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Dynamics at the edge for independent diffusing particles
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We study the dynamics of the outliers for a large number of independent Brownian particles in one dimension.
We derive the multitime joint distribution of the position of the rightmost particle, by two different methods.
We obtain the two-time joint distribution of the maximum and second maximum positions, and we study the
counting statistics at the edge. Finally, we derive the multitime joint distribution of the running maximum, as
well as the joint distribution of the arrival time of the first particle at several space points.
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I. INTRODUCTION

The maximum of a large number N � 1 of identical in-
dependent Brownian motions, started from the origin in one
dimension, properly rescaled and centered, is distributed ac-
cording to the Gumbel distribution, one of the three classes
of extreme value statistics [1–4]. Recently, there has been
renewed interest in the statistics of the particles at the edge of
a cloud of Brownian particles diffusing in a common space-
time-dependent random environment [5–13]. For a large
number of particles, it was shown that on top of the Gumbel
fluctuations, there is a random, environment-dependent shift
in the position of the rightmost particle. Furthermore, the
statistics of this shift was found to be related to those of some
solutions of the Kardar-Parisi-Zhang equation. Tracer diffu-
sion experiments, involving colloid or photons, are presently
aiming to test that prediction [14].

This prediction is about the position of the maximum at
a given time, a one-time observable. It would be interesting
to extend it to multitime observables. With this longstanding
aim in mind, one can start by asking about a much simpler
problem, namely multitime observables for identical inde-
pendent Brownian motions, in the absence of a background
environment. That should be useful, e.g., as a benchmark in
the analysis of such experiments.

In the present paper we study the dynamics of the outliers
for a large number of independent Brownian particles on the
line, all starting at the origin. We derive the multitime joint
distribution of the position of the rightmost particle, i.e., of
the maximum of all the particle positions, by two elementary
methods, which lead to different, though equivalent, formulas.
The first method is standard for extreme value statistics, the
second uses the diffusion equation. We obtain explicit for-
mula for the cumulants of the fluctuations of the maximum at
different times. We then extend these results to the multitime
joint distribution of the maximum and of the second maximum
particle positions. In parallel, we obtain some predictions
about the counting statistics at the edge of the cloud, which
describes the outliers. Next, we study some continuum time
observables of the rescaled maximum process. We obtain the
probability that it remains below some level during some time
interval. We study the running maximum, that is the maximum

over all the particles and up to some fixed time, and obtain
its multitime joint distribution. Finally, we obtain the joint
distribution of the arrival times of the first particle (i.e., the
first detection times) at different locations in space, and the
distribution of the time delays between these detection events.

It must be noted that this class of problems is related
to the so-called multivariate extreme value theory and max-
stable processes, which has a long history, starting with the
Brown-Resnick process [15,16] and the Husler-Reiss (HR)
distributions [17,18]. Since these seminal papers there were
a number of extensions [19–28], though apparently mainly in
the fields of probability and statistics. Our modest aim here is
to instead study the problem with simple heuristic methods of
statistical physics. In the course of our work we will encounter
some known objects, such as the HR distributions, in some-
times different forms, but we will also study more general
outlier properties, counting statistics, the running maximum
problem, and arrival time statistics. One must also note an in-
dependent work in preparation on these topics [29], following
upon the recent work [30] which studies counting statistics for
stochastic processes with an extended initial condition.

The outline of the paper is as follows. In Sec. II we focus on
one-time observables (maximum, order, and counting statis-
tics of outliers) and recall the standard results obtained for
these quantities from extreme value statistics of i.i.d. random
variables. In Sec. III (and Appendix A) we give a first deriva-
tion of the multitime distribution of the maximum. In Sec. IV
we give more explicit formula for some marginals, moments
and two- and three-time correlations of the maximum. The
relevant calculations are detailed in Appendices B and C.
In Sec. V we present a second derivation of the multitime
distribution of the maximum based on the heat equation. It
naturally allows to obtain these distributions recursively. In
Sec. VI we study some multitime properties of the outliers,
e.g., we obtain the multitime joint distribution for the maxi-
mum and second maximum, either directly, in Appendix D,
or by studying counting statistics near the edge of the cloud.
In Appendix E it is indicated how to extend these results to
any rank at number of times. Finally, in Sec. VII and Ap-
pendix F we study continuum time observables of the rescaled
maximum process, as well as the multitime statistics of
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the running maximum and of the arrival times of the first
particle.

II. OUTLIERS AT A GIVEN TIME

Let us start by recalling standard results of extreme value
statistics [1–4], applied to one-time observables for diffusing
particles.

A. Maximum at a given time

Let us consider a particle whose position x(t ) evolves ac-
cording to a random process. Let us denote pt (x) the one-time
probability distribution function (PDF) of the position at time
t . The example on which we will focus will be a Brownian
particle, x(t ) = √

DB(t ), started at x = 0 at time t = 0. In that
case

pt (x) = 1√
2πDt

e−x2/(2Dt ), for a Brownian particle (below D = 1), (1)

is the standard diffusion kernel. Below we set D = 1 since any
value of D can be restored by a rescaling of time.

Let us now consider N identical copies of that parti-
cle evolving independently. In our canonical example all
the Brownian particles have the same diffusion coefficient
and all start from x = 0 at time t = 0. One now defines
the position of the rightmost particle, i.e., the maximum
X (t ) = maxi=1,...,N xi(t ). We are interested in the case where
N is large. By definition the cumulative distribution function
(CDF) of the maximum is given by

Q(X ) = Prob(X (t ) < X ) = P<,t (X )N

= eN ln(1−P>,t (X )) �
N�1

e−NP>,t (X ), (2)

where we denote P>,t (X ) = ∫ +∞
X dxpt (x) and P<,t (X ) =∫ X

−∞ dxpt (x). As is well known, the standard diffusion (1) falls
in the Gumbel extremal class. For any process in that class one
can simply perform the change of variable from X to z defined
by

NP>,t (X ) = e−z. (3)

In the case of diffusion it gives N
√

t√
2πX

e−X 2/(2t ) = e−z leading
to

X �
√

2t

(√
ln N + z + cN

2
√

ln N

)
, cN = −1

2
ln(4π ln N ).

(4)
In this new variable the CDF is simply the Gumbel distribu-
tion, e−e−z

, i.e., one has

Q(X ) = Prob(X (t ) < X ) � e−e−z
. (5)

Note that the change of variable (3) [hence, also Eq. (4) to
leading order] is such that one has exactly

N pt (X )dX = e−zdz. (6)

In the following, we will often (abusively) also consider z as
the random variable defined by Eq. (4) with X = X (t ), i.e., as
the rescaled position of the maximum.

B. Order statistics of outliers

It is well known how to extend this to the k first particles
[2–4]. Let us denote X ( j)(t ) the same set of particles, but
ordered by their rank, i.e., X (1)(t ) > X (2)(t ) > . . . > X (N )(t ),
so that X (t ) = X (1)(t ) is the position of the maximum, X (2)(t )
of the second maximum and so on.

The joint PDF of the k first outliers is

N (N − 1) . . . (N − k + 1)pt (X
(1) )pt (X

(2) ) . . . pt (X
(k) )θX (1)>...>X (k) P<,t (X

(k) )N−kdX (1) . . . dX (k). (7)

For large N it becomes

�
⎛
⎝ k∏

j=1

(N pt (X
( j) )dX ( j) )

⎞
⎠θX (1)>...>X (k) e−NP>,t (X (k) ). (8)

Thus, the same change of variable

NP>,t (X
( j) ) = e−z( j)

, (9)

which in the case of diffusion reads

X ( j) �
√

2t

(√
ln N + z( j) + cN

2
√

ln N

)
, (10)

allows to put the large N asymptotic joint PDF of the position
of the k first particles in the well-known form

q(z(1), . . . , z(k) ) = θz(1)>z(2)>...>z(k) e−z(1)−z(2)−···−z(k)
e−e−z(k)

,

(11)

or equivalently as

q(z(1), . . . , z(k) ) = θz(1)>z(2)>...>z(k)

k−1∏
�=1

�e−�(z(�)−z(�+1) )

× 1

(k − 1)!
e−kz(k)−e−z(k)

. (12)
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Hence, to generate the k largest points, one first chooses zk

and then the successive gaps as independent exponentially
distributed variables, with distinct parameters.

C. Counting statistics of outliers

Another standard way to characterize the outliers is the
counting statistics. Let us define nX as the number of parti-
cles at a given time t with xi(t ) > X . Since the particles are
identical and independent the probability that nX = n follows
the binomial distribution

PX (n) = N!

n!(N − n)!
P<,t (X )N−nP>,t (X )n. (13)

In the edge regime for large X , i.e., for NP>,t (X ) = O(1) this
becomes a Poisson distribution

PX (n) � 1

n!
(NP>,t (X ))ne−NP>,t (X ) = 1

n!
e−nze−e−z

, (14)

where in the last equality we have used the change of variable
(3). In the case of independent Brownian motions, all starting
from the origin, the variables X and z are related through
Eq. (4). From it one recovers the Gumbel CDF of the max-
imum

PX (n = 0) = Prob(X (t ) < X ) � e−e−z
. (15)

Note that the other probabilities have also some interpreta-
tions in terms of order statistics, i.e., PX (1) = Prob(X (t ) >

X, X (2)(t ) < X ), where X (t ) = X (1)(t ) and X (2)(t ) are the
maximum and second maximum, respectively, and so on.
Furthermore, one sees that X (k) < X is equivalent to nX ∈
{0, 1, . . . , k − 1}, hence

Prob(X (k) < X ) �
(

k−1∑
n=0

1

n!
e−nz

)
e−e−z

. (16)

One can check that taking ∂z of the right-hand side (r.h.s.) one

recovers the PDF of z = z(k), i.e., q(z(k) ) = 1
(k−1)! e

−kz(k)−e−z(k)

.

How does one recover the joint PDF of X (t ) and X (2)(t )?
For that one needs the joint PDF of nX1 and nX2 with X1 > X2

where we recall that nX the number of particles with xi(t ) >

X . To obtain it we split the line into three disjoint intervals (a)
x > X1, (b) X2 < x < X1, and (c) x < X2 and write the product
of sums of probabilities of these events

1 = [P(x > X1) + P(X2 < x < X1) + P(x < X2)]N . (17)

Here for convenience we adopt the shorthand notations,
e.g., P(X2 < x < X1) = ∫ X1

X2
dxpt (x) and so on. Expanding

Eq. (17), we see that the probability PX1,X2 (na, nb, nc) that
there are na, nb, nc particles in each of these intervals, is given

by the multinomial distribution

PX1,X2 (na, nb, nc) = N!

na!nb!nc!
δN,na+nb+nc P(x > X1)na

× P(X2 < x < X1)nbP(x < X2)nc . (18)

In the large N limit and choosing X1 and X2 near the edge
so that typically nb, nc = O(1) while na � N , one obtains by
similar manipulations as above that the probability of na, nb is
a multiple independent Poisson distribution

PX1,X2 (na, nb) � 1

na!nb!
(e−z2 − e−z1 )nbe−naz1 e−e−z2

, (19)

which is correctly normalized to unity. This form applies to
any problem of i.i.d. random variables in the Gumbel class
through the change of variable (3), and for our purpose here
X1 and z1 are related through Eq. (4) and so are X2 and z2.

Several observables can be obtained from Eq. (19). For
instance, the joint PDF of X (t ) and X (2)(t ) can be retrieved
from taking −∂X1∂X2 of the following “CDF”:

Prob(X (2)(t ) < X2, X (1)(t ) > X1)

= PX1,X2 (na = 1, nb = 0) � e−z1 e−e−z2
, (20)

and one can check that it is indeed equal to∫
y1>z1

∫
y2<z2

e−y1−y2 e−e−y2 .
Another interesting observable is the joint PDF of the

couple (nX1 , nX2 ). Since the intervals [X2,+∞] and [X1,+∞]
overlap, the two variables are correlated. One can write
(nX1 , nX2 ) = (na, na + nb), where na, nb are independent Pois-
son variables. Hence,

Prob(nX1 = n1, nX2 = n2) = θn2�n1

λn1
a

n1!

λ
n2−n1
b

(n2 − n1)!
e−λa−λb,

(21)
where λa = e−z1 and λb = e−z2 − e−z1 are the mean parame-
ters of the distribution (19).

III. MULTITIME JOINT CDF FOR
THE MAXIMUM: FIRST METHOD

Let us now consider the dynamics of the maximum X (t ).
Its one-time CDF is given by Eqs. (4) and (5). What is the
multitime joint CDF of X (t1), X (t2), . . . X (tn)?

Let us first determine on what timescale these variables
remain correlated. The first simple consideration is as fol-
lows. As recalled in Sec. II B, at any fixed time the gap
between the maximum z(1) and the second maximum z(2)

(in the variable z seen as random variables) is z(1) − z(2) =
O(1). Hence, at a given time t = t1, from Eq. (10), the first
gap is X (t ) − X (2)(t ) = O(

√
t1/ ln N ). These two rightmost

particles undergo diffusion, hence it takes typically a time
t2 − t1 ∼ (X (t ) − X (2)(t ))2 ∼ t1/ ln N for them to meet. This
gives the scale of the time difference at which the order of the
first few particles at the edge reshuffles, and correlations start
decaying. For time differences much larger t2 − t1 � t1/ ln N
we expect that X (t1) and X (t2) become uncorrelated, each

024101-3



PIERRE LE DOUSSAL PHYSICAL REVIEW E 109, 024101 (2024)

described, under the appropriate scaling, by Gumbel distribu-
tions.

Let us give the result for the joint CDF Prob(X (t1) <

X1, . . . , X (tn) < Xn). In view of the previous paragraph we
define the dimensionless rescaled time differences τi as

t j = t1

(
1 + τ j,1

ln N

)
, (22)

with the notation τi, j = τi − τ j and τ1 = 0. As above one
performs the change of variable

Xj = √
2t j

√
ln N

(
1 + z j + cN

2 ln N

)

�
√

2t1
√

ln N

(
1 + z j + τ j,1 + cN

2 ln N

)
. (23)

Then, at large N we obtain (by similar manipulations as in the
previous section, see Appendix A) that the joint CDF takes the
form

Prob(X (t1) < X1, . . . , X (tn) < Xn) � exp (−	(z1, . . . , zn; τ2,1, . . . , τn,n−1)), (24)

	(z1, . . . , zn; τ2,1, . . . , τn,n−1) =
∫

y1,...,yn

(
1 −

n∏
i=1

θyi<zi

)
e−y1 G(y2,1, τ2,1) . . . G(yn,n−1, τn,n−1), (25)

where here and below we often use the notations yi, j = yi −
y j and the shorthand

∫
y = ∫

dy = ∫ +∞
−∞ dy as well as θy<z =

θz>y = θ (z − y), where θ (x) is the Heaviside function, and

G(y, τ ) = 1√
4πτ

e− (y+τ )2

4τ (26)

is simply the free diffusion kernel, however with a negative
unit drift (and with D = 2). This drift originates from the
fact that the position of the maximum increases with time,
as can be seen, e.g., in Eq. (23). Hence, the front of the
cloud of particles moves to the right and with respect to this
front the diffusion of a single particle, which is symmetric,
has a negative drift. This is why, as we will see below, the
correlations decay exponentially at large time: after a scaled
time difference τ = O(1) the cloud of particles overtakes the
particle which was the rightmost at time t1. This is illustrated
in Fig. 1. Finally, the factor e−y1 reminds that the Gumbel
distribution is a (nonnormalizable) stationary distribution of
the rescaled maximum process in the z variable (see below).

Although exact, the above formula is delicate. Indeed, each
of the two terms in (1 − ∏n

i=1 θyi<zi ) is a divergent integral

FIG. 1. Schematic view of the positions of the three rightmost
particles at two times, with t2 − t1 = t1(1 + τ

ln N ). The dotted line is
the average position of the edge, which moves to the right with unit
velocity in the scaled space-time variables z, τ . The scaled maximum
process is stationary in the frame moving with the edge. However, the
particle of maximal position at t1 undergoes symmetric diffusion, and
as τ increases is overtaken by the other particles in a time τ = O(1),
leading to exponential decay of correlations.

(for y j → y j + y with y → −∞), and only the combination
is finite and the terms cannot be separated.

Let us give an equivalent formula for n = 2. One recom-
bine as

1 − θy1<z1θy2<z2 = 1 − (1 − θz1<y1 )(1 − θz2<y2 )

= θz1<y1 + θz2<y2 − θz1<y1θz2<y2 . (27)

We use the important property that e−z1 dz1 is a (nonnormaliz-
able) stationary measure of the free diffusion with a negative
unit drift, i.e., it satisfies∫

dz1e−z1 G(z2,1, τ2,1) = e−z2 (28)

for any real z1, z2 and τ2,1 > 0, where we here and below use
the notation z2,1 = z2 − z1. The other important property is the
normalization condition∫

dy G(y, τ ) = 1. (29)

Using these two properties, inserting Eq. (27) into Eq. (25)
one finds

	(z1, z2; τ2,1) = e−z1 + e−z2 −
∫

z1<y1,z2<y2

e−y1 G(y2,1, τ2,1).

(30)
This function admits an explicit expression in terms of error
functions, it is given below in Eqs. (40) and (41) and in
Eq. (B10) in the Appendix.

Let us now generalize this formula to arbitrary n. Starting
from n = 3 one must also use a third property, the convolution
identity∫

dy G(z − y, τ ′)G(y − x, τ ) = G(z − x, τ + τ ′). (31)

It is then easy to see, using these three properties, that one has

	(z1, z2; τ2,1) = e−z1 + e−z2 − g(z1, z2; τ2,1), (32)

	(z1, z2, z3; τ2,1, τ3,2)

= e−z1 + e−z2 + e−z3 − g(z1, z2; τ2,1) − g(z2, z3; τ3,2)

− g(z1, z3; τ31) + g3(z1, z2, z3; τ2,1, τ3,2), (33)
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and so on, where we have defined

g(z1, z2; τ2,1) =
∫

z1<y1,z2<y2

e−y1 G(y2,1, τ2,1)

= e−z1

∫
0<y1,0<y2

e−y1 G(y2,1 + z2,1, τ2,1), (34)

g3(z1, z2, z3; τ2,1, τ3,2)

=
∫

z1<y1,z2<y2,z3<y3

e−y1 G(y2,1, τ2,1)G(y3,2, τ3,2), (35)

= e−z1

∫
0<y1,0<y2,0<y3

e−y1 G(y2,1 + z2,1, τ2,1)

× G(y3,2 + z3,2, τ3,2), (36)

and so on, with more generally, for a1 < · · · < ak , k � 1

gk
(
za1 , . . . , zak ; τa2,a1 , . . . , τak ,ak−1

) =
∫

za1 <ya1 ,...,zak <yak

e−ya1

× G
(
ya2,a1 , τa2,a1

)
. . . G

(
yak ,ak−1 , τak ,ak−1

)
, (37)

with g2 = g and g1(z) = e−z. It is easy to see from the above
properties (31) and (28) that if any argument zaj for some j
in gk is set to zaj = −∞ then gk → gk−1 and zaj and τ j are
dropped from the list of arguments. Also, any gk obviously
vanishes when any zaj for some j argument is taken to +∞.

One can see in Eqs. (34) and (36) that one can always factor
out the term e−z1 , the rest being only function of differences
of z j’s. This important factorization property is true for any n,
i.e., one can always write

	(z1, . . . , zn; τ2,1, . . . , τn,n−1)

= e−z1φτ2,1,...,τn,n−1 (z2,1, . . . , zn,n−1). (38)

The functions φ will be further studied below.
The above result provides explicit, although lengthy, ex-

pressions for the multitime joint CDF of the maximum. As
we will see below, using a second method based on the heat
equation, the functions 	 can also be computed recursively
with n. This leads to more compact expressions. Before ex-
plaining that, let us give some explicit results for marginals,
cumulants and correlation functions for n = 2 and n = 3.

IV. MULTITIME MARGINALS, MOMENTS, AND
CORRELATIONS FOR THE MAXIMUM

Let us analyze in more details the joint PDF obtained in
the previous section. We will derive very explicit results for
n = 2, and give some general formula for n = 3.

A. Two-time correlations

Let us start with n = 2.

1. Two-time joint CDF

One recalls that at large N with t2 − t1 = t1
τ2,1

ln N , with τ2,1 =
τ = O(1), the joint CDF for the position of the maximum
takes the form

Prob(X (t1) < X1, X (t2) < X2) � Q<,<(z1, z2)

= exp (−	(z1, z2; τ )), (39)

where we denote Q<<(z1, z2) the two-time CDF of the process
in the variables z j (implicitely at times t j), and 	(z1, z2; τ )
was defined in Eq. (30). Through the change of variable y j →
y j + z j it can also be written as

	(z1, z2; τ ) = e−z1φτ (z2,1),

φτ (z) = 1 + e−z −
∫

y1>0,y2>0
e−y1 G(y2,1 + z, τ ).

(40)

The integral can be computed, see Appendix B. This leads to
the explicit form

φτ (z) = 1

2

[
erf

(
τ + z

2
√

τ

)
+ e−zerfc

(
z − τ

2
√

τ

)
+ 1

]
, (41)

which obeys the important symmetry (see Appendix B)

φτ (z)ez = φτ (−z). (42)

This symmetry is equivalent to the fact that 	(z1, z2; τ ) is
symmetric in z1, z2 as is visible on its explicit form (B10) in
the Appendix.

In summary, the two-time CDF of the maximum, in the
rescaled variables, has the form

Q<<(z1, z2) � e−e−z1 φτ (z2,1 ), (43)

where the function φτ (z) is given in Eq. (41). As mentioned in
the Introduction, this distribution appeared before [17,18] and
is known as the bivariate HR distribution.

The function φτ (z) has the following asymptotic behaviors
for large argument

φτ (z) � e−z + ψτ (z), z → −∞, (44)

φτ (z) � 1 + ψτ (z), z → +∞, (45)

ψτ (z) = e− (z+τ )2

4τ
2τ 3/2

z2
√

π

[
1 + τ (τ − 6)

z2

+ τ 2(60 + τ (τ − 20)

z4
+ O(z−6)

]
, |z| → +∞.

(46)

Note that ψτ (−z) = ezψτ (z). These asymptotics guarantee
that one recovers the one-time Gumbel CDF for z1 → +∞
or z2 → +∞, i.e., one has

Q<<(z,+∞) = Q<<(+∞, z) = e−e−z
. (47)

024101-5



PIERRE LE DOUSSAL PHYSICAL REVIEW E 109, 024101 (2024)

FIG. 2. Left: marginal PDF of z = z2,1 = z2 − z1, the scaled distance traveled by the maximum, with X (t2) − X (t1) �
√

t1
2 ln N (τ + z). It is

plotted for τ = 1/3 (plain), τ = 1 (dashed), τ = 3 (dotted). Right: its second moment 〈z2
2,1〉 = A2(τ ), plotted versus τ (blue, thick). The first

three terms in the small τ asymptotics (65) (dotted), and the first two terms in the large τ asymptotics (63) are also plotted (dashed), together
with the limiting value π 2/3 (horizontal line). Recall that π 2/3 − A2(τ ), i.e., the curve reflected versus π 2/3 describes the two-time covariance
of the maximum, see Eq. (72).

In addition, at large τ , since the free diffusion kernel with drift
G(y2,1 + z, τ ) → 0, one sees from Eq. (40) that

φτ (z) � 1 + e−z, 	(z1, z2; τ ) � e−z1 + e−z2 , τ → +∞,

(48)

which corresponds to two uncorrelated Gumbel variables.

2. Exponential moments of z1 and z2

Through Eq. (23) with Xj = X (t j ) one can (abusively) also
think of z1 and z2 as random variables. Furthermore, from now
on it is useful to consider z1 and z2,1 = z2 − z1 as the two
random variables of interest.

A first result, see Appendix C, is an explicit integral expres-
sion for the joint moment generating function, which reads

〈e−sz1−bz2,1〉 = �(1 + s)
∫

dze−bz∂z

[(
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)s

]
,

(49)

where here and below 〈. . . 〉 denotes an expectation value. A
simpler expression also exists for Eq. (49), see Eq. (C13), but
it is less convenient for the analysis of the moments. For b = 0
the integral in Eq. (49) can be performed and the boundary
term is 1 at z = +∞ and vanish at z = −∞ (see Appendix C),
recovering the generating function of the one-time Gumbel
distribution

〈e−sz1〉 = �(1 + s). (50)

One also recovers the same result for z2, by setting b = s, al-
though the algebra is slightly more involved, see Appendix C.

3. PDF of z2 − z1

It is possible to obtain explicitly the PDF of X (t2) − X (t1)
the distance over which the maximum has moved. One has
from Eq. (23) that X (t2) − X (t1) =

√
t1

2 ln N (τ + z2,1), where
we consider z2,1 = z2 − z1 as a random variable. Its distri-
bution is easily obtained. Indeed, Eq. (49) for s = 0 implies
the following expression for the generating function of the
moments of z2,1,

〈e−bz2,1〉 =
∫

dze−bz∂z

(
1 + φ′

τ (z)

φτ (z)

)
. (51)

This, in turn, implies the following expressions for the PDF
[denoted P(2,1)

τ (z)] and the CDF of the variable z2,1,

P(2,1)
τ (z) = ∂z

φ′
τ (z)

φτ (z)
= ∂2

z ln φτ (z),

Prob(z2,1 < z) = 1 + ∂z ln φτ (z), (52)

where φτ (z) is given explicitly in Eq. (41). Thanks to the
symmetry (42) we see that the PDF is an even function of
z,

P2,1
τ (−z) = P2,1

τ (z), (53)

hence all odd moments of z2,1 vanish. The PDF P(2,1)
τ (z)

is plotted in Fig. 2. Its behavior for large |z| at
fixed τ is

P2,1
τ (z) � 1√

4πτ
e− (|z|+τ )2

4τ

(
1 + 2τ

|z| + 2τ 2

z2
+ O(|z|−3

)
,

(54)

hence for large argument it becomes equal to the free diffusion
kernel with unit drift. Around z = 0 it is analytic and behaves
as

P2,1
τ (z) = 1

4
+ e−τ/4

√
π

√
τ
(
2erf

(√
τ

2

) + 2
) − z2

16

(
1 + e−τ/2

(√
πeτ/4(5τ + 2)

(
erf

(√
τ

2

) + 1
) + 6

√
τ
)

πτ 3/2
(
erf

(√
τ

2

) + 1
)2

)
+ O(z4). (55)

In the limit of large τ and fixed z it converges to a finite limit

P2,1
τ (z) = 1

4 cosh2
(

z
2

) + O(e−τ/4τ−1/2), (56)
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which is simply the PDF of the difference of two uncorrelated Gumbel variables, as it should. Indeed, Eq. (56) implies

lim
τ→+∞〈e−bz2,1〉 = πb

sin(πb)
= �(1 + b)�(1 − b). (57)

One can study how that limit is reached. One has, at large τ � 1,

φτ (z) = 1 + e−z − e− (z+τ )2

4τ χτ (z), χτ (z) = 2√
πτ

(
1 − 2

τ
+ 12 + z2

τ 2
+ O(1/τ 3)

)
. (58)

Inserting into Eq. (52), expanding the logarithm to first order in χτ (z), writing the exponential as e− τ
4 − z

2 × e− z2

4τ and expanding
the last factor in powers of 1/τ , one obtains the large τ expansion

P2,1
τ (z) = 1

4 cosh2( z
2 )

+ 2e− τ
4√

πτ

(
1

16

3 − cosh(z)

cosh3
(

z
2

) + −3z2 + (z2 + 16) cosh(z) − 8z sinh(z) − 16

64 cosh3
(

z
2

)
τ

+ O(τ−2)

)
. (59)

4. Moments of z2 − z1

We recall that the odd moments of z2,1 = z2 − z1 vanish. One can further obtain formulas for the the even moments of z2,1 by
integration by part (boundary terms vanish), as, with n � 1,

〈
z2n

2,1

〉 = A2n(τ ) = 2
∫ +∞

0
dzz2n∂2

z ln φτ (z) = 4n(2n − 1)
∫ +∞

0
dzz2n−2 ln φτ (z), (60)

which are easy to evaluate numerically. The function A2(τ ) is plotted in Fig. 2. Using Eq. (57) one finds that at large time the
moments tend to the moments of the difference of two uncorrelated Gumbel variables, namely

lim
τ→+∞

〈
z2n

2,1

〉 = A2n(+∞) = (−1)n+1(22n − 2)π2nB2n, (61)

where the Bk are the Bernoulli numbers. The details asymptotics of A2n(τ ) at large τ is obtained as follows. From Eq. (58) one
has

ln φτ (z) = ln(1 + e−z ) − e− (z+τ )2

4τ
χτ (z)

1 + e−z
+ O(e−2 (z+τ )2

4τ ), (62)

and one performs similar manipulations as above. Using the last identity in Eq. (60), the integral on z converges term by term in
the expansion, leading to

A2(τ ) = π2

3
− 4

√
πe−τ/4

√
τ

(
1 − 8 + π2

τ
+ 12 + 3π2

2 + 5π4

32

τ 2
− 120 + 15π2 + 25π4

16 + 61π6

384

τ 3
+ O(τ−4)

)
,

A4(τ ) = 7π4

15
− 24π5/2e−τ/4

√
τ

(
1 − 2 + 5π2

4

τ
+ 12 + 15π2

2 + 61π4

32

τ 2
− 120 + 75π2 + 305π4

16 + 1385π6

384

τ 3
+ O(τ−4)

)
. (63)

At short time difference τ � 1 the variable z21 is of order
√

τ . Defining the O(1) random variable w such that z21 = w
√

τ

one finds that its PDF pτ (w) admits a small τ expansion

pτ (w) = e− w2

4

2
√

π
−

√
τ
(√

πe− w2

4 w erf
(

w
2

) + π
(
erf

(
w
2

)2 − 1
) + 2e− w2

2
)

4π
+ O(τ ). (64)

So not surprisingly z2,1 undergoes free diffusion at short time, but there are corrections as τ increases. The short time expansion
of the lowest moments and cumulants, as well as of the kurtosis, reads

〈
z2

2,1

〉 = 〈
z2

2,1

〉c = A2(τ ) = 2τ − 4

3

√
2

π
τ 3/2 + 0.217996τ 2 − 0.0129398τ 5/2 + O(τ 3),

〈
z4

2,1

〉 = A4(τ ) = 12τ 2 − 72

5

√
2

π
τ 5/2 + O(τ 3),

〈
z4

2,1

〉c = 8

5

√
2

π
τ 5/2 + O(τ ), Ku = 2

5

√
2

π

√
τ + O(τ ),

〈
z6

2,1

〉 = A6(τ ) = 120τ 3 − 1380

7

√
2

π
τ 7/2 + O(τ 4). (65)
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The small and large τ asymptotics are compared with the
numerical calculation of A2(τ ) in Fig. 2.

5. Covariance of X (t1) and X (t2 )

Let us translate some of these results in the original vari-
ables. Let us recall the relations

X (t1) = X1 �
√

2t1

(√
ln N + z1

2
√

ln N

)
, (66)

X (t2) = X2 �
√

2t1

(√
ln N + τ + z2

2
√

ln N

)
. (67)

Hence, one has

X2 − X1 �
√

t1
2 ln N

(τ + z2,1), τ = t2 − t1
t1

ln N = O(1).

(68)

The results of the previous subsection thus imply for τ = O(1)
and p � 1

〈X2 − X1〉 �
√

t1
2 ln N

τ, , 〈(X2 − X1 − 〈X2 − X1〉)2p+1〉

= o

((
t1

2 ln N

)2p+1)
, (69)

VarX1 = VarX2 � t1
2 ln N

π2

6
, Var(X2 − X1) � t1

2 ln N
A2(τ ),

(70)

Cov(X1, X2) = 1
2 (Var(X1) + Var(X2) − Var(X2 − X1)),

(71)

= t1
4 ln N

(
π2

3
− A2(τ )

)
, A2(τ ) = 4

∫ +∞

0
dz ln φτ (z),

(72)

where we have used the values for the first two moments of
the Gumbel distribution, 〈z2

1〉 = 〈z2
2〉 = π2

6 + γ 2
E and 〈z1〉 =

〈z2〉 = γE . The covariance is illustrated in Fig. 2. Using the
asymptotics (63), we see that at large time difference τ � 1
the covariance of the maximum at two different times decay
as

Cov(X (t1), X (t2)) � t1
4 ln N

4
√

πe−τ/4

√
τ

. (73)

As discussed in the previous section, the large time decay
is exponential since the particle which is the rightmost at
time t1 undergoes symmetric diffusion, while the front of the
other particles advances, with an effective unit drift, on the
timescales τ = O(1).

6. Correlations between X (t1) and X (t2 ) − X (t1)

There are correlations between the variable z1 and z2,1. For
instance, from Eq. (49) one obtains

〈z1e−bz2,1〉 − 〈z1〉〈e−bz2,1〉

= −
∫

dze−bz∂z

((
1 + φ′

τ (z)

φτ (z)

)
ln φτ (z)

)
. (74)

The lowest cross moment is trivial

〈z1z2,1〉 = − 1
2

〈
z2

2,1

〉
. (75)

The first nontrivial cross cumulant is〈
z1z2

2,1

〉c = 〈
z1z2

2,1

〉 − 〈z1〉
〈
z2

2,1

〉
= −

∫
dzz2∂z

((
1 + φ′

τ (z)

φτ (z)

)
ln φτ (z)

)
, (76)

which upon rescaling yields the corresponding cross cumulant
for the maximum X (t1) and its variation X (t2) − X (t1).

7. Conditional probability of z1 given z2 − z1

It is also interesting to compute the PDF of z1 conditioned
on a given value of z2,1 = z, which turns out to have a simple
form. One finds

qτ (z1|z2,1 = z) = ∂z1∂z2 e−e−z1 φτ (z2,1 )|z2,1=z

∂2
z ln φτ (z)

= φτ (z)(Bτ (z)e−z1 + φτ (z)(1 − Bτ (z))e−2z1 ))

× e−e−z1 φτ (z), (77)

with Bτ = φτ (φ′
τ + φ′′

τ )/(φτφ
′′
τ − (φ′

τ )2). Upon the determin-
istic shift

z1 = z̃1 + ln φτ (z), (78)

we see that z̃1 has the same distribution that the one of a
random variable which (i) with probability Bτ (z) is Gumbel
(ii) with probability 1 − Bτ (z) has the PDF of the second
maximum e−2z̃1 e−e−z̃1 . Note that 0 < Bτ (z) < 1 is an even
function of z which reaches its strictly positive τ -dependent
minimum at z = 0, and with Bτ (±∞) = 1.

B. Three-time correlations

For three times we will again consider z1, z2,1 = z2 − z1

and z3,2 = z3 − z2 as the random variables of interest. Note
that we use the notation z21 and z32 for the corresponding
arguments of functions, or for real integration variables. We
use the same notation for z1, z2, z3 as random variables and
function arguments.

Anticipating a bit, in the next section, Sec. V, we will
obtain the simplest form for the three-time function 	. As
noted in Eq. (38), once again the dependence in z1 can be
singled out as

	(z1, z2, z3; τ3,2, τ2,1) = e−z1φτ2,1,τ3,2 (z2,1, z3,2), (79)

a property which extends to any number of time n. For n = 3
one has the tedious but explicit formula

φτ2,1,τ3,2 (z21, z32)

=
∫

dy G(z32 + z21 − y, τ3,2)φτ2,1 (min(z21, y))

= 1

2

∫
dy√

4πτ32
e
− (z32+z21−y+τ3,2 )2

4τ3,2

(
erf

(
τ2,1 + min(z21, y)

2
√

τ2,1

)

+ e− min(z21,y)erfc

(
min(z21, y) − τ2,1

2
√

τ2,1

)
+ 1

)
. (80)
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Although we could not perform this integral in closed form, it
can be easily evaluated numerically. Let us now put this result
to use.

One can generalize the manipulations in the previous
section (see Appendix C) and obtain again the exponential
moments as

〈e−sz1−bz2,1−cz3,2〉

= �(1 + s)
∫

dz32dz21e−sz1−bz21−cz32∂z32

(
∂z21 − ∂z32

)
×

((
1 + ∂z21φτ2,1,τ3,2 (z21, z32)

φτ21,τ32 (z21, z32)

)
φτ2,1,τ3,2 (z21, z32)−s

)
,

(81)

where now z21 and z32 denote two real integration variables.
Hence, the joint PDF Pτ2,1,τ3,2 (z21, z32) of the random variables
z2,1 = z2 − z1 and z3,2 = z3 − z2 is obtained as

Pτ2,1,τ3,2 (z21, z32) = ∂z32 (∂z21 − ∂z32 )∂z21 ln φτ2,1,τ3,2 (z21, z32),

(82)

where φτ2,1,τ3,2 (z21, z32) is given explicitly in Eq. (80). Upon
rescaling and shifting, Eq. (82) gives the joint PDF of the
variations X (t3) − X (t2) and X (t2) − X (t1).

From Eq. (82) one can evaluate the corresponding joint
moments through a double integral. The lowest nontrivial
such moments are of third order, i.e., 〈z2

2,1z3,2〉 and 〈z2,1z2
3,2〉.

Indeed, the order two correlation is simply related to two-time
moments,

〈z21z32〉 = 〈z21z32〉c = 1
2 (A(τ31) − A(τ21) − A(τ32)). (83)

V. MULTITIME JOINT CDF FOR THE MAXIMUM,
FROM THE HEAT EQUATION

We now give another calculation of the multitime joint
CDF for the maximum, using the diffusion equation. It is
slightly less controlled technically, but quite intuitive physi-
cally.

Let us start with the one-time CDF. For a single particle
x(t ) undergoing free diffusion, the CDF, which we denote here
for convenience P<(x, t ) = Prob(x(t ) < x), satisfies

∂t P< = 1
2∂2

x P<, (84)

with P<(−∞, t ) = 0 and P<(+∞, t ) = 1. Here the initial
condition P<(x, t = 0) = θ (x), although one can consider
more general ones. Writing P<(x, t ) = e− f (x,t ), the field
f (x, t ) satisfies

∂t f = 1
2∂2

x f − 1
2 (∂x f )2. (85)

Considering now N identical copies, the CDF of the maxi-
mum is given by Prob(X (t ) < x) = P<(x, t )N = e−N f (x,t ) =
e−F (x,t ) where we defined F (x, t ) = N f (x, t ). Hence, the field
F (x, t ) satisfies

∂t F = 1

2
∂2

x F − 1

2N
(∂xF )2, (86)

with F (−∞, t ) = +∞ and F (+∞, t ) = 0.

Let us now use diffusive scaling, i.e., we define F (x, t ) =
F̃ (y, t ) with y = x/

√
2t . This leads to

2t∂t F̃ = y∂yF̃ + 1

2
∂2

y F̃ − 1

2N
(∂yF̃ )2. (87)

To anticipate the known result for N large, we now make the
further change of variable

F̃ (y, t ) = F̂ (z, t ), y =
√

ln N

(
1 + z + cN

2 ln N

)
, dy = dz

2
√

ln N
.

(88)

It gives

t

ln N
∂t F̂ = ∂zF̂ + ∂2

z F̂ + z + cN

2 ln N
∂zF̂ − 1

N
(∂zF̂ )2, (89)

which, until now, is exact for any N .
Let us now consider time t = O(1) and large N � 1. If

we are looking for typical events, i.e., F̂ = O(1), then the
equation formally becomes stationary,

∂zF̂ + ∂2
z F̂ � 0. (90)

Hence, one sees that the Gumbel distribution, which corre-
sponds to F̂ (z) = e−z is indeed a stationary distribution. Note
that studying the finite N corrections, and convergence to sta-
tionarity [31], would require to examine the various regimes
in z and their matching (89), but we do not need it here.

It turns out that it is relatively simple to obtain also the
multitime joint CDF from Eq. (89), i.e., the dynamics of the
maximum. For this one needs to rescale the time, more pre-
cisely rescale the relative time from a fixed reference time. To
this aim we fix some time t = t1 and consider times very close
to t1, t − t1 = t1

τ
ln N . Denoting for convenience F̂ [z, t1(1 +

τ
ln N )] → F̂ (z, τ ), the left-hand side (l.h.s) of Eq. (89) be-
comes

t

ln N
∂t F̂ � t1

ln N
∂t F̂ = ∂τ F̂ . (91)

Thus, dropping the terms which are subdominant at large N in
the region z = O(1), F̂ = O(1), we obtain

∂τ F̂ = ∂zF̂ + ∂2
z F̂ , (92)

which is precisely the diffusion with negative unit drift en-
countered in the previous sections, of associated Green’s
function G(z, τ ) in Eq. (26).

Let us now apply this method to solve the two-time prob-
lem n = 2. The main point is that one can use the same
representation (with t2 > t1),

Prob(X (t1) < x1, X (t2) < x2)

= Prob(x(t1) < x1, x(t2) < x2)N = e−F (x2,t2;x1,t1 ). (93)

The single particle joint CDF, Qt1,t2 (x1, x2) = Prob(x(t1) <

x1, x(t2) < x2), satisfies the same heat equation (84) as a func-
tion of x2 and t2, but with “initial” condition Qt1,t1 (x1, x2) =
P<[min(x1, x2), t1]. Hence, F (x2, t2; x1, t1) satisfies the same
equation (86) as a function of x2 and t2, but with initial con-
dition F (x2, t1; x1, t1) = F [min(x1, x2), t1], and where F (x, t )
is the function studied above. In the large N limit and in
the variables z1, z2, τ one thus finds that F (x2, t2; x1, t1) =
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F̂ (z2, τ ; z1) satisfies the negative unit drift diffusion equa-
tion (92) with initial condition

F̂ (z2, τ = 0; z1) = e− min(z1,z2 ). (94)

This implies that

F̂ (z2, τ ; z1)

=
∫ z1

−∞
dy2e−y2 G(z2 − y2, τ )+e−z1

∫ +∞

z1

dy2G(z2 − y2, τ )

= e−z1

(∫ 0

−∞
dy e−yG(z2,1 − y, τ )+

∫ +∞

0
dy G(z2,1 − y, τ )

)
.

(95)

Remarkably, although the calculations are quite different, this
gives exactly the same result as the other method, i.e., one
finds by explicit calculation of the integrals in Eq. (95),

F̂ (z2, τ ; z1) = 	(z1, z2; τ ) = e−z1φτ (z2,1),

φτ (z) = 1

2

[
erf

(
τ + z

2
√

τ

)
+ e−zerfc

(
z − τ

2
√

τ

)
+ 1

]
.

(96)

This method can be iterated to obtain the result for n = 3. One
must again solve the negative unit drift diffusion equation (92)
in the variables z3 and τ3,2 with the “initial” condition

F̂ (z3, τ3,2; z2, τ2,1|z1)|τ3,2=0 = F̂ [min(z2, z3), τ2,1; z1]. (97)

This gives

F̂ (z3, τ3,2; z2, τ2,1; z1)

=
∫

dy3G(z3 − y3, τ3,2)F̂ [min(z2, y3), τ2,1; z1]. (98)

Expanding into various integrals we obtain an expression
which, remarkably again, although being apparently quite
different, numerically coincides with the one obtained by the
first method (the integrals cannot be evaluated in closed form).
Indeed, we have tested numerically the consistency of the
conjectured identity

F̂ (z3, τ3,2; z2, τ2,1; z1) = 	(z1, z2, z3; τ2,1, τ3,2)

= e−z1φτ21,τ32 (z2,1, z3,2) (99)

for random values of the arguments. Here 	 and φ are defined
in Eqs. (33) and (38).

Hence, this second method gives a recursive way to con-
struct the multitime functions 	. Specifically, we obtain the
recursion, for any n � 2,

	(z1, . . . , zn; τ2,1, . . . , τn,n−1) =
∫

dy G(zn − y, τn,n−1)	(z1, . . . , zn−2, min(zn−1, y); τ2,1, . . . , τn−1,n−2). (100)

Equivalently, for the functions φ defined in Eq. (38) the recursion reads

φτ2,1,...,τn,n−1 (z2,1, . . . , zn,n−1) =
∫

dy G(zn,1 − y, τn,n−1)φτ2,1,...,τn−1,n−2 [z2,1, . . . , zn−1,n−2, min(zn,n−1, y)], (101)

where zn,1 = z2,1 + z3,1 + · · · + zn,n−1. This recursive con-
struction was used above in Sec. IV B.

VI. MULTITIME OBSERVABLES FOR OUTLIERS

In this section we study some multitime observables for the
outliers in the case of N independent Brownian motions all
starting from the origin. In the text we focus on the maximum
X (1)(t ) and second maximum X (2)(t ) and obtain their joint
two-time distribution. This is achieved by studying the two-
time counting statistics with several intervals. In Appendix E
it is indicated how to extend these results to a secondary
maxima of any rank, and to any number of times.

A. Two-time distribution of maximum and second maximum

In this section for convenience we will adopt slightly dif-
ferent notations from the rest of the paper, so we denote t and
t ′ the two different times, use 1 and 2 for first and second
maximum, and prime quantities denote the quantities at time
t ′ > t . To study large N we perform again the change of
variable

NP>,t (Xi ) = e−zi , NP>,t ′ (X ′
i ) = e−z′

i , t ′ − t = t
τ

ln N
,

(102)

and for the problem at hand this leads to the change of variable
(which we use interchangeably for the random process as well
as for the real variables)

X (1)(t ) ≡ X1 �
√

2t

(√
ln N + z1 + cN

2
√

ln N

)
, (103)

X (2)(t ) ≡ X2 �
√

2t

(√
ln N + z2 + cN

2
√

ln N

)
, (104)

X (1)(t ′) ≡ X ′
1 �

√
2t ′

(√
ln N + z′

1 + cN

2
√

ln N

)
, (105)

X (2)(t ′) ≡ X ′
2 �

√
2t ′

(√
ln N + z′

2 + cN

2
√

ln N

)
. (106)

In these variables our main result is that for τ = O(1) the joint
PDF q(z1, z2, z′

1, z′
2; τ ) of the random variables z1, z2, z′

1, z′
2

reads, for z1 > z2, z′
1 > z′

2,

q(z1, z2, z′
1, z′

2; τ ) = ∂z1∂z′
1
∂z2∂z′

2
[(	(z1, z′

2; τ )	(z2, z′
1; τ )

−	(z1, z′
1; τ ))e−	(z2,z′

2;τ )] (107)

= ∂z1∂z′
1
∂z2∂z′

2
[(e−z1−z2φτ (z′

2 − z1)

×φτ (z′
1 − z2)

− e−z1φτ (z′
1 − z1))e−e−z2 φτ (z′

2−z2 )] (108)
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and is zero otherwise. This formula is completely explicit if
one uses the expression of φτ (z) given in Eq. (41).

We obtain this result by two different methods. The first
one is direct but tedious and given in the Appendix D. The
second one uses the counting statistics, which is interesting
in its own sake and which we now describe. Note that this
method also yields the two-time joint CDF of the second
maximum, see Eq. (139).

B. Two-time counting statistics

Let us generalize the considerations about counting statis-
tics of Sec. II C. Given X1, X2, X ′

1, X ′
2 with X1 > X2 and X ′

1 >

X ′
2, we again split the line into three disjoint intervals (a)

x > X1, (b) X2 < x < X1, and (c) x < X2 at time t , and into
three disjoint intervals (a′) x′ > X ′

1, (b′) X ′
2 < x′ < X ′

1, and (c′)
x′ < X ′

2 at time t ′. Each particle has some probability of being
in one of these intervals at t and another one at t ′. We denote
these probabilities as follows, e.g.,

Paa′ = P(x > X1, x′ > X ′
1) = 〈

θx>X1θx′>X ′
1

〉
,

Pab′ = P(x > X1, X ′
2 < x′ < X ′

1), (109)

and so on, where we recall that 〈. . . 〉 denote expectation
values. Since the events are mutually exclusive one has, for
each particle,

Paa′+Pab′+Pac′+Pba′+Pbb′+Pbc′+Pca′+Pcb′ + Pcc′ = 1.

(110)

Raising to the power N and expanding we can read off the
joint probabilities that there are {ni,i′ } = {naa′ , nab′ , . . . , ncc′ }
particles which are, respectively, in the interval i = a, b, c
at t , and in the interval i′ = a′, b′, c′ at t ′. It is simply the
multinomial distribution

P({nii′ }) = N!∏
i=a,b,c

∏
i′=a′,b′,c′ nii′ !

∏
i=a,b,c

∏
i′=a′,b′,c′

Pnii′
ii′ .

(111)
In the large N limit and at the edge, all the occupation numbers
nii′ = O(1), except ncc′ which is a macroscopic number, ncc′ �
N , and one has the asymptotics, e.g., from Eq. (24) for n = 2,

Pncc′
cc′ � P(x < X1, x′ < X ′

1)N � e−	(z1,z′
1;τ ), (112)

where 	 is defined in Eq. (30), and its explicit expression
is given in Eqs. (40) and (41), or also in Eq. (B10). The
multinomial coefficient in Eq. (111) provides one power of N
for each of the remaining Pii′ . To evaluate these probabilities
at large N one first recalls that

NPaa′ = NP(x > X1, x′ > X ′
1) � g(z1, z′

1; τ )

= e−z1 + e−z′
1 − 	(z1, z′

1; τ ), (113)

where the function g is defined in Eq. (34) and its explicit
expression is given in Eq. (B8). Next one expresses all the
other probabilities in terms of this one, and of the single-time

probabilities. For instance, one has

NPab′ = NP(x > X1, X ′
2 < x′ < X ′

1)

= N
〈
θx>X1

(
θx′>X ′

2
− θx′>X ′

1

)〉
� g(z1, z′

2; τ ) − g(z1, z′
1; τ ),

NPac′ = NP(x > X1, x′ < X ′
2) = N

〈
θx>X1

(
1 − θx′>X ′

2

)〉
� e−z1 − g(z1, z′

2; τ ), (114)

and so on. This leads to the following multiple independent
Poisson distribution

Prob(naa′ , nab′ , nac′ , nba′ , nbb′ , nbc′ , nca′ , ncb′ )

= λ
naa′
aa′ λ

nab′
ab′ λ

nac′
ac′ λ

nba′
ba′ λ

nbb′
bb′ λ

nbc′
bc′ λ

nca′
ca′ λ

ncb′
cb′

naa′!nab′ !nac′!nba′!nbb′ !nbc′ !nca′!ncb′!
e−	(z2,z′

2,τ ), (115)

where the mean parameters, i.e., such that 〈nii′ 〉 = λii′ , are
given by

λaa′ = g(z1, z′
1; τ ),

λab′ = g(z1, z′
2; τ ) − g(z1, z′

1; τ ),

λac′ = e−z1 − g(z1, z′
2; τ ),

λba′ = g(z2, z′
1; τ ) − g(z1, z′

1; τ ),

λbb′ = g(z2, z′
2; τ ) − g(z1, z′

2; τ ) − g(z2, z′
1; τ ) + g(z1, z′

1; τ ),

λbc′ = e−z2 − e−z1 − g(z2, z′
2; τ ) + g(z1, z′

2; τ ),

λca′ = e−z′
1 − g(z2, z′

1; τ ),

λcb′ = e−z′
2 − e−z′

1 − g(z2, z′
2; τ ) + g(z2, z′

1; τ ). (116)

By summing over the {nii′ } one can check that this distribution
is correctly normalized to unity. That is, the sum of all the
λii′ equals exactly 	(z2, z′

2; τ ) [using the second relation in
Eq. (113)].

One can also check that the one-time result (19) is recov-
ered. Indeed, one has na = naa′ + nab′ + nac′ is the sum of
three independent Poisson variables, and the same for nb =
nba′ + nbb′ + nbc′ , independent of na. The mean parameters
simply add up and one can check that

λa = λaa′ + λab′ + λac′ = e−z1 , (117)

λb = λba′ + λbb′ + λbc′ = e−z2 − e−z1 , (118)

in agreement with Eq. (19). The same check can be performed
for λa′ and λb′ with z1, z2 replaced by z′

1, z′
2.

From the general result (115) the probability of various
events can be computed. For instance, one obtains the joint
“CDF” of the maximum and second maximum at two times.
Indeed, one can check that the event where one has simulta-
neously

X (1)(t ) > X1, X (2)(t ) < X2, X (1)(t ′) > X ′
1, X (2)(t ′) < X ′

2

(119)

is equivalent to the event

naa′ = 1 and nab′ = nac′ = nba′ = nbb′

= nbc′ = nca′ = ncb′ = 0,

OR nac′ = nca′ = 1 and naa′ = nab′

= nba′ = nbb′ = nbc′ = ncb′ = 0. (120)
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FIG. 3. Illustration of the two cases in Eq. (120) which occur in
the calculation of the two-time maximum and second maximum CDF
in Eq. (121). Top: first case. Left: the rightmost particle at t remains
so at t ′. Right: the values of the occupation numbers defined in the
text, corresponding to this event. Since they are independent Poisson
distributed, see Eq. (115), this case leads to the term λaa′ in Eq. (121).
Bottom: second case. Left: the rightmost particle at t is different from
the rightmost at t ′. Since by definition of the CDF in Eq. (121) the
middle interval is always empty (in both cases), these particles come
from c, c′ as illustrated. Right: the values of the occupation numbers
corresponding to this event. This case leads to the term λac′λca′ in
Eq. (121)

Thus, from Eq. (115) we obtain

Prob(X (1)(t )〉X1, X (2)(t )〈X2, X (1)(t ′)〉X ′
1, X (2)(t ′)〈X ′

2)

� (λaa′ + λac′λca′ )e−	(z2,z′
2;τ )

= (g(z1, z′
1; τ ) + (e−z1 − g(z1, z′

2; τ ))(e−z′
1 − g(z2, z′

1; τ )))

× e−	(z2,z′
2;τ ). (121)

Note that the first term λaa correspond to an event where the
same particle is rightmost both at t and t ′, while the second
one λac′λca′ corresponds to an event where the righmost parti-
cle has changed, and in both cases the middle interval (b and
b′) has remained empty. This is illustrated in Fig. 3.

Using the second relation in Eq. (113) the r.h.s. of Eq. (121)
can be rewritten as

(e−z1 + e−z′
1 − 	(z1, z′

1; τ ) + (	(z1, z′
2; τ ) − e−z′

2 )

(	(z2, z′
1; τ ) − e−z2 )))e−	(z2,z′

2;τ ). (122)

Now taking four derivatives we obtain the joint PDF of the
max and second max at two times, q(z1, z2, z′

1, z′
2) in the

variables zi, z′
i,

q(z1, z2, z′
1, z′

2; τ ) = ∂z1∂z′
1
∂z2∂z′

2
Eq.(122)

= ∂z1∂z′
1
∂z2∂z′

2
((	(z1, z′

2; τ )	(z2, z′
1; τ )

− 	(z1, z′
1; τ ))e−	(z2,z′

2;τ ) ), (123)

as we see that the contributions of the additional exponen-
tials vanish. This is the result (107) announced above. This

derivation is different, but equivalent to the one given in the
Appendix D.

Another observable of interest, related to the two-time
maximum, is the joint PDF of nX1 and n′

X ′
1
, where nX is the

number of particles with xi(t ) > X and n′
X ′ is the number of

particles with x′
i (t ) > X ′. One has

nX1 = naa′ + nab′ + nac′ = naa′ + m, (124)

n′
X1

= naa′ + nba′ + nca′ = naa′ + m′, (125)

where m, m′ are two independent Poisson variables, indepen-
dent of naa′ , and of mean λ = λab′ + λac′ and λ′ = λba′ + λca′ ,
respectively. The couple nX1 , n′

X ′
1

thus obeys a bivariate Pois-
son distribution. Note that bivariate Poisson distributions also
appear in the two-time counting statistics in the bulk, as dis-
cussed in Ref. [30]. Its distribution is

Prob(nX1 = n1, n′
X ′

1
= n′

1)

=
min(n1,n′

1 )∑
naa=0

λn1−naa

(n1 − naa)!

(λ′)n′
1−naa

(n′
1 − naa)!

λnaa
aa

naa!
e−λ−λ′−λaa

(126)

= (−1)n1

n1!

1

n′
1!

λn1
aa(λ′)n′

1−n1U

(
− n1, 1 − n1 + n′

1,−
λλ′

λaa

)

× e−λ−λ′−λaa , (127)

where U is the confluent hypergeometric function and

λ = e−z1 − g(z1, z′
1; τ ), λ′ = e−z′

1 − g(z1, z′
1; τ ),

λaa = g(z1, z′
1; τ ), (128)

with λ + λ′ + λaa = 	(z1, z′
1; τ ) = e−z1φτ (z′

1 − z1). The
characteristic function is

〈eu1nX1 +u′
1nX ′

1 〉 = eλaa(eu1+u′
1 −1)+λ(eu1 −1)+λ′(eu′

1 −1). (129)

One obtains in particular the two-time covariance of the num-
ber of particles

Cov
(
nX1 , n′

X ′
1

) = λaa = g(z1, z′
1; τ )

= e−z1 + e−z′
1 − 	(z1, z′

1; τ ), (130)

where we recall the asymptotics of the function g (see Ap-
pendix B),

g(z1, z′
1; τ ) � e− max(z1,z′

1 ), τ → 0, (131)

g(z1, z′
1; τ ) = e−z1 e−(z′

1−z1+τ )2/(4τ )χτ (z′
1 − z1), τ → +∞,

(132)

where the large τ behavior of χτ (z) is given in Eq. (58).
One can further study the joint PDF of nX1 , nX2 , n′

X ′
1
, n′

X ′
2
. It

is a multivariate Poisson distribution, which can be obtained
from Eq. (115), with in addition to Eq. (124),

nX2 = nX1 + nba′ + nbb′ + nbc′ , (133)

n′
X2

= n′
X ′

1
+ nab′ + nbb′ + ncb′ . (134)

Its characteristic function can be easily written as above, but
we will not pursue this here. One can simply give the two-time
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covariance of the number of particles in [X2, X1] at t and in
[X ′

2, X ′
1] at t ′, obtained as

Cov
((

nX2 − nX1

)(
n′

X ′
2
− n′

X ′
1

)) � Var(nbb′ ) = λbb′

(135)

= g(z2, z′
2; τ ) − g(z1, z′

2; τ ) − g(z2, z′
1; τ ) + g(z1, z′

1; τ ),

(136)

using Eq. (116).

1. Subcase with only two disjoint intervals and two-time
joint CDF of the second maximum

A subcase of the above result (115) is obtained by taking
X1, X ′

1 → +∞. One can then denote X2 = X and X ′
2 = X ′.

This amounts to divide the line into two disjoint intervals (b)
x > X , (c) x < X at time t , and into two disjoint intervals (b)
x > X , (c) x < X at time t ′. In the large N limit, denoting z, z′
the rescaled coordinates, one obtains the PDF

Prob(nbb′ , nbc′ , ncb′ ) = λ
nbb′
bb′ λ

nbc′
bc′ λ

ncb′
cb′

nbb′ !nbc′ !ncb′!
e−	(z,z′,τ ), (137)

with

λbb′ = g(z, z′; τ ), λbc′ = e−z − g(z, z′; τ ),

λcb′ = e−z′ − g(z, z′; τ ), (138)

e.g., from Eq. (116) taking z1, z′
1 → +∞, since the g func-

tion vanishes for any positive infinite argument (the other λii′

vanish and the corresponding nii′ are frozen to 0). Note that
the counting statistics discussed above for naa, m and m′ in
Eq. (124) is also recovered setting (z, z′) = (z1, z′

1), bb′ = aa′,
λbc′ = λ and λcb′ = λ′.

The two-interval counting statistics (137), Eq. (138)
allows to obtain some two-time distributions. First, of
course, the two-time joint CDF of the maximum is re-
covered as Prob(nbb′ = 0, nbc′ = 0, ncb′ = 0), setting (z, z′) =
(z1, z′

1). The two-time joint CDF of the second maxi-
mum can also be obtained. Recall that in Sec. (II C)
we noted that for a single time the event X (2)(t ) <

X is equivalent to nX = 0, 1. Here one has nX = nbb′ +
nbc′ and n′

X ′ = nbb′ + ncb′ . Hence, the event X (2)(t ) < X
and X (2)(t ′) < X ′ corresponds to nX = 0, 1 and n′

X ′ = 0, 1,
which corresponds to the union of events (nbb′ , nbc′ , ncb′ ) ∈
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}. This leads to
the two-time joint CDF of the second maximum

Prob(X (2)(t ) < X, X (2)(t ′) < X ′)

= 1 + λbb′ + λbc′ + λcb′ + λbc′λcb′

= (1 + e−z + e−z′ − g(z, z′; τ )

+ (e−z − g(z, z′; τ ))(e−z′ − g(z, z′; τ )))e−	(z,z′;τ )

= (1 + 	(z, z′; τ ) + (	(z, z′; τ ) − e−z′
)

× (	(z, z′; τ ) − e−z ))e−	(z,z′;τ ). (139)

Note that one can also find the two-time joint PDF of the
second maximum from Eq. (121), as

q(z2, z′
2; τ ) =

∫ +∞

z2

dz1

∫ +∞

z′
2

dz′
1∂z1∂z′

1
Q(z1, z2, z′

1, z′
2)

= Q(z2, z2, z′
2, z′

2), (140)

Q(z1, z2, z′
1, z′

2) = ∂z2∂z′
2
Eq. (122), (141)

since the boundary terms at infinity do not contribute as the
function g vanish when any z argument goes to +∞ (beware
that z1 = z2 and z′

1 = z′
2 should be taken only after taking the

two derivatives ∂z2∂z′
2
). We have checked that this calculation

gives the same result as taking ∂z2∂z′
2

on the CDF (139).
The above calculation can be extended to obtain the two-

time joint CDF of the kth maximum for any k. One must
simply enumerate all the values of the triplet (nbb′ , nbc′ , ncb′ )
such that nX ∈ {0, 1, . . . , k − 1} and n′

X ′ ∈ {0, 1, . . . , k − 1}.
A similar method yields the joint PDF of second maximum at
t and main maximum at t ′, or any other combination.

Finally, all the calculations in this section can be extended
to any number of times, any rank order and any number
of intervals, although it quickly becomes tedious. This is
sketched in Appendix E where we give explicit formula, e.g.,
for the joint PDF of the two-time three first maxima and the
three-time first two maxima.

VII. CONTINUOUS-TIME OBSERVABLES AND
RESCALED PROCESS

A. Probability that the maximum remains below some curve for
t ∈ [t1, t2]

The multitime joint PDF formula (24) is asking for a “path
integral” generalization. Given again the maximum process
X (t ) = XN (t ) = maxi=1,...,N xi(t ), an interesting observable in
that respect, which we study in this subsection, is

Prob(X (t ) < M(t ), ∀t ∈ [t1, t2]) (142)

upon proper rescaling of X, M and t2 − t1.
Let us make the following preliminary observations. Con-

sider n = 2 and the factorized form (40). Considering z1 and
z2 as random variables whose CDF is Q<< in Eq. (43), the
factorization implies that for any real a, z,

Prob(max(z1, z2 − a) < z) = e−e−zφτ (a). (143)

Hence, the random variable max(z1, z2 − a) for fixed a is
itself a Gumbel random variable, but shifted by ln φτ (a) (a
deterministic quantity). Equation (143) gives another nice
interpretation to the function φτ (a). Recall from Sec. IV A 7
that the factorized form (40) does not imply that the PDF of
z1 conditioned to a given value of z2,1 is Gumbel [its precise
form is a bit different, see Eq. (77)].

For the original maximum process, the property (143) im-
plies that the random variable max(X (t1), X (t2) − M ), when
properly scaled (and where M and t2 − t1 are properly scaled)
is also a shifted Gumbel random variable.
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Clearly the property (143) extends to any number of times
and for any n � 2,

max(z1, z2 − a2, . . . , zn − an) equal in law toG

+ ln φτ2,1,...,τn,n−1 (a2, a3,2, . . . , an,n−1), (144)

where G is a Gumbel random variable.
To take the continuum limit one must consider the rescaled

process. For this one must fix one-time t1 and define the
rescaled maximum process (or extremal process) z(τ ) (a func-
tion of the rescaled time τ , which lives in the vicinity of time
t1) by the equivalence at large N ,

X (t ) �
√

2t ln N

(
1 + z(τ ) + cN

2 ln N

)
, t − t1 = t1

τ

ln N
,

(145)

or, more properly as the process

z(τ ) = lim
N→+∞

[
(2 ln N )

(
X (t )√
2t ln N

|t=t1(1+ τ
ln N ) − 1

)
− cN

]
.

(146)

Such limits (and more general max stable processes) were
considered rigorously in the statistics and probability liter-
ature, starting with the seminal work [15]. The one-time
distribution of the process z(τ ) is the Gumbel distribution.
In the previous part of the paper we have studied the n time
CDF’s, e−	, of the process z(τ ).

Let us return to the observable (142) and choose to scale

M(t ) = X1 +
√

t1
2 ln N

(m(τ ) + τ ),

X1 =
√

2t1 ln N (1 + z1 + cN

2 ln N
),

τ = t − t1
t1

ln N, (147)

where m(τ ) is any function with m(0) = 0. Then one has at
large N

Prob(X (t ) < M(t ), ∀t ∈ [t1, t2])

� Prob(z(τ ) < z1 + m(τ ), ∀τ ∈ [0, τ2,1]). (148)

Now we can guess the continuum limit from Eq. (25).
Indeed, 	 is the expectation of (1 − ∏n

i=1 θyi<zi ) over a Brow-
nian with diffusion coefficient D = 2 and drift −1, started at
y1 which is distributed with e−y1 . The conjecture is thus

Prob(z(τ ) < z1 + m(τ ), ∀τ ∈ [0, τ2,1]) = e−�(z1;τ2,1;m(τ )),

(149)

with

�(z1; τ2,1; m(τ ))

=
∫

dye−y1 (1 − θ (z1 − y1)Prob(y1 +
√

2B(τ )

− τ < z1 + m(τ ),∀τ ∈ [0, τ2,1])), (150)

where B(τ ) is a standard Brownian. So it is expressed in terms
of the probability that the above-mentioned Brownian does

not hit the moving point z1 + m(τ ). One sees that, shifting
y1 → y1 + z1, one has

�(z1, τ2,1; m(τ )) = e−z1�(τ2,1; m(τ )), (151)

�(τ2,1; m(τ )) =
∫

dye−y1 (1 − θ (−y1)Prob(y1 +
√

2B(τ )

− τ < m(τ ), ∀τ ∈ [0, τ2,1])). (152)

Hence, we can rewrite Eq. (149) as

Prob(z(τ ) − m(τ ) < z1, ∀τ ∈ [0, τ2,1]) = e−e−z1 �(τ2,1;m(τ )),

(153)
which implies that the random variable

max
τ∈[0,τ2,1]

(z(τ ) − m(τ )) equal in law to G + ln �(τ2,1; m(τ )),

(154)

where G is a Gumbel random variable. This is the continuum
limit of Eq. (144). A scaled version can then be deduced for
X (t ) − M(t ).

One can derive this formula in the case where m(τ ) =
(w − 1)τ is a linear function of τ . This is done in Ap-
pendix F 2. In that case we have, with y1 < 0,

Prob(y1 +
√

2B(τ ) − τ < (w − 1)τ, ∀τ ∈ [0, τ2,1])

= Prob
(
T−w

−y1
> τ2,1

)
, (155)

where T−w
z is the first passage time at level z > 0 for a

Brownian starting at the origin with drift −w and diffusion
coefficient D = 2 (see Appendix F 1). This leads to

Prob(z(τ ) − (w − 1)τ < z1, ∀τ ∈ [0, τ2,1]) = e−e−z1 �w (τ2,1 ),

(156)
with (changing variable to y = −y1)

�w(τ ) =
∫

dyey
(
1 − θ (y)Prob

(
T−w

y > τ
))

. (157)

This function can be computed explicitly for any w, the result
is given in Eq. (F17) in Appendix F 2. Here we only display
the result for w = 1, i.e., for m(τ ) = 0, which reads

�1(τ ) = 1

2
(τ + 2)

[
erf

(√
τ

2

)
+ 1

]
+ e−τ/4√τ√

π
�τ→+∞ τ

+ 2 + O(τ−3/2e−τ/4), (158)

which implies that maxτ∈[0,τ2,1] z(τ ) is a Gumbel variable
shifted by ln �1(τ2,1). From Appendix F 2 we obtain that at
large τ2,1 this shift saturates to a constant, ln(w/(w − 1)) for
w > 1, while it grows linearly with τ2,1, as (1 − w)τ2,1, for
w < 1. Hence, there is a transition at w = 1 in the large time
behavior of the shift.

Remark. An interesting question is what happens for a
parabolic moving barrier M(t ) = aN

√
2t . For a single walker,

N = 1, the probability to remain below the barrier defined
in Eq. (142) decays as a power law of t2 [32,33] (see also
some different generalisations to many walkers [34,35]). One
can ask the same question for N � 1 walkers. Note that
because of the scaling considered here one should choose
aN � √

ln N (1 + b+cN
2 ln N ), in which case M(t ) � √

2t1 ln N (1 +
b+τ+cN

2 ln N ), i.e., the parabolic barrier becomes a linear barrier on
the scales t − t1 = t1τ/ ln N with τ = O(1). It corresponds to
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the choice z1 + m(τ ) = b above, i.e., in terms of the process
z(τ ) it corresponds to the probability Prob(z(τ ) < b, ∀τ ∈
[0, τ2,1]). The probability to remain below the barrier defined
in Eq. (142) is thus given, in that scaling regime at large N by
Eq. (156), setting z1 = b and w = 1 there, i.e., by Eq. (158).
For large τ2,1 the probability in Eq. (142) thus behaves as
exp(−e−b+ln τ2,1 ) since it corresponds to a linear barrier at the
transition point w = 1. Finally, note that another (unrelated)
case of interest where the results of [32,33] may be relevant,
from formula (152), is the choice m(τ ) = −τ + a

√
τ , left for

future study.

B. Running maximum and arrival time of first particle:
One-time distributions

Let us first consider a single standard Brownian x(t ), with
r(t ) = max0�t ′�t x(t ′) its running maximum, and the CDF for
R1 > 0,

Prob(r(t1) < R1) = Prob
(
TR1 > t1

) = P1, (159)

where TR is the first passage time of the standard Brownian at
level R � 0. It is given by (see Appendix F 1)

P1 = Prob(TR1 > t1) =
∫ R1

−∞
dx1

⎛
⎜⎝ e− x2

1
2t1√

2πt1
− e− (x1−2R1 )2

2t1√
2πt1

⎞
⎟⎠,

(160)

which is the probability that the Brownian with an absorbing
wall at R1 has survived up to t1.

Let us now consider the running maximum R(t ) for N
identical standard Brownian motions starting from the origin

R(t ) = max
0�t ′�t

X (t ) = max
i

ri(t ), ri(t ) = max
0�t ′�t

xi(t
′). (161)

Let us first study the one-time CDF of the running maximum
(which is a standard calculation but which sets the stage for
the multitime generalization given below). It is given by

Prob(R(t1) < R1) = Prob(r(t1) < R1)N = Prob
(
TR1 > t1

)N

= Prob
(
T min

R1
> t1

)
, (162)

where the last term is equal to the probability that the min-
imum of the first passage times T min

R1
= mini T i

R1
at R1 of N

identical copies is larger than t1. This is also the arrival time
at R1 of the first particle, an important quantity.

At large N , we will scale R1 as usual as R1 =√
2t1 ln N (1 + z1+cN

2 ln N ) so that 1 − P1 = O(1/N ) and

Prob(R(t1) < R1) = Prob
(
TR1 > t1

)N � e−N (1−P1 ). (163)

Let us now estimate, from Eq. (160), using similar manip-
ulations as in Appendix A

N (1 − P1) = N
∫

dx1
e− x2

1
2t1√

2πt1

(
1 − θ (R1 − x1)

× (1 − e− 2R1 (R1−x1 )
t1 )

)
(164)

�
∫

dy1e−y1 (1 − θ (z1 − y1)(1 − e−2(z1−y1 ) ))

= e−z1

∫
dyey(1 − θ (y)(1 − e−2y))

= e−z1

(∫
y>0

ey +
∫

y<0
e−y

)
= 2e−z1 , (165)

where we have changed variables denoting x1 =√
2t1 ln N (1 + y1+cN

2 ln N ), followed by y1 = z1 − y. Note that
the term e−y1 − e2z1−y1 upon expanding the middle line can
be interpreted as the stationary measure of the diffusion with
negative drift in presence of a hard wall at z1. At the end, not
surprisingly, at large N the running maximum has a Gumbel
distribution

Prob(R(t1) < R1) � e−2e−z1 � Prob(X (t1) < R1)2, (166)

with, however, a shift as compared to the instantaneous maxi-
mum, i.e., z1 = G + ln 2.

Since one can read Eq. (162) both ways (i.e., for the run-
ning maximum or for the arrival time of the first particle), the
above result also implies that

Prob
(
T min

R1
> t1

) � e−2e−z1
, (167)

where the arrival time of the first particle [see Appendix F 3
for details]

T min
R1

= t1 = R2
1

2 ln N

(
1 − z1 + cN

ln N
)

)
, (168)

where from Eq. (167) z1 = G + ln 2 and G is Gumbel dis-
tributed.

C. Running maximum: Two-time distribution

We can now ask about the two-time joint CDF of the
running maximum, at two given times, t2 > t1

Prob(R(t1) < R1, R(t2) < R2)

= Prob(r(t1) < R1, r(t2) < R2)N

= Prob
(
TR1 > t1, TR2 > t2

)N
, (169)

with R2 > R1, which now involves the two-time joint “CDF”
of the first passage times of a single Brownian at R1 and R2.
The latter is given by

P = Prob
(
TR1 > t1, TR2 > t2

)

=
∫ R1

−∞
dx1

∫ R2

−∞
dx2

⎛
⎜⎝ e− x2

1
2t1√

2πt1
− e− (x1−2R1 )2

2t1√
2πt1

⎞
⎟⎠

×
⎛
⎝ e− (x2−x1 )2

2(t2−t1 )

√
2π (t2 − t1)

− e− (x2+x1−2R2 )2

2(t2−t1 )

√
2π (t2 − t1)

⎞
⎠, (170)

which is the probability that the Brownian with an absorbing
wall at R1 for t ∈ [0, t1] and an absorbing wall at R2 for t ∈
[t1, t2] has survived up to t2.

Note that for N = 1, i.e., for a single Brownian x(t ), the
two-time PDF of R(t1) = R1 and R(t2) = R2 was obtained in
Ref. [36] [their Eq. (6)]. This PDF vanishes for R2 < R1 since
the running maximum can only increase with time, but there
is however a δ(R2 − R1) component in the PDF. Its weight
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corresponds to the probability that x(t ) reaches R(t1) at some
time before t1, but never crosses again the level R(t1) for
t ∈ [t1, t2], so that R(t2) = R(t1). As we will see below there
is a similar feature for N > 1.

In the large N limit we will scale as usual

Ri =
√

2ti ln N

(
1 + zi + cN

2 ln N

)
, t2 − t1 = t1

τ

ln N
, (171)

and insert in Eq. (170). The calculation is sketched in the
Appendix F 4. One finds that at large N the two-time CDF
of the running maximum takes the form, for R1 � R2, which
corresponds to z2,1 = z2 − z1 � −τ ,

Prob(R(t1) < R1, R(t2) < R2) � e−�(z1,z2;τ ) = e−e−z1 γτ (z21 ),

(172)
where for z � −τ

γτ (z) =
∫

dy1

∫
dy2 ey1

e− (z−y2,1+τ )2

4τ√
4πτ

(
1 − θ (y1)θ (y2)

× (1 − e−2y1 )

(
1 − e− (z+τ+y1 )y2

τ

))
, (173)

a generalization of Eq. (165). It turns out that this integral can
be computed explicitly (see Appendix F 4) and one finds

γτ (z) = 2erf

(
τ + z

2
√

τ

)
+ e−zerfc

(
z − τ

2
√

τ

)

+ e2τ+zerfc

(
3τ + z

2
√

τ

)
, z � −τ. (174)

Since the running maximum always increases, for R2 � R1

one has

Prob(R(t1) < R1, R(t2) < R2) = Prob(R(t2) < R2) � e−2e−z2
.

(175)
The boundary case R2 = R1 corresponds to z1 = z2 + τ , i.e.,
z2,1 = −τ . Then we see that Eq. (175) is consistent with the
boundary value γτ (z = −τ ) = 2eτ which one obtains from
Eq. (174). Thus, one can extend Eq. (172) to any z2,1 if one
defines

γτ (z) = 2e−z for z � −τ. (176)

One can check that γτ (z) is a decreasing function of z,
with γτ (z) > φτ (z), which is consistent with the fact that the
running maximum is always larger than the instantaneous
maximum.

Let us study the asymptotic behaviors of γτ (z). The large z
behavior is

γτ (z) = 2 + e− (z+τ )2

4τ
16τ 5/2

√
πz3

(
1 − 3τ

z
+ 2τ (5τ − 6)

z2

+O(z−3)

)
, z → +∞. (177)

The limit γτ (+∞) = 2 is consistent with the one-time result
(166). The large τ limit is

γτ (z) = 2(1 + e−z ) − e− τ
4 − z

2
16

3
√

πτ

(
1 − 80 + 3z(4 + 3z)

36τ

+ O(τ−2)

)
, τ → +∞. (178)

The asymptotic value 2(1 + e−z ) yields e−e−z1 γτ (z21 ) →
e−2e−z1 e−2e−z2 , i.e., R(t1) and R(t2) become statistically in-
dependent and one recovers the product of the one-time
distributions.

Consider now z1 and z2,1 = z2 − z1, i.e., the scaled posi-
tions of the running maximum from Eq. (171), as random
variables. Their exponential moments can be computed as
in Eq. (C5), replacing φτ (z) by γτ (z). Similarly on has
1/γτ (z)a+b → 2−(a+b) as as z → +∞. Hence, Eq. (49), as
well as Eq. (51), hold with the replacement φτ (z) by γτ (z).
One notes from Eq. (176) that the combination which appears
in the formula

1 + γ ′
τ (z)

γτ (z)
= 0 for z < −τ (179)

vanishes for z < −τ , and converges to 1 exponentially fast
as z → +∞. However, this combination vanishes discontinu-
ously at z = −τ . Indeed, one finds

1 + γ ′
τ (z)

γτ (z)
|z=−τ+ = Erfc(

√
τ ). (180)

Hence, the marginal PDF of z = z2,1 = z2 − z1, which we
denote by P̃(2,1)

τ (z), now acquires a δ function part and is given
by, for z � −τ ,

P̃(2,1)
τ (z) = qτ δ(z + τ ) + ∂2

z ln γτ (z),

qτ = Erfc(
√

τ ), z � −τ, (181)

and vanishes for z < −τ . The second term is smooth: it has
a finite value 1 − Erfc(

√
τ )2 at z = −τ , with positive first

derivative, so P̃(2,1)
τ (z) has a maximum for some τ -dependent

value of z. As explained above for N = 1, the weight of the
δ part in Eq. (181) corresponds to the probability qτ that
R(t2) = R(t1). Specifically, it corresponds to events such that
the running maximum R(t1) was achieved by one particle at
some time before t1 and that all particles have remained below
that level for t ∈ [t1, t2]. Note that when τ → 0 the δ part in
Eq. (181) dominate the smooth part. Finally, the CDF of z2,1

is given by

Prob(z2,1 < z) = 1 + ∂z ln φτ (z) (182)

and exhibits a jump qτ at z = −τ .
The PDF in Eq. (181) is plotted in Fig. 4 and has the

following asymptotic behaviors. For fixed τ and z → +∞ it
decays as

P̃(2,1)
τ (z) = e− (z+τ )2

4τ
2
√

τ

z
√

π

(
1 − τ

z
+ τ (5τ − 2)

z2
+ O(z−3)

)
,

z → +∞, (183)

while for fixed z and τ → +∞ it behaves as

P̃2,1
τ (z) = 1

4 cosh2( z
2 )

+ e−τ

√
πτ

δ(z + τ )

+ e− τ
4√

πτ

(
3 − cosh(z)

6 cosh3( z
2 )

+ O

(
1

τ

))
, τ → +∞,

(184)

which should be compared with the result (59) for the instan-
taneous maximum. Hence, at large τ , z2,1 is distributed again
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FIG. 4. Left: marginal PDF of z = z2,1 = z2 − z1, the scaled
distance traveled by the running maximum, with R(t2) − R(t1) �√

t1
2 ln N (τ + z). It is plotted for τ = 1/2 (plain), τ = 1 (dashed),

τ = 2 (dotted), and vanishes discontinuously for z < −τ . In addi-
tion there is a δ function at z = −τ , not shown, of amplitude qτ =
Erfc(

√
τ ) ≈ 0.32, 0.16, 0.05, corresponding to the event R(t2) =

R(t1), see Eq. (181). Right: its second moment 〈z2
2,1〉 = D2(τ ),

plotted versus τ (blue, plain). The first two terms in the small τ

asymptotics (192) (plain, red, lowest curve), and the first three terms
in the large τ asymptotics (187) (dashed, red) are also plotted, to-
gether with the limiting value π 2/3 (horizontal line). Convergence to
the asymptotics is slower than for A2(τ ). Recall that π 2/3 − D2(τ ),
i.e., the curve reflected versus π 2/3 describes the two-time covari-
ance of the running maximum, see Eq. (194).

as the difference of two Gumbel random variables, the even
moments have exactly the same limit as in Eq. (61), and the
odd ones tend to zero.

The integer moments of the random variable z2,1 are ob-
tained as, for k � 1,

〈
zk

2,1

〉 = Dk (τ ) =
∫ +∞

−τ

dzzkP2,1
τ (z)

= qτ (−τ )k +
∫ +∞

−τ

dzzk∂2
z ln γτ (z). (185)

The function D2(τ ) is plotted in Fig. 4 using that formula.
An alternative expression can be obtained upon integration by
parts 〈

zk
2,1

〉 = Dk (τ ) = (1 − k)(−τ )k + k(k − 1)

×
∫ +∞

−τ

dzzk−2 ln

(
γτ (z)

2

)
, (186)

where we have used Eq. (180) and γτ (−τ ) = 2eτ , γτ (+∞) =
2 and that γ ′

τ (z)/γτ (z) decays exponentially fast at z → +∞.
For k = 1 this implies that the first moment vanishes, 〈z2,1〉 =
0, as it should since 〈z1〉 = 〈z2〉 = ln 2 + γE from the one-time
result (166).

To obtain the large time asymptotics of the moments
we use Eq. (184) (to a higher order, not shown). Inserting
into Eq. (185) the last term of Eq. (184) leads to a con-
vergent integral on z ∈] − ∞,+∞[. The term qτ (−τ )k �
(−τ )ke−τ /

√
πτ is subdominant as compared to the leading

decay ∼e−τ/4. One finds 〈z2,1〉 = D1(τ ) = 0 and

〈
z2

2,1

〉 = D2(τ ) = π2

3
− 16

√
πe−τ/4

3
√

τ

(
1 −

20
9 + π2

4

τ
+

364
27 + 5π2

3 + 5π4

32

τ 2
+ O

(
1

τ 3

))
, (187)

〈
z3

2,1

〉 = D3(τ ) = 16π5/2e−τ/4

3τ 3/2

(
1 − 5

12τ
(16 + 3π2) +

1820
27 + 125π2

9 + 61π4

32

τ 2
+ O

(
1

τ 3

))
, (188)

〈
z4

2,1

〉 = D4(τ ) = 7π4

15
− 32π5/2e−τ/4

√
τ

(
1 − 5

36τ
(16 + 9π2) +

364
27 + 25π2

3 + 61π4

32

τ 2
+ O

(
1

τ 3

))
. (189)

Note that the third moment of z2 − z1, which is also the third cumulant vanishes at large τ , as all the odd moments, and its
leading order is one order lower than the corrections to the even moments.

Let us study now the close time asymptotics. At short-time difference τ � 1, we can scale

z2,1 = −τ + w
√

τ , w � 0, (190)

where w is a O(1) positive random variable. This is a bit different from the case of the instantaneous maximum. Upon this
scaling we find that the PDF pτ (w) of the random variable w admits the following small τ expansion

pτ (w) =
(

1 − 2
√

τ√
π

(
1 − τ

3
+ O(τ 2)

))
δ(w) + √

τ erfc
(w

2

)

+τ 3/2

⎛
⎝e− w2

4 w
(
5erfc

(
w
2

) − 1
)

√
π

+ 1

2
erfc

(w

2

)(
−(

3w2 + 2
)
erfc

(w

2

)
+ w2 + 2

)
− 4e− w2

2

π

⎞
⎠ + O(τ 5/2), (191)

which is normalized to unity order by order in τ . Since 〈z2,1〉 = 0, one must have 〈w〉 = ∫ +∞
0 dw w pτ (w) = √

τ , which is
indeed satisfied by Eq. (191) to the order displayed. Note that in the small τ limit z2,1 has an intermittent behavior, it is equal to
−τ with probability 1 − O(

√
τ ) [which corresponds to the event R(t2) = R(t1)] and is of order O(

√
τ ) with probability O(

√
τ )

[which corresponds to the event R(t2) > R(t1)].
From Eq. (191) one finds the small τ expansion of the moments of z2,1 of lowest order, as well as the skewness Sk

〈
z2

2,1

〉 = 〈
z2

21

〉c = D2(τ ) = τ 〈w2〉 − τ 2 = τ 〈w2〉c = 8

3
√

π
τ 3/2 − τ 2 + 8(4

√
2 − 5)

15
√

π
τ 5/2 + O(τ 7/2),

〈
z3

2,1

〉 = 〈
z3

21

〉c = D3(τ ) = τ 3/2〈w3〉 − 3τ 2〈w2〉 + 2τ 3 = τ 3/2〈w3〉c
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= 3τ 2 − 8τ 5/2

√
π

+ 8τ 3

π
− 8(4

√
2 − 5)τ 7/2

5
√

π
+ O(τ 4),

Sk = D3(τ )

D2(τ )3/2
= 9

√
3π3/4

16
√

2τ 1/4

(
1 + (27π − 64)

√
τ

24
√

π
+

(
−3

2
− 6

√
2

5
+ 8

3π
+ 135π

128

)
τ + O(τ 3/2)

)
. (192)

The large and small τ asymptotics are shown in Fig. 4. As
compared to A2(τ ), one needs larger values of τ (respectively,
smaller) to approximate the function by the first few terms of
the series.

Finally, let us recall that in the original variables for the
running maximum R(ti ) = Ri, from Eq. (171) one has

R2 − R1 �
√

t1
2 ln N

(τ + z2,1), τ = t2 − t1
t1

ln N = O(1).

(193)

The one-time distributions of z1 and z2 are shifted Gumbel,
hence their variance are the same as for the instantaneous
maximum, i.e., one has VarR1 = VarR2 � t1

2 ln N
π2

6 . This leads
to the two-time covariance of the running maximum

Cov(R(t1), R(t2)) � t1
4 ln N

(
π2

3
− D2(τ )

)
�τ→+∞

× t1
4 ln N

16
√

πe−τ/4

3
√

τ
, (194)

which can be compared to Eq. (73)

D. Arrival time of the first particle: Two-time distribution

Consider now, for fixed R2 > R1, the joint distribution of
T min

R1
and T min

R1
, the arrival times of the first particle, respec-

tively, at x = R1 and x = R2. We can introduce again the
rescaled variables z1 and z2 as

T min
R1

= t1 = R2
1

2 ln N

(
1 − z1 + cN

ln N
)

)
, (195)

T min
R2

= t2 = R2
2

2 ln N

(
1 − z2 + cN

ln N
)

)
. (196)

Clearly, if R2 and R1 are sufficiently separated, then z1 and z2

(seen as random variables) will be two independent Gumbel
variables, each with the one-time CDF (167). To see how close
R2 and R1 must be so that nontrivial correlations exist we look
at the ratio

t2 − t1
t1

= R2
2 − R2

1

R2
1

− z2 − z1

ln N

R2
2

R2
1

+ O

(
1

(ln N )2

)
. (197)

Since we want this ratio to be of order 1/ ln N we need to
choose

R2 − R1

R1
= ρ

2 ln N
, (198)

where ρ = O(1) is a fixed number. Hence, we can ap-

proximate R2
2−R2

1

R2
1

� 2(R2−R1 )
R1

in the first term in the r.h.s. of
Eq. (197), and R2/R1 � 1 in the second term there, and our

usual variable τ becomes

τ = t2 − t1
t1

ln N � ρ − z2,1, (199)

but we have to remember that τ it is now fluctuating. Hence,
the variable τ is related to the variable z2,1 of the previous
section. Note, in particular, that since τ > 0, one must have
z2,1 < ρ.

We can now use the results of the previous section and
obtain from Eq. (172), the joint “CDF” of the first particles ar-
rival times T min

R1
, T min

R2
, for fixed dimensionless distance ρ > 0

defined in Eq. (198),

Prob
(
T min

R1
> t1, T min

R2
> t2

) = Prob(R(t1) < R1, R(t2) < R2)

(200)

� Q<<(z1, z2) = e−e−z1 σρ (z2,1 ),

σρ (z) = γτ=ρ−z(z),

(201)

where Q<<(z1, z2) is the CDF in the rescaled variables. For
large ρ, using (178), one finds Q<<(z1, z2) → e−2e−z1 −2e−z2

which corresponds to two independent shifted Gumbel ran-
dom variables, as expected.

In fact, it is more convenient to eliminate z2 and use z1 and
τ as the basic random variables. It means that we write

T min
R1

= t1 = R2
1

2 ln N

(
1 − z1 + cN

ln N

)
,

T min
R2

− T min
R1

T min
R1

� T min
R2

− T min
R1(

R2
1/2 ln N

) = τ

ln N
, (202)

hence τ has the interpretation of the (rescaled) delay time
between detecting a first particle at R1 and detecting a first
particle at R2 (which, of course, may not be the same particle).
Note that in the second equation in Eq. (202), T min

R1
in the

denominator can be approximated by its leading order value
R2

1/2 ln N , to the same order at large N .
The random variables z1 and τ > 0 defined in Eq. (202) are

distributed with the joint PDF (using the change of variable
(C1) with ∂z21 = −∂τ ),

q(z1, τ ) = −∂τ (∂z1 + ∂τ )e−e−z1 �ρ (τ ),

�ρ (τ ) = γτ (ρ − τ ), ρ > 0, τ > 0, (203)

where the function �ρ (τ ) has the explicit form, from
Eq. (174),

�ρ (τ ) = 2erf

(
ρ

2
√

τ

)
+ eτ−ρerfc

(
ρ − 2τ

2
√

τ

)

+ eρ+τ erfc

(
ρ + 2τ

2
√

τ

)
. (204)
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It obeys the identity �ρ (τ ) − �′
ρ (τ ) = 2 erf( ρ

2
√

τ
). We recall

that the parameter ρ is defined in Eq. (198) and is proportional
to the spatial separation of the two points R1, R2 where the
arrival times are measured.

Below we will need the small and large τ asymptotics of
�ρ (τ ), which we now study. For τ → 0 at fixed ρ one finds

�ρ (τ ) = 2 + 16τ 5/2

√
πρ3

(
1 − 12τ

ρ2
+ 4(ρ2 + 45)τ 2

ρ4
+ O(τ 3)

)

× exp

(
−ρ2

4τ

)
, (205)

so that for τ → 0 at fixed ρ one has
�′

ρ (τ )
�ρ (τ ) → 0 exponentially

fast. To study large τ at fixed ρ it is more convenient to write
�ρ (τ ) in the equivalent form

�ρ (τ ) = 2eτ−ρ + 2erf

(
ρ

2
√

τ

)
+ eτ+ρerfc

(
2τ + ρ

2
√

τ

)

− eτ−ρerfc

(
2τ − ρ

2
√

τ

)
. (206)

From it one obtains the large τ asymptotics

�ρ (τ ) = 2eτ−ρ + 2ρ√
πτ

×
(

1 − ρ2 + 6

12τ
+ ρ4 + 20ρ2 + 120

160τ 2
+ O(τ−3)

)
.

(207)

In that limit the following combination, useful below, vanishes
as

1 − �′
ρ (τ )

�ρ (τ )
= eρ−τ erf

(
ρ

2
√

τ

)
+ O(e−2τ )

= eρ−τ ρ√
πτ

(
1 − ρ2

12τ
+ ρ4

160τ 2
+ O(τ−3)

)
.

(208)

Let us now turn to the exponential moments and to the
marginal PDF of the delay time τ . One finds, by a similar
calculation as in Eq. (C5),

〈e−sz1−bτ 〉 = −�(1 + s)
∫ +∞

0
dτe−bτ ∂τ

×
((

1 − �′
ρ (τ )

�ρ (τ )

)
1

�ρ (τ )s

)
. (209)

For b = 0, the integrand is a total derivative with bound-
ary values 0 at τ = +∞ and 2−s at τ = 0 (from the above
asymptotics), and one recovers the one-time result, 〈e−sz1〉 =
�(1 + s)2−s. Inserting s = 0 one finds the PDF q(τ ) and the
“CDF” of the (scaled) delay time, i.e., the random variable τ ,

q(τ ) = −∂τ

(
1 − �′

ρ (τ )

�ρ (τ )

)
= ∂2

τ ln �ρ (τ ),

Prob(τ > t ) = 1 − ∂τ ln �ρ (τ ). (210)

FIG. 5. Left: PDF q(τ ) of the scaled time delay τ between the

arrival of the first particles at R1 and at R2, with
T min

R2
−T min

R1
T min

R1

� τ

ln N ,

for some values of the parameter ρ, ρ = 1/2 (plain), ρ = 1 (dotted),
with R2−R1

R1
= ρ

2 ln N . Right: its second cumulant 〈τ 2〉c = C2(ρ ), plot-
ted versus ρ (plain). The small ρ asymptotics (dashed) and the the
limiting value π 2/3 at large ρ (horizontal line) are also shown.

This PDF is plotted in Fig. 5. The PDF q(τ ) vanishes expo-
nentially fast for τ → 0,

q(τ ) = ρe− ρ2

4τ

2
√

πτ 3/2

(
1 + 4τ 2

ρ2
− 8τ 3

ρ4

+ 16(ρ2 + 3)τ 4

ρ6
+ O(τ 5)

)
. (211)

It is easy to see that the leading behavior is exactly the PDF
of the first passage time of a single (symmetric standard)
Brownian [using the definitions (198) and (199) of ρ and τ ].
This is because for small τ the rightmost particle at t1 is also
the rightmost particle at t2. The PDF q(τ ) exhibits a maximum
for some value of τ , and then decreases exponentially at large
τ as

q(τ ) = ρ√
πτ

eρ−τ

(
1 + 6 − ρ2

12τ
+ ρ2(ρ2 − 20)

160τ 2
+ O(τ−3)

)

+ O(e−2τ ). (212)

Using integration by parts and the above asymptotics one finds
that the average scaled delay time is simply

M1(ρ) = 〈τ 〉 =
∫ +∞

0
dτ τ q(τ )

= −
∫ +∞

0
dτ τ ∂τ

(
1 − �′

ρ (τ )

�ρ (τ )

)
= ρ, (213)

which in the original variables means〈
T min

R2
− T min

R1

T min
R1

〉
� 2

R2 − R1

R1
. (214)

Similarly, one finds by integration by parts, the second mo-
ment and the second cumulant,

M2(ρ) = 〈τ 2〉 =
∫ +∞

0
dτ τ 2

q(τ ) = 2
∫ +∞

0
dτ ln

(
�ρ (τ )

2eτ−ρ

)
,

C2(ρ) = 〈τ 2〉c = M2(ρ) − ρ2. (215)

As one can see in Fig. 5 the second cumulant reaches a finite
value at large ρ, again equal to C2(+∞) = π2/3. At small ρ

it is well approximated by C2(ρ) � ρ − 0.181ρ2.
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To understand the large ρ limit, one can decompose τ into
its average 〈τ 〉 = ρ and its fluctuating part δ, τ = ρ + δ, and
one finds that for large ρ at fixed δ,

�ρ (τ = ρ + δ) = 2 + 2eδ − e− ρ

4 + δ
4

16

3
√

πρ
(1 + O(ρ−1)),

(216)
which leads to

q(τ = ρ + δ) = 1

4 cosh2(δ/2)
+ (eδ (22 − 9eδ ) − 1)e

δ−ρ

4

6
√

πρ(eδ + 1)3

× (1 + O(ρ−1)). (217)

The leading term is again the PDF of the difference between
two independent Gumbel random variables that we encoun-
tered several times previously. The correction term correctly
integrates to zero for δ ∈] − ∞,+∞[, with also zero first
moment. The second moment gives

C2(ρ) = π2

3
− γ

6
√

πρ
e− ρ

4 + δ
4 (1 + O(ρ−1)), ρ → +∞,

(218)

with γ ≈ 142.172. We see that the second cumulant 〈τ 2〉c,
which is infinite for the first passage time of a symmetric
Brownian, here is finite and dominated at large ρ by the O(1)
vicinity of τ = ρ.

Finally, using similar methods as in this and the pre-
vious sections, one can obtain a formula for the multi-
time CDF of the running maximum and of the arrival
time of the first particle, Prob(R(t1) < R1, . . . , R(tn) < Rn) =
Prob(T min

R1
> t1, . . . , T min

Rn
> tn), for n � 3 times. It is given in

Appendix F 5.

VIII. CONCLUSION

In this paper, using simple methods of statistical physics,
we have studied the dynamics of a cloud of a large number
of independent identical Brownian particles near its edge in
one dimension. We have focused on the few rightmost par-
ticles, i.e., with the largest positions (the outliers). To probe
their dynamics we have computed the joint distribution of the
maximum position at a set of different times, and extended
it to the maximum and second maximum, and eventually to
any finite rank, although the formula quickly become compli-
cated. For the maximum itself we have obtained distributions
which appeared before in some form in probability theory
and statistics. We have found a physically appealing deriva-
tion using the diffusion equation which naturally leads to a
recursive construction of these distributions. For the outliers,
a useful tool was the counting statistics, which, for indepen-
dent particles, leads to multivariate Poisson distributions. In a
second part we have studied other properties of the rescaled
maximum process, such as the probability that it remains
below some space-time curve. We have studied the multitime
statistics of the running maximum of the cloud, that is the
maximum of all positions up to time t . Since the running

maximum is intimately related to the first passage time, we
have also obtained the statistics of the “arrival times of the
first particle,” at several locations. In particular we obtained
an explicit formula for the distribution of delay time between
the first detection of a particle at two different neighboring
locations.

We believe that the above result will be of interest for
numerics or experiments probing the behavior of a cloud of
diffusing particles. We have restricted here to the case of
identical Brownian particles all starting from the origin, but
the study can be extended to more general initial conditions,
nonidentical particles, or even to more general Gaussian pro-
cesses, e.g., as considered in Ref. [30]. It would be of great
interest to extend these results to diffusion in presence of a
random environment, e.g., as discussed in the introduction.
The method based on the diffusion equation may provide a
route in that direction.

There are possible applications to a number of other prob-
lems. One is single-file diffusion, i.e., Brownian motions
which do not interact except that they reflect on each others
at each collision [30,37,38]. It amounts to considering the
ordered set of positions in our problem, xi(t ) → x(i)(t ), and
the present results immediately apply to the dynamics at the
edge. This would describe the dynamics of a gas at very high
temperature with hard core repulsion.

Another example is related to the random energy model
(REM). Consider a portfolio with N stocks, each performing
independent Black-Scholes geometric Brownian motions, of
total value Z = ∑N

i=1 exi (t ), where xi(t ) are the positions of
the particles in our Brownian cloud model. One can scale t =
t̃ ln N and use the results of the present paper since it is just a
uniform rescaling of the ti’s. The rescaled time plays the role
of an inverse temperature β =

√
t̃ . It is well known [39–41]

that (minus) the intensive free energy f = 1
ln N

√
t̃

ln Z (t̃ ) ex-
hibits a REM freezing transition from a high temperature

phase for t̃ < 2 with f = 1√
t̃
+

√
t̃

2 , towards a glass phase for

t̃ > 2, with f = √
2. In the zero temperature limit t̃ → +∞

one has f = maxi xi(t )/(
√

t ln N ) and the free energy of the
REM identifies with the maximum of N Gaussian random
variables (properly scaled), while the extensive free energy
F = f ln N has O(1) Gumbel distributed fluctuations. The
multitime distribution of the maximum discussed in this paper
thus describes the time evolution of the portfolio at large t̃ ,
with correlations existing in small time windows. It would be
interesting to compute the analog of the multitime distribu-
tions studied here, but for finite t̃ , i.e., in the finite temperature
regime for the REM. Some results were obtained in [42,43],
within a different scaling.
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APPENDIX A: DERIVATION OF THE MULTITIME JOINT CDF

Here we provide a simple derivation of the results (24) and (25) in the text. Since the walkers are independent one has

Prob(X (t1) < X1, . . . , X (tn) < Xn) = Prob(x(t1) < X1, . . . , x(tn) < Xn)N = eN ln Prob(x(t1 )<X1,...,x(tn )<Xn ). (A1)

Now one has, from normalization

Prob(x(t1) < X1, . . . , x(tn) < Xn) =
∫

x1<X1

. . .

∫
xn<Xn

pt1 (x1)pt2−t1 (x2 − x1) . . . ptn−tn−1 (xn − xn−1) = 1 − I (X1, . . . , Xn; t1, . . . tn),

I (X1, . . . , Xn; t1, . . . tn) =
∫

dx1 . . . dxn

(
1 −

n∏
i=1

θ (xi < Xi )

)
pt1 (x1)pt2−t1 (x2 − x1) . . . ptn−tn−1 (xn − xn−1). (A2)

Hence, one has

Prob(X (t1) < X1, . . . , X (tn) < Xn) = eN ln(1−I (X1,...,Xn;t1,...tn )). (A3)

Until now this is exact for any N . Let us now consider N � 1.
For large N the probability remains of order unity when I (X1, . . . , Xn; t1, . . . tn)) = O(1/N ). The change of variable from Xj

to z j and from t j to τ j will produce exactly the correct factor. Let us recall that

t j = t1

(
1 + τ j,1

ln N

)
, (A4)

with the notation τi, j = τi − τ j and τ1 = 0. In the expression for I (X1, . . . , Xn; t1, . . . tn) one also performs the change of variables

Xj = √
2t j

√
ln N

(
1 + z j + cN

2 ln N

)
�

√
2t1

√
ln N

(
1 + z j + τ j,1 + cN

2 ln N

)
, (A5)

x j = √
2t j

√
ln N

(
1 + y j + cN

2 ln N

)
�

√
2t1

√
ln N

(
1 + y j + τ j,1 + cN

2 ln N

)
. (A6)

Hence, we have

dx j =
√

2t j

2
√

ln N
dyj �

√
2t1

2
√

ln N
dyj . (A7)

Consider now, for j = 1, . . . , n − 1,

pt j+1−t j (x j+1 − x j ) = 1√
2π (t j+1 − t j )

e
− (x j+1−x j )2

2(t j+1−t j ) � 1√
2πt1

τ j+1, j

ln N

e
−

(

√
2t1

2
√

ln N
(y j+1+τ j+1,1−(y j +τ j,1 )))2

τ j+1, j
ln N

=
√

ln N√
2πt1τ j+1, j

e
− (y j+1−y j +τ j+1, j )2

4τ j+1, j =
√

2 ln N√
t1

G(y j+1, j, τ j+1, j ). (A8)

Hence,

dx j+1 pt j+1−t j (x j+1 − x j ) � dy j+1G(y j+1, j, τ j+1, j ). (A9)

Finally, from Eq. (6),

N pt1 (x1)dx1 = e−y1 dy1, (A10)

putting all the factors together we obtain

I (X1, . . . , Xn; t1, . . . tn) � 1

N

∫
y1,...,yn

(
1 −

n∏
i=1

θyi<zi

)
e−y1 G(y2,1, τ2,1) . . . G(yn,n−1, τn,n−1), (A11)

leading to the result (25) in the text.

APPENDIX B: CALCULATIONS OF SOME INTEGRALS

In this Appendix we compute the functions g(z1, z2; τ ), 	(z1, z2; τ ) and φτ (z) defined in the text, show a symmetry property,
and discuss their limit as τ → 0.

From its definition in Eq. (34) one has

g(z1, z2; τ2,1) =
∫

z1<y1,z2<y2

e−y1 G(y2,1, τ ) = e−z1 I (z2,1, τ ), (B1)
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in terms of the integral

I (z, τ ) =
∫

y1>0,y2>0
e−y1 G(y2,1 + z, τ ), (B2)

where we recall that z2,1 = z2 − z1 and y2,1 = y2 − y1 and the last equality in Eq. (B1) is obtained by the shift of integration
variables yi → yi + zi. One first recalls that for any b > 0,∫

dk

2π

e−k2τ−ikx

ik + b
=

∫
dk

2π

∫
y>0

e−k2τ−ik(y+x)−by =
∫

y>0

1√
4πτ

e− (x+y)2

4τ
−by = 1

2
eb2τ+bxerfc

(
x + 2bτ

2
√

τ

)
. (B3)

Hence, one has

I (z, τ ) =
∫

dk

2π
e−k2τ−ik(z+τ )

∫
y1>0,y2>0

e−y1−iky2,1 (B4)

=
∫

dk

2π
e−k2τ−ik(z+τ ) 1

1 − ik

1

ik + 0+ = gτ (z + τ ), (B5)

where we have defined

gτ (a) :=
∫

dk

2π
e−k2τ−ika 1

1 − ik

1

ik + 0+ =
∫

dk

2π
e−k2τ−ika

(
1

1 − ik
+ 1

ik + 0+

)
(B6)

= 1

2
eτ−aerfc

(
2τ − a

2
√

τ

)
+ 1

2
erfc

(
a

2
√

τ

)
. (B7)

We finally obtain

g(z1, z2; τ ) = e−z1 gτ (z2,1 + τ ) = 1

2

(
e−z1 erfc

(
z2 − z1 + τ

2
√

τ

)
+ e−z2 erfc

(
z1 − z2 + τ

2
√

τ

))
. (B8)

Let us also recall the definitions of the functions 	 and φτ , from Eqs. (32) and (40),

	(z1, z2; τ ) = e−z1 + e−z2 − g(z1, z2; τ ) = e−z1φτ (z2,1). (B9)

This leads to

	(z1, z2; τ ) = 1

2

(
e−z1 erfc

(
z1 − z2 − τ

2
√

τ

)
+ e−z2 erfc

(
z2 − z1 − τ

2
√

τ

))
, (B10)

where we used that erfc(x) + erfc(−x) = 2, since one has erfc(x) = 1 − erf (x) and erf (−x) = −erf (x). From this one obtains
the explicit form (41) for φτ (z) given in the text. It can also be obtained by noting that

φτ (z) = 1 + e−z − gτ (z + τ ) (B11)

and using Eq. (B7).

1. Symmetry property

The function gτ (z) obeys an interesting identity. Consider the form (B5). From it, it is immediate to see that ∂τ gτ (z + τ ) =
−1√
4πτ

e− (z+τ )2

4τ . Taking into account the boundary conditions, we obtain

gτ (z + τ ) =
∫ ∞

τ

dt√
4πt

e− (t+z)2

4t . (B12)

On this expression, using that (t+z)2

4t − (t−z)2

4t = z we obtain

gτ (−z + τ ) =
∫ ∞

τ

dt√
4πt

e− (t−z)2

4t = ez
∫ ∞

τ

dt√
4πt

e− (t+z)2

4t = ezgτ (z + τ ). (B13)

From this we have

φτ (−z) = 1 + ez − gτ (−z + τ ) = 1 + ez − ezgτ (z + τ ) = ez(1 + e−z − gτ (z + τ )) = ezφτ (z), (B14)

which is the symmetry property (42) discussed in the text. Note that this symmetry is equivalent to the fact that 	(z1, z2; τ ) is
symmetric in z1, z2 as can be seen on its explicit form (B10).
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2. Limit τ → 0

For small time difference τ → 0 one has

lim
τ→0

gτ (z + τ ) =
∫ ∞

0

dt√
4πt

e− (t+z)2

4t = e−zθ (z) + θ (−z). (B15)

Hence,

lim
τ→0

φτ (z) = θ (z) + e−zθ (−z), lim
τ→0

	(z1, z2, τ ) = e− min(z1,z2 ), (B16)

as it should since for τ → 0, X (t2) → X (t1).

APPENDIX C: SOME DETAILS OF CALCULATIONS FOR n = 2

Let us compute the exponential moments associated to the joint CDF (43) in the text. For the calculations we consider z1 and
z21 = z2 − z1 as independent real variables. The derivatives should be replaced as follows:

∂z1 → ∂z1 − ∂z21 , ∂z2 → ∂z21 . (C1)

Let us consider the expectation value of exponentials (note that we abusively denote by the same letter the random variable and
a real integration variable)

〈e−az1−bz2〉 =
∫

dz1dz2e−az1−bz2∂z1∂z2 Q<<(z1, z2) (C2)

=
∫

dz21e−bz21∂z21

∫
dz1e−(a+b)z1 (∂z1 − ∂z21 ) e−e−z1 φτ (z21 ) (C3)

=
∫

dz21e−bz21∂z21

(
(φτ (z21) + φ′

τ (z21))
∫

dz1e−(a+b+1)z1 e−e−z1 φτ (z21 )

)
(C4)

= �(1 + a + b)
∫

dze−bz∂z

((
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)a+b

)
, (C5)

where we have set z21 = z and performed the integration over z1 using that
∫

dz1e−Az1 e−pe−z1 = p−A�(A). This is equivalent to
Eq. (49) in the text, with a + b = s.

Let us examine the asymptotic behavior of the terms which appear in the integral (C5). One has, using Eq. (44),

1 + φ′
τ (z)

φτ (z)
= 1 + −e−z + ψ ′

τ (z)

e−z + ψτ (z)
= ψτ (z) + ψ ′

τ (z)

e−z + ψτ (z)
� ezψ ′

τ (z) = −e−ze− (z+τ )2

4τ

(
τ 1/2

z
√

π
+ O(z−2)

)
, z → −∞,

1 + φ′
τ (z)

φτ (z)
� 1 + ψ ′

τ (z) = 1 − e− (z+τ )2

4τ

(
τ 1/2

z
√

π
+ O(z−2)

)
, z → +∞, (C6)

and

1

φτ (z)a+b
� e(a+b)z, z → −∞,

1

φτ (z)a+b
� 1, z → +∞. (C7)

Using these asymptotics, one checks that setting b = 0 in Eq. (C5) the integrand is a total derivative and one obtains

〈e−az1〉 = �(1 + a)
∫

dz∂z

((
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)a

)
= �(1 + a) (C8)

as required since the PDF of z1 is the Gumbel distribution. Similarly, setting a = 0 one obtains

〈e−bz2〉 = �(1 + b)Ib, Ib =
∫

dze−bz∂z

((
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)b

)
(C9)

In fact, one can show that Ib = 1, which leads to 〈e−bz2〉 = �(1 + b) as required since the PDF of z2 is also the Gumbel
distribution. This is indeed a consequence of the symmetry (42) which also implies

e−bz

φτ (z)b

(
1 + φ′

τ

φτ

(z)

)
= −φ′

τ

φτ

(−z)
1

φτ (−z)b
(C10)

Hence, for b > 0 integrating by part, using the symmetry and changing z → −z

Ib = b
∫

dze−bz

(
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)b
= −b

∫
dz

φ′
τ

φτ

(z)
1

φτ (z)b
=

[
1

φτ (z)b

]+∞

−∞
= 1 (C11)
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One can further simplify the expression of the exponential moments. Indeed, for b > 0, using the above asymptotics one see
that one can integrate by part and get

〈e−az1−bz2〉 = b�(1 + a + b)
∫

dze−bz

(
1 + φ′

τ (z)

φτ (z)

)
1

φτ (z)a+b
(C12)

For a, b > 0 one can perform another integration by part and obtain

〈e−az1−bz2〉 = ab

a + b
�(1 + a + b)

∫
dz

e−bz

φτ (z)a+b
(C13)

Although this closed expression is easy to integrate numerically, it is tricky to obtain the moments from it, and we refer to the
discussion in the text.

Finally, for three times one performs the change ∂z1 → ∂z1 − ∂z21 , ∂z2 → ∂z21 − ∂z32 , ∂z3 → ∂z32 which leads to Eqs. (81) and
(82).

APPENDIX D: MULTITIME ORDER STATISTICS:
COMBINATORICS

To display more conveniently the combinatorics associ-
ated to the multitime order statistics, it is useful to consider
the case where each particle i = 1, . . . , N is described by a
distinct one-time PDF, which in this Appendix we denote as
pi(x), and a CDF Pi(x < X ), and a two-time CDF denoted
Pi(x < X, x′ < X ′). For two-time we denote with prime the
quantities at time t ′ > t .

As a warmup let us recall the PDF and CDF of the maxi-
mum at one time

q(X1) =
∑

i

pi(X1)
∏
j �=i

Pj (x < X1) = ∂X1 Q(X1),

Q(X1) =
∏

�

P�(x < X1) (D1)

and the joint PDF of the maximum and the second maximum
at one time

q(X1, X2) = θX2<X1

∑
i �= j

pi(X1)p j (X2)
∏

k �=i, j

Pk (x < X2). (D2)

It can also be retrieved from a joint ”CDF”, since for X2 < X1

one has

Prob(X (1)(t ) > X1, X (2)(t ) < X2)

=
∑

i

Pi(x > X1)
∏
k �=i

Pk (x < X2) (D3)

and taking −∂X1∂X2 it recovers the above expression for
q(X1, X2). It turns out that a generalization of this “CDF” is
convenient to obtain the two-time distribution for the maxi-
mum and second maximum.

As a first exercise, let us now write the PDF of the max-
imum at two times, and in a second stage check consistency
with the result given in the text for the CDF. There are two
possibilities, either particle i is the rightmost for both times,
of it is the rightmost only at the first time, but at the second
time particle j has become the rightmost. This leads to the
expression of the joint PDF

q(X1, X ′
1) =

∑
i

pi(X1, X ′
1)

∏
k �=i

Pk (x < X1, x′ < X ′
1)

+
∑
i �= j

Pi(X1, x′ < X ′
1)Pj (x < X1, X ′

1) (D4)

∏
k �=i, j

Pk (x < X1, x′ < X ′
1) = ∂X1∂X ′

1
Q(X1, X ′

1),

Q(X1, X ′
1) =

∏
�

P�(x < X1, x′ < X ′
1) (D5)

Let us now consider the case of identical particles (pi = p
independent of i and so on) and estimate (D4) at large N , intro-
ducing the associated variables z1, z′

1 and τ2,1 = τ as before.
The two terms in Eq. (D4) have factors N and N (N − 1) �
N2, respectively. One uses the limits

NP(x > X1, x′ > X ′
1) � g(z1, z′

1; τ )

= e−z1 + e−z′
1 − 	(z1, z′

1; τ ) (D6)

P(x < X1, x′ < X ′
1)N � e−	(z1,z′

1;τ ) (D7)

where g and 	 are defined in Eq. (34) and given explicitly in
Eqs. (B8) and (B10). By two differentiation of the first line,
this leads to

N p(X1, X ′
1)dX1dX ′

1 � −∂z1∂z′
1
	(z1, z′

1; τ )dz1dz′
1 (D8)

To evaluate the mixed PDF/CDF p(X1, x′ < X ′
1) we first dif-

ferentiate the first line of Eq. (D6) w.r.t. X1 which gives

N p(X1, x′ > X ′
1)dX1 � −∂z1 g(z1, z′

1; τ )dz1 (D9)

which can be rewritten as

N (p(X1) − p(X1, x′ < X ′
1))dX1 = −∂z1 g(z1, z′

1; τ )dz1

(D10)

Hence, using that N p(X1)dX1 � e−z1 dz1 one obtains

N p(X1, x′ < X ′
1)dX1 = ez1 + ∂z1 g(z1, z′

1; τ )

= −∂z1	(z1, z′
1; τ )dz1 (D11)

Putting all together we obtain from Eq. (D6) the joint PDF of
the maximum at two times

q(X1, X ′
1)dX1dX ′

1

� (−∂z1∂z′
1
	(z1, z′

1; τ ) + ∂z1	(z1, z′
1, ; τ )∂z′

1
	(z1, z′

1; τ ))

× e−	(z1,z′
1;τ )dz1dz′

1 (D12)

= ∂z1∂z′
1
e−	(z1,z′

1;τ )dz1dz′
1 (D13)
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FIG. 6. Interpretation of the different terms in Eq. (D18) in the
order in which they appear, left to right and top to bottom. Only
the maximum and second maximum are shown at each time. In the
second diagram the particle which realizes the maximum at t also
realizes the maximum at t ′, but the particle which realizes the second
maximum at t is neither maximum nor second maximum at t ′, and
so on.

in agreement with the result in the text for the joint CDF. This
is an equivalent derivation to the one given in Appendix in the
case of n = 2.

We can now turn to the joint PDF q(X1, X2, X ′
1, X ′

2) of (i)
the maximum (variable X1) and second maximum (X2) at time

t (ii) the maximum (variable X ′
1) and second maximum (X ′

2) at
time t ′. There are several possible cases, depending on which
particle realizes the maximum or second maximum at each of
the two times. We can indicate them schematically as

(X1, X ′
1, X2, X ′

2) = (i, i, j, j), j �= i (D14)

(X1, X ′
1, X2, X ′

2) = (i, i, j, j′), j �= i, j �= j′, j′ �= i

(D15)

(X1, X ′
1, X2, X ′

2) = (i, i′, j, j), i �= j, i′ �= i, j �= i′

(D16)

(X1, X ′
1, X2, X ′

2) = (i, i′, j, j′), i �= i′, j �= j′, i �= j, i′ �= j′

(D17)

Note that in the last case i = j′ is possible and so is i′ = j and
so is both at the same time. So in total there are seven terms
which read (the terms are illustrated in Fig. 6)

q(X1, X2, X ′
1, X ′

2) =
∑
i �= j

pi(X1, X ′
1)p j (X2, X ′

2)
∏

r �=i, j

Pr (x < X2, x′ < X ′
2)

+
∑

i �= j,i �= j′, j �= j′
pi(X1, X ′

1)p j (X2, x′ < X ′
2)p j′ (x < X2, X ′

2)
∏

r �=i, j, j′
Pr (x < X2, x′ < X ′

2)

+
∑

i �=i′,i �= j,i′ �= j

pi(X1, x′ < X ′
2)pi′ (x < X2, X ′

1)p j (X2, X ′
2)

∏
r �=i,i′, j

Pr (x < X2, x′ < X ′
2)

+
∑

i, j,i′, j′all distinct

pi(X1, x′ < X ′
2)pi′ (x < X2, X ′

1)p j (X2, x′ < X ′
2)p j′ (x < X2, X ′

2)
∏

r �=i,i′, j, j′
Pr (x < X2, x′ < X ′

2)

+
∑
i �= j

pi(X1, X ′
2)p j (X2, X ′

1)
∏

r �=i, j

Pr (x < X2, x′ < X ′
2)

+
∑

i �=i′,i �= j,i′ �= j

pi(X1, X ′
2)pi′ (x < X2, X ′

1)p j′ (X2, x′ < X ′
2)

∏
r �=i, j, j′

Pr (x < X2, x′ < X ′
2)

+
∑

i �=i′,i �= j,i′ �= j

pi(X1, x′ < X ′
2)pi′ (X2, X ′

1)p j′ (x < X2, X ′
2)

∏
r �=i, j, j′

Pr (x < X2, x′ < X ′
2) (D18)

We can now estimate each term in the large N limit (for identical particles) introducing the variables z1, z2, z′
1, z′

2, and using the
same rules for the asymptotics of the various PDF, CDF and mixed PDF/CDF as explained above. One obtains, for each term of
Eq. (D18) in the same order (we abusively denote by the same letter q the two joint PDF)

q(X1, X2, X ′
1, X ′

2)dX1dX2dX ′
1dX ′

2 � q(z1, z2, z′
1, z′

2)dz1dz2dz′
1dz′

2 (D19)

q(z1, z2, z′
1, z′

2) = (∂z1∂z′
1
	(z1, z′

1)∂z2∂z′
2
	(z2, z′

2) − ∂z1∂z′
1
	(z1, z′

1)∂z2	(z2, z′
2)∂z′

2
	(z2, z′

2)

− ∂z1	(z1, z′
2)∂z′

1
	(z2, z′

1)∂z2∂z′
2
	(z2, z′

2) + ∂z1	(z1, z′
2)∂z′

1
	(z2, z′

1)∂z2	(z2, z′
2)∂z′

2
	(z2, z′

2)

+ ∂z1∂z′
2
	(z1, z′

2)∂z2∂z′
1
	(z2, z′

1) − ∂z1∂z′
2
	(z1, z′

2)∂z′
1
	(z2, z′

1)∂z2	(z2, z′
2)

− ∂z1	(z1, z′
2)∂z2∂z′

1
	(z2, z′

1)∂z′
2
	(z2, z′

2))e	(z2,z′
2 ) (D20)

where for clarity we have made the time argument implicit,
i.e., 	(z, z′) ≡ 	(z, z′, τ ). Recall that each term gives the

respective probabilities of how the particle realizing the maxi-
mum and second maximum change from time t to time t ′. For
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instance, the first term corresponds to events where both the
rightmost particle and the second rightmost at t have remained
so at t ′, and so on.

It turns out that the rather bulky expression (D19) and
(D20) is a total derivative, i.e., one can check that, for z1 > z2,
z′

1 > z′
2,

q(z1, z2, z′
1, z′

2) = ∂z1∂z′
1
∂z2∂z′

2
(−	(z1, z′

1)

+ 	(z1, z′
2)	(z2, z′

1))e	(z2,z′
2 ) (D21)

which is the result (107) displayed in the text, where it is also
derived by a different method using counting statistics.

APPENDIX E: MULTITIME, MULTISPACE
COUNTING STATISTICS

One can generalize the arguments in Sec. VI B. Let us
illustrate for n = 3 times and an arbitrary number of points k,
k′ and k′′. Here we denote t ′ − t = t τ

ln N and t ′′ − t ′ = t τ ′
ln N ,

with τ, τ ′ = O(1). Consider the three sequences of points
{Xj} j=1,...,k , {X ′

j′ } j′=1,...,k′ , {X ′′
j′′ } j′′=1,...,k′′ , each being in de-

creasing order. For each time the real axis is the union of k + 1
(and then k′ + 1 and k′′ + 1) contiguous intervals, e.g., at time
t these are [Xj, Xj−1], j = 1, k + 1 with by convention X0 =
+∞ and Xk+1 = −∞, and similarly for t ′ and t ′′. Let n j, j′, j′′ ,
for j = 1, . . . , k + 1, j′ = 1, . . . , k′ + 1, j′′ = 1, . . . , k′′ + 1,
be the numbers of particles which are in [Xj, Xj−1] at t
and in [X ′

j′ , X ′
j′−1] at t ′ and in [X ′′

j′′ , X ′′
j′′−1] at t ′′. The set of

these numbers obey a multinomial distribution. In the large
N limit, in the (multitime) edge regime, defined such that
the corresponding variables z j, z′

j′ , z′′
j′′ are all of order O(1),

all of these numbers are of order O(1) with the exception of
nk+1,k′+1,k′′+1 � N . Then this reduced set of numbers are inde-
pendent Poisson variables, each with mean parameter λ j, j′, j′′ .
These parameters can be related to the functions defined in
this paper as follows

λ j, j′, j′′ = 〈(
θx>Xj − θx>Xj−1

)(
θx′>X ′

j′
− θx′>X ′

j′−1

)
× (

θx′′>X ′′′
j′′

− θx′′>X ′′′
j′′−1

)〉
(E1)

�
∑
�=0,1

∑
�′=0,1

∑
�′′=0,1

(−1)�+�′+�′′
g3(z j−�, z′

j′−�′ , z′′
j′′−�′′ ; τ, τ ′)

(E2)

where g3 was defined in Eq. (35). We recall the conven-
tion z0 = z′

0 = z′′
0 = +∞ and zk+1 = z′

k′+1 = z′′
k′′+1 = −∞.

As mentionned in Sec. III, g3 vanishes when any of
the z argument is taken to +∞, and reduces to g2 =
g when any of the z argument is taken to −∞,
more precisely one has g3(−∞, z′, z′′, τ, τ ′) = g(z′, z′′, τ ′),
g3(z,−∞, z′′, τ, τ ′) = g(z, z′′, τ + τ ′), g3(z, z′,−∞, τ, τ ′) =
g(z, z′, τ ), and similarly for g2 = g which reduces to g1(z) =
e−z. One can check that the sum of all the λ j, j′, j′′ (over
all indices, not including ( j, j′, j′′) = (k + 1, k′ + 1, k′′ + 1))
equals 	(zk, z′

k′ , z′′
k′′ ; τ, τ ′), yielding the normalization factor

e−	(zk ,z′
k′ ,z′′

k′′ ;τ,τ ′ ) for the multiple independent Poisson distribu-
tion of the n j, j′, j′′ .

Two times, three first maxima. Let us first return to the
case of 2 times. The probability that the maximum is in
[X1,+∞] and the second maximum is in ] − ∞, X2] at t , and

FIG. 7. Interpretation of the different terms in Eq. (E5) in the
order in which they appear, left to right and top to bottom. Only the
maximum and second maximum and their trajectories are shown at
each time.

the maximum is in [X ′
1,+∞] and the second maximum is in

] − ∞, X ′
2] at t ′ was given in Eq. (121), and reads, translated

in the present notations

(λ11 + λ13λ31)e−	(z2,z′
2;τ ) (E3)

which is a sum over the two permutations of 2 elements. Upon
taking the derivatives ∂z1∂z2∂z′

1
∂z′

2
yields the two-time joint

PDF of the maximum and second maximum.
This can be generalized. For instance, consider n = 2 and

k = k′ = 4 and the following joint probability

P = Prob(X (1)(t ) > X1, X (2)(t )

∈ [X3, X2], X (3)(t ) < X4, X (1)(t ′) > X ′
1, X (2)(t ′)

∈ [X ′
3, X ′

2], X (3)(t ′) < X ′
4) (E4)

From P one can obtain by differentiation the two-time joint
PDF of the maximum, second maximum and third maximum.
The various cases are shown in Fig. 7 and one obtains

P � (λ11λ33 + λ13λ31 + λ15λ51λ33 + λ13λ35λ51 + λ15λ53λ31

+ λ11λ35λ53 + λ15λ51λ35λ53)e−	(z3,z′
3,τ ) (E5)

which, apart from the last term, is a sum over the six per-
mutations of three elements. Note that the intervals [X2, X1]
and [X4, X3] remain empty. The two-time three-order statistics
PDF is obtained as (in the z variables)

q(z1, z2, z3, z′
1, z′

2, z′
3) = ∂z1∂z2∂z3∂z′

1
∂z′

2
∂z′

3
P (E6)

FIG. 8. Interpretation of the different terms in Eq. (E7) in the
order in which they appear, left to right and top to bottom. Only the
maximum and its trajectory is shown at each time.
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Three times, two first maxima. One can also obtain the
three-time joint PDF of the maximum and second maximum.
From Fig. 8 we see that, for z1 > z2, z′

1 > z′
2, z′′

1 > z′′
2 ,

q(z1, z2, z′
1, z′

2, z′′
1 , z′′

2 )

= ∂z1∂z2∂z′
1
∂z′

2
∂z′′

1
∂z′′

2
((λ111 + λ131λ313 + λ113λ331

+ λ133λ311 + λ133λ331λ313)e−	(z2,z′
2,z

′′
2 ;τ,τ ′ ) ) (E7)

which has 2!2 terms (two successive permutations of 2 ele-
ments). To be specific we give

λ111 = g3(z1, z′
1, z′′

1 ; τ, τ ′) (E8)

λ113 = g(z1, z′
1, τ ) − g3(z1, z′

1, z′′
2 ; τ, τ ′) (E9)

λ331 = e−z′′
1 − g2(z2, z′′

1 ; τ + τ ′) − g(z′
2, z′′

1, τ
′)

+ g3(z2, z′
2, z′′

1 ; τ, τ ′) (E10)

λ133 = e−z1 − g(z1, z′
2; τ ) − g(z1, z′′

2 ; τ + τ ′)

+ g3(z1, z′
2, z′′

2 ; τ, τ ′) (E11)

λ311 = g(z′
1, z′′

1 , τ
′) − g3(z2, z′

1, z′′
1 ; τ, τ ′) (E12)

λ131 = g(z1, z′′
1 , τ + τ ′) − g3(z1, z′

2, z′′
1 ; τ, τ ′) (E13)

λ313 = e−z′
1 − g(z2, z′

1; τ ) − g(z′
1, z′′

2 ; τ ′)

+ g3(z2, z′
1, z′′

2 ; τ, τ ′) (E14)

APPENDIX F: CONTINUUM TIME OBSERVABLES: CALCULATIONS

1. First passage time

Let us recall the following. Let B(t ) the standard Brownian motion (i.e., with B(0) = 0) and W (t ) = √
DB(t ) + μ a Brownian

with drift μ and diffusion coefficient D. Let us denote T μ,D
z the first passage time of W (t ) at level z. For z > 0 the PDF of

T = T μ,D
z is

pz(T ) = z√
2πDT 3/2

e− (z−μT )2

2DT + δ+∞(T )(1 − e2μz/D)θ (−μ) (F1)

One has upon integration

Prob
(
T μ,D

z > t
) = 1

2

(
erfc

(
μt − z√

2Dt

)
− e2μz/Derfc

(
μt + z√

2Dt

))
(F2)

For μ = 0 it simplifies into

Prob
(
T 0,D

z > t
) = erf

(
z√
2Dt

)
(F3)

Eq. (F2) is also the probability that a Brownian survives up to time t in presence of an absorbing wall at x = z and can thus also
be obtained from the image method. Indeed, one has, denoting x the position of the Brownian at time t ,

Prob
(
T μ,D

z > t
) =

∫ z

−∞
dx

(
e−(x−μt )2/(2Dt )

√
2πDt

− e2μz/D e−(x−2z−μt )2/(2Dt )

√
2πDt

)
(F4)

which upon integration recovers (F2).

2. Probability that the maximum remains below a straight line

Let us consider the following observable for the maximum process X (t ) = X (1)(t ) of N standard Brownian motions started
at the origin

Prob(X (t ) < X1 + v(t − t1), ∀t ∈ [t1, t2]) = Prob(x(t ) < X1 + v(t − t1), ∀t ∈ [t1, t2])N (F5)

Now one has

Prob(x(t ) < X1 + v(t − t1), ∀t ∈ [t1, t2]) =
∫ X1

−∞
dx1

e−x2
1/(2t1 )

√
2πt1

Prob
(
T −v

X1−x1
> t2 − t1

)
(F6)

where here we must set D = 1. Indeed, asking that a standard Brownian motion starting at x1 at time t1, remains below X1 +
v(t − t1) until t2 is equivalent to asking that a standard drifted Brownian of drift −v remains below X1 until t2, which is also
equivalent to asking that the first passage time at level X1 of a drifted Brownian of drift −v started at x1 at time t1 is larger than
t2 − t1. Using Eq. (F2) one obtains

P := Prob(x(t ) < X1 + v(t − t1), ∀t ∈ [t1, t2])

=
∫ X1

−∞
dx1

e−x2
1/(2t1 )

√
2πt1

1

2

(
erfc

(−v(t2 − t1) − (X1 − x1)√
2(t2 − t1)

)
− e−2(X1−x1 )verfc

(−v(t2 − t1) + (X1 − x1)√
2(t2 − t1)

)
. (F7)
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We will now scale X near the edge, and scale the time window as well, i.e., choose

X1 =
√

2t1 ln N

(
1 + z1 + cN

2 ln N

)
,

t2 − t1
t1

= τ2,1

ln N
, (F8)

and we will need to scale the slope v as

v = w

√
ln N

2t1
, w = O(1). (F9)

In that region P is close to unity, with 1 − P = O(1/N ) and

Prob(X (t ) < X1 + v(t − t1), ∀t ∈ [t1, t2]) = PN � e−N (1−P ). (F10)

Using that the edge coordinates satisfy

N pt1 (x1)dx1 = e−y1 dy1, X1 − x1 =
√

2t1

2
√

ln N
(z1 − y1). (F11)

We can write

N (1 − P ) = N
∫ +∞

−∞
dx1

e−x2
1/(2t1 )

√
2πt1

(F12)

×
(

1 − θ (X1 − x1)
1

2

(
erfc

(−v(t2 − t1) − (X1 − x1)√
2(t2 − t1)

)
− e−2(X1−x1 )verfc

(−v(t2 − t1) + (X1 − x1)√
2(t2 − t1)

))

�
∫

dy1e−y1 (1 − θ (z1 − y1)
1

2

(
erfc

(−wτ2,1 − (z1 − y1)

2
√

τ2,1

)
− e−(z1−y1 )werfc

(−wτ2,1 + (z1 − y1)

2
√

τ2,1
)

))

=
∫

dye−y1
(
1 − θ (z1 − y1

)
Prob(T−w

z1−y1
> τ2,1)) = e−z1

∫
dyey

(
1 − θ (y)Prob

(
T−w

y > τ2,1
))

, (F13)

where in the last line we have set y1 = z1 − y and where T−w
z = T −w,D=2

z is the first passage time for a Brownian with drift −w

and diffusion coefficient D = 2, with

Prob
(
T−w

y > τ
) = 1

2

(
erfc

(−wτ − y

2
√

τ

)
− e−ywerfc

(−wτ + y

2
√

τ

)))
. (F14)

In summary, we find that

Prob(X (t ) < X1 + v(t − t1), ∀t ∈ [t1, t2]) � e−e−z1 �w (τ2,1 ), (F15)

where

�w(τ ) =
∫

dyey
(
1 − θ (y)Prob

(
T−w

y > τ
)) = 1+

∫
y>0

dy ey Prob
(
T−w

y < τ
)
. (F16)

An explicit calculation and one finds, for w �= 1

�w(τ ) = e−τw
(
weτw

(
erf

(√
τw

2

) + 1
) + eτ (w − 2)erfc

(
1
2

√
τ (w − 2)

))
2(w − 1)

, (F17)

with �w(0) = 1. For w = 1 it gives Eq. (158) in the text, and for w = 0 one has

�0(τ ) = eτ (erf(
√

τ ) + 1) �τ→+∞ 2eτ + O

(
1

τ 1/2

)
. (F18)

For general w, w �= 0, 1, the large τ asymptotics is

�w(τ ) = w

w − 1
θ (w) + 2 − w

1 − w
e(1−w)τ θ (w < 2) + O(e−w2τ/4τ−3/2). (F19)

Hence, it saturates to a constant for w > 1, while it diverges exponentially for w < 1.
Now under the rescaling described here and the definition of z(τ ) in the text one finds that

Prob(X (t ) < X1 + v(t − t1),∀t ∈ [t1, t2]) � Prob(z(τ ) + τ < z1 + wτ ), (F20)

which shows the result (157) conjectured in the text.
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3. Running maximum and arrival time of the first particle: One time

Here we derive the one-time distributions by a more detailed calculation. For the standard Brownian motion, we see from
Eq. (F3) that Eq. (159) becomes

Prob(r(t1) < R1) = Prob
(
TR1 > t1

) = P1 = erf

(
R1√
2t1

)
. (F21)

This can be either interpreted as the CDF for the running maximum at fixed t1 or for the “CDF” of the first passage time at fixed
R1. Similarly, for N Brownian one has

Prob(R(t1) < R1) = Prob
(
T min

R1
> t1

)
, (F22)

which can be interpreted either as the CDF of R(t1) = maxi ri(t1) at fixed t1 or the “CDF” of the arrival time of the first particle,
T min

R1
= mini T (i)

R1
at fixed R1. At large N (F22) is estimated as

� e−N (1−P1 ) = e
−N

(
1−erf

(
R1√

2t1

))
� e−N

√
2t1√

πR1
e
− R2

1
2t1 = e−e−z

, (F23)

where

R2
1

2t1
= ln N + z − ln

√
πR1√
2t1

� ln N + z + c′
N , c′

N = −1

2
ln(π ln N ) = cN + ln 2. (F24)

If we are interested in the running maximum at fixed t1, then we obtain from this estimate

R(t1) = R1 =
√

2t1 ln N

(
1 + z1 + cN

2 ln N
)

)
, z1 = z + ln 2, (F25)

in agreement with the text, where z is Gumbel distributed [by definition from Eq. (F23)], and the shift of ln 2 agrees with the
one obtained in Eq. (166). However, if one is interested in the arrival time of the first particle, then one obtains from the same
estimate

T min
R1

= t1 = R2
1

2 ln N

(
1 − z + c′

N

ln N
)

)
, (F26)

where z is Gumbel distributed. One may ask why is the arrival time of the first particle also distributed with (minus) Gumbel,
since the distribution of the first passage time is very different from a Gaussian, see Eq. (F1). To see that immediately one
can consider that mini T (i)

R = 1/(maxi Ui ) where U = 1/TR has a distribution with an exponential tail which clearly belongs to
Gumbel class.

4. Running maximum and arrival time of the first particle: Two time

We give here more details of the calculation of the two-time joint CDF of the running maximum depicted in the text. Let
us start from the exact expression for P in Eq. (170). In the large N limit, with the scaling (171), using similar estimates as in
Appendix A, we obtain

N (1 − P ) = N
∫

dx1

∫
dx2

(
e− x2

1
2t1√

2πt1

e− (x2−x1 )2

2(t2−t1 )

√
2π (t2 − t1)

(1 − θ (R1 − x1)θ (R2 − x2)(1 − e− 2R1 (R1−x1 )
t1 )(1 − e− 2(R2−x1 )(R2−x2 )

t2−t1 ))

�
∫

dy1

∫
dy2

e− (y2−y1+τ )2

4τ√
4πτ

(e−y1 − θ (z1 − y1)θ (z2 − y2)(e−y1 − e−(2z1−y1 ) )(1 − e− (z2+τ−y1 )(z2−y2 )
τ ), (F27)

where we have changed variables denoting xi = √
2ti ln N (1 + yi+cN

2 ln N ). As for the functions 	 we can give some interpretation to
this formula in terms of the Brownian motion with unit negative drift and diffusion coefficient D = 2, with however an important
difference. The factor (e−y1 − e−(2z1−y1 ) )θ (z1 − y1) is the stationary measure in the presence of an absorbing wall at z1. The other
factor can be written as

θ (z2 − y2)

⎛
⎝e− (y2−y1+τ )2

4τ√
4πτ

− e− (y2−(2(z2+τ )−y1 )+τ )2

4τ√
4πτ

⎞
⎠, (F28)

which vanishes at y2 = z2 but is not exactly the propagator in presence of a fixed absorbing wall, since the wall is effectively
moving. Performing the change of variable y1 → z1 − y1 and y2 → z2 − y2 in the last line of Eq. (F27) one obtains

Prob(R(t1) < R1, R(t2) < R2) � e−N (1−P ) � e−e−z1 γτ (z21 ), (F29)
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with the function γτ (z) displayed in Eq. (173) in the text. To obtain the explicit expression (174) one splits the integral into y1 > 0
and y1 < 0 and use that

∫
y1<0

∫
dy2ey1 G(z − y2,1, τ ) = 1. The part y1 > 0, y2 < 0 is found to equal φτ (z) − 1. The remaining

part y1 > 0, y2 > 0, which is positive, can be integrated explicitly.

5. Multitime CDF for the running maximum

The two-time calculation of the previous section can easily be extended to any number of times n. Here we just give the result.
One finds, under the scaling (171) and t j − t j−1 = t1τ j, j−1/ ln N ,

Prob(R(t1) < R1, . . . , R(tn) < Rn) = Prob
(
T min

R1
> t1, . . . , T min

Rn
> tn

) � e−�(z1,...,zn;τ2,1,...,τn,n−1 ), (F30)

where

�(z1, . . . , zn; τ2,1, . . . , τn,n−1) =
∫

dy1

∫
dy2 . . . dyn e−y1 G(y2,1, τ2,1) . . . G(yn,n−1, τn,n−1)

×
(

1 −
n∏

i=1

θ (zi − yi )(1 − e−2(z1−y1 ) )(1 − e− (z2+τ−y1 )(z2−y2 )
τ ) . . . (1 − e

− (zn+τn,n−1−yn )(zn−yn )

τn,n−1 )

)
. (F31)

Similarly, the result (F30) and (F31) can be read as a result for the multitime joint “CDF” of the arrival times T min
Ri

of the first
particle at Ri, which allows to obtain the joint distribution of z1, and of the scaled delay times τ2,1, . . . , τn,n−1, defined as in
Eq. (202) in the text.
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