the particle is ab-
sorbed at time t is then e−r(t−τ ) f0(t − τ, x0). Integrating with
respect to τ and t then yields P(N |x0). We can rewrite the
right-hand side of Eq. (5.13) using Laplace transforms so that

P(N |x0) = r f̃0(r, x0)Q̃r,N−1(0, x0)

= f̃0(r, x0)[rQ̃0(r, x0)]N , (5.14)

which recovers the result obtained in Ref. [60].
In contrast to Ref. [60], we assume that Brownian motion

is killed when either (a) the particle reaches ∂U or (b) it resets
for the (μ + 1)th times. The unconditional FPT density is then

f (μ)
r (x0, t ) = −dQ(μ)

r (x0, t )

dt
, (5.15)

where Q(μ)
r (x0, t ) is the corresponding survival probability:

Q(μ)
r (x0, t ) =

μ∑
�=0

Qr,�(x0, t ). (5.16)

Since Q(μ)
r (xr, 0) = 1 and limt→∞ Q(μ)

r (xr, t ) = 0, the FPT
density has unit normalization. Using similar arguments to
previous examples, the unconditional MFPT is

T (μ)
r (x0) = Q̃(μ)

r (x0, 0) = Q̃0(x0, r)
μ∑

�=0

(rQ̃0(xr, r))�

= Q̃0(x0, r)
1 − (rQ̃0(xr, r))μ+1

1 − rQ̃0(xr, r)
. (5.17)

If we wish to distinguish between the two types of killing
events, then we need to determine the splitting probabilities
and conditional MFPTs. Let pr,�(x, t |x0) denote the joint
probability density for particle position at time t and the num-
ber � of resets in the interval [0, t]. The forward equation for
pr,� is

∂ pr,�(x, t |x0)

∂t
= ∇2 pr,�(x, t |x0) − r pr,�(x, t |x0)

+ rδ(x − xr )Qr,�−1(x0, t ). (5.18)

Integrating with respect to x ∈ \U implies that

∂Qr,�(x0, t )

∂t
=

∫
∂U

∇pr,�(x, t |x0) · n0dx − rQr,�(x0, t )

+ rQr,�−1(x0, t )

≡ −Ja,�(x0, t ) − Jb,�(x0, t ), (5.19)

with Qr,−1 ≡ 0. Here Ja,�(x0, t ) is the probability flux into the
surface ∂U ,

Ja,�(x0, t ) = −
∫

∂U
∇pr,�(x, t |x0) · n0dx, (5.20)

whereas Jb,�(x0, t ) is the probability flux associated with re-
setting,

Jb,�(x0, t ) = rQr,�(x0, t ) − rQr,�−1(x0, t ). (5.21)

Let π (μ)
a (x0) and π

(μ)
b (x0) denote, respectively, the splitting

probabilities for absorption at U and resetting for the (μ +
1)th time. Then

π (μ)
a (x0) =

∫ ∞

0

[
μ∑

�=0

Ja,�(x0, t )

]
dt

= lim
s→0

μ∑
�=0

J̃a,�(x0, s), (5.22)

and

π
(μ)
b (x0) =

∫ ∞

0

[
μ∑

�=0

Jb,�(x0, t )

]
dt = r

∫ ∞

0
Qr,μ(x0, t )dt

= r lim
s→0

Q̃r,μ(x0, s). (5.23)

To determine the Laplace transformed flux J̃a(x0, s), we
Laplace transform Eq. (5.18) under the initial condition
pr,�(x, 0|x0) = δ(x − x0)δ�,0. This yields the equation

∇2 p̃r,�(x, s|x0) − (r + s) p̃r,�(x, s|xr )

= −δ(x − x0)δ�,0 − δ(x − xr )rQ̃r,�−1(x0, s). (5.24)

024103-8



TRUNCATED STOCHASTICALLY SWITCHING PROCESSES PHYSICAL REVIEW E 109, 024103 (2024)

Introduce the Green’s function G(x, s|y) with

∇2G(x, s|y) − sG(x, s|y) = −δ(x − y), (5.25)

together with the boundary conditions ∇G · n = 0 for all x ∈
∂ and G(x, s|y) = 0 for all x ∈ ∂U . We can then write the
solution for p̃r,� as

p̃r,�(x, s|xr ) = G(x, s + r|x0)δ�,0

+ rG(x, s + r|xr )Q̃r,�−1(x0, s). (5.26)

Combining with the Laplace transform of Eq. (5.20), we have

J̃a,�(x0, s) = −δ�,0

∫
∂U

∇G(x, s + r|x0) · n0dx

− rQ̃r,�−1(x0, s)
∫

∂U
∇G(x, s + r|xr ) · n0dx.

(5.27)

Note that − ∫
∂U ∇G(x, s|x0) · n0dx can be identified with the

Laplace transform of the probability flux into the target in the
absence of resetting, which we denote by J̃0(x0, s). Finally,
substituting this solution into Eq. (5.22) gives

π (μ)
a (x0) = lim

s→0
J̃0(x0, r + s)

+ r lim
s→0

⎡⎣J̃0(xr, r + s)
μ−1∑
�=0

Q̃r,�(x0, s)

⎤⎦. (5.28)

Let T (μ)
a (x0) be the FPT that the particle is absorbed at

∂U having started at x0. Since there is a nonzero probability
that the particle never exits at a point on ∂U due to resetting
for the (μ + 1)th time prior to absorption, it follows that
the unconditional MFPT E[T (μ)

a (y)] = ∞. This motivates the
introduction of the conditional MFPT,

T (μ)
a (x0) = E

[
T (μ)

a (x0)|T (μ)
a (x0) < ∞]

. (5.29)

The conditional FPT density for absorption is

f (μ)
a (x0, t ) =

∑μ

�=0 Ja,�(x0, t )

π
(μ)
a (x0)

, (5.30)

so that

T (μ)
a (x0) = π (μ)

a (x0)−1
μ∑

�=0

∫ ∞

0
tJa,�(x0, t )dt

= −π (μ)
a (x0)−1

μ∑
�=0

lim
s→0

∂sJ̃a,�(x0, s). (5.31)

Similarly, the conditional MFPT for the (μ + 1)th reset is

T (μ)
b (x0) = E

[
T (μ)

b (x0)|T (μ)
b (x0) < ∞]

= π
(μ)
b (x0)−1

μ∑
�=0

∫ ∞

0
tJb,�(x0, t )dt

= −π
(μ)
b (x0)−1

μ∑
�=0

lim
s→0

∂sJ̃b,�(x0, s)

= −π
(μ)
b (x0)−1r lim

s→0
∂sQ̃r,μ(x0, s). (5.32)

FIG. 4. Plot of the MFPT T (μ)
r (xr ) as a function of r for a Brow-

nian particle on the half-line that is killed either by reaching the
boundary x = 0 or resetting for the (μ + 1)th time. (a) Various μ

for xr = 1. (b) Various xr for μ = 100 (solid curves) and μ = ∞
(dashed curves).

B. Diffusion on the half-line

Consider a diffusing particle on the half-line [0,∞) with
an absorbing target at x = 0. For simplicity, we set xr = x0.
In the absence of resetting the Laplace transformed survival
probability Q̃0(x, s) satisfies the equation

D
d2Q̃0

dx2
− sQ0 = −1, x ∈ (0,∞), (5.33)

together with the boundary condition

Q̃0(0, s) = 0. (5.34)

The solution takes the form [36,37]

Q̃0(xr, s) = 1 − e−√
s/D|xr |

s
, (5.35)

which can be inverted to give the error function

Q0(xr, t ) = erf(xr/2
√

Dt ). (5.36)
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FIG. 5. (a) Plot of the splitting probability π
(μ)
b as a function of r for the particle to reset for the (μ + 1)th time before being absorbed at

∂U . (b) Corresponding plots of the conditional MFPT π
(μ)
b . We set xr = 1 and D = 1.

Equation (5.8) then implies that

Tr (xr ) = 1

r
(e

√
r/Dxr − 1). (5.37)

Note that in the limit r → 0, the MFPT diverges as Tr ∼
1/

√
r, which recovers the result that the MFPT of a Brownian

particle without resetting to return to the origin is infinite. One
also finds that Tr diverges in the limit r → ∞, since the par-
ticle resets to Xr so often that it never has the chance to reach
the origin. Finally, the MFPT has a finite and unique minimum
at an intermediate value of the resetting rate r [37,38].

The situation is very different if we restrict the maximum
number of resets to be μ. For sufficiently small r, the prob-
ability that the particle reaches the maximum μ becomes
negligible so that the major contribution to the MFPT is
absorption at x = 0. Assuming that ropt occurs within this
regime, we expect the MFPT to have a local minimum as in
the absence of truncation. However, as r increases beyond ropt,

the main contribution to the unconditional MFPT arises from
the particle exceeding μ resets. Moreover, the expected time
to reset μ + 1 times is a monotonically decreasing function
of r. Hence, for a wide range of parameter values we expect
the MFPT to have a local minimum for small r and to be
monotonically decreasing function of r as r → ∞. This is
indeed found to be the case. In particular, Eq. (5.17) implies
that

T (μ)
r (xr ) = 1

r
(e

√
r/Dxr − 1)[1 − (1 − e−√

r/D|xr |)μ+1]. (5.38)

In Fig. 4(a) we plot T (μ)
r (xr ) as a function of the resetting rate

r for various values of μ and fixed xr . Corresponding plots for
various reset positions xr and fixed μ are shown in Fig. 4(b).
It can also be seen that the value of r where truncation starts
to have a noticeable effect decreases as xr increases.

Turning to the splitting probabilities and conditional
MFPTs, we use the identities 1 = π (μ)

a (xr ) + π
(μ)
b (xr ) and

FIG. 6. (a) Plot of the splitting probability π (μ)
a as a function of r for the particle to be absorbed at ∂U before resetting for the (μ + 1)th

time. (b) Corresponding plots of the conditional MFPT T (μ)
a (solid curves) and the unconditional MFPT T (μ)

r (dashed curves). For μ = 1000
the two curves coincide over the given range of r. We set xr = 1 and D = 1.
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T (μ)
r = π (μ)

a T (μ)
a + π

(μ)
b T (μ)

b . This means that, given T (μ)
r , we

only need to calculate π
(μ)
b and T (μ)

b . First, using Eq. (5.23)
we have

π
(μ)
b (xr ) = rQ̃r,μ(xr, 0) = (rQ̃0(xr, r))μ+1

= (1 − e−√
r/Dxr )μ+1. (5.39)

Second, Eq. (5.32) becomes

π
(μ)
b (xr )T (μ)

b (xr )

= −r(μ + 1)(rQ̃0(xr, r))μ∂sQ̃0(xr, r)

= μ + 1

r
(1 − e−√

r/Dxr )μ

×
[

1 − (2 + xr
√

r/D)e−√
r/Dxr

2

]
. (5.40)

Example plots of π
(μ)
b and T (μ)

b are shown in Fig. 5. As
expected, the probability π

(μ)
b that the particle resets for

the (μ + 1)th time before being absorbed decreases as the
maximum reset threshold μ is increased. However, it is an
increasing function of r. The conditional MFPT for exceeding
the reset threshold μ is a monotonically decreasing function
of r and a monotonically increasing function of μ. This is
consistent with the idea that, all other things being equal, a
faster reset rate reduces the time to reach μ + 1. In Fig. 6 we
show corresponding plots of π

(μ)
b and T (μ)

b with

π (μ)
a = 1 − π

(μ)
b , T (μ)

a = T (μ)
r − π

(μ)
b T (μ)

b

π
(μ)
a

. (5.41)

VI. DISCUSSION

In this paper we explored the effects of restricting the
maximum number of switching events in a stochastic hybrid
system, under the assumption that switching costs energy.
We considered two distinct classes of switching dynamics;
(i) an hSDE and (ii) diffusion with stochastic resetting. In
the former case, we truncated a Volterra series expansion of
the particle propagator, and used this to define a renormal-
ized propagator in which the maximum number of switching
events is fixed. We illustrated the theory by calculating the
renormalized moments of an OU process with random drift.
In case (ii), we truncated a Volterra series expansion of the
survival probability of a Brownian particle searching for an
absorbing target. This led to a modified FPT problem in which
the search is terminated when either the particle finds the

target or the number of resets exceeds a fixed threshold. We
calculated the splitting probabilities and conditional MFPTs
for these mutually exclusive events.

There are a number of natural extensions of the current
work. The first is to calculate renormalized propagators for
hSDEs beyond the example of a one-dimensional OU process
with random drift. One of the challenges is that there are few
examples where the bare propagators pn are known exactly.
Moreover, in many cases, the matrix generator Q depends on
the continuous state X(t ) at time t . One notable example is
a gene network that is regulated by its own protein product
[3]. Suppose that the promoter has a single operator site OS1

for binding protein X . The gene is assumed to be OFF when
X is bound to the promoter and ON otherwise. If O0 and
O1 denote the unbound and bound promoter states, then the

corresponding state transitions are O0
βx→ O1 and O1

α→ O0,
where x is the concentration of X . Equation (4.1) still holds
but the matrix generator becomes

Q(x) =
(−βx α

βx −α

)
. (6.1)

A second example is protein concentration gradient formation
during a particular stages of cell polarization in Caenorhab-
ditis elegans zygotes. Experimentally, it found that the
underlying mechanism relies on space-dependent switching
between fast and slow diffusion [63], see also the theoreti-
cal studies of Refs. [64,65]. Another future direction would
be to consider other examples of truncated search processes
with stochastic resetting. This could involve modifying the
underlying stochastic search dynamics (e.g., active particles,
Lèvy flights, etc.) or introducing delays such as refractory
periods and finite return times. Finally, it would be interesting
to modify the additive rule for energy cost along the lines of
Ref. [60] by taking the cost of each reset to depend on the
distance the particle has to travel to the reset point. This would
imply that the threshold μ for the number of resets before the
search process is killed is itself a random variable that depends
on the history of previous resets.

APPENDIX: CALCULATION OF TRUNCATED FIRST
MOMENT M (1,2)

00

Consider the truncated first moment of the full propagator
G00(x, t |x0, 0), which is defined according to

M (1,2)
00 (x0, t ) =

∫ ∞

−∞
dx xG(2)

00 (x, t |x0, 0). (A1)

Using Eq. (3.7) and the expression for the first moment m(1)
0 (x0, t ) of the propagator p0 gives

M (1,2)
00 (x0, t ) = e−βt m(1)

0 (x0, t ) + αβ

∫ t

0
dτ1

∫ τ1

0
dτ2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 e−β(t−τ1 )m(1)

0 (x1, t − τ1)

× e−α(τ1−τ2 ) p1(x1, τ1|x2, τ2)e−βτ2 p0(x2, τ2|x0, 0)

= e−βt m(1)
0 (x0, t ) + αβ

∫ t

0
dτ1

∫ τ1

0
dτ2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 e−β(t−τ1 )e−α(τ1−τ2 )

×
{

v0

κ0
(1 − e−κ0[t−τ1] ) + x1e−κ0[t−τ1]

}
e−βτ2 p1(x1, τ1|x2, τ2)p0(x2, τ2|x0, 0), (A2)
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after using Eq. (4.4). Performing the integration with respect to x1 then gives

M (1,2)
00 (x0, t ) = e−βt m(1)

0 (x0, t ) + αβ

∫ t

0
dτ1

∫ τ1

0
dτ2

∫ ∞

−∞
dx2 e−β(t−τ1 )e−α(τ1−τ2 )e−βτ2

×
[

v0

κ0
(1 − e−κ0[t−τ1] ) +

{
v1

κ0
(1 − e−κ0[τ1−τ2] ) + x2e−κ0[τ1−τ2]

}
e−κ0[t−τ1]

]
p0(x2, τ2|x0, 0). (A3)

Integrating with respect to x2 we have

M (1,2)
00 (x0, t ) = e−βt m(1)

0 (x0, t ) + αβ

∫ t

0
dτ1

∫ τ1

0
dτ2 e−β(t−τ1 )e−α(τ1−τ2 )e−βτ2

×
{

v0

κ0
(1 − e−κ0[t−τ1] ) + v1

κ0
(1 − e−κ0[τ1−τ2] )e−κ0[t−τ1] +

[
v0

κ0
(1 − e−κ0τ2 ) + x0e−κ0τ2

]
e−κ0[t−τ2]

}
. (A4)

Finally, setting β = α and computing the time integrals yields Eq. (4.20).
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