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Simulating Z2 lattice gauge theory on a quantum computer
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The utility of quantum computers for simulating lattice gauge theories is currently limited by the noisiness of
the physical hardware. Various quantum error mitigation strategies exist to reduce the statistical and systematic
uncertainties in quantum simulations via improved algorithms and analysis strategies. We perform quantum
simulations of Z2 gauge theory with matter to study the efficacy and interplay of different error mitigation
methods: readout error mitigation, randomized compiling, rescaling, and dynamical decoupling. We compute
Minkowski correlation functions in this confining gauge theory and extract the mass of the lightest spin-1
state from fits to their time dependence. Quantum error mitigation extends the range of times over which our
correlation function calculations are accurate by a factor of 6 and is therefore essential for obtaining reliable
masses.
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I. INTRODUCTION

Nucleons and other hadrons are ubiquitous in particle-
and nuclear-physics experiments. Predicting their properties
theoretically requires a nonperturbative description of bound
states in quantum chromodynamics (QCD). Nonperturbative
QCD uncertainties are now the dominant theoretical uncer-
tainties in a wide range of new physics searches in areas
ranging from quark and lepton flavor physics to neutron
star physics to neutrino physics [1–4]. Lattice QCD has
become a highly successful tool that enables nonperturba-
tive calculations of QCD observables such as hadron masses
and matrix elements with systematically improvable uncer-
tainties that are essential to the success of many ongoing
and future experiments [5–9]. However, lattice QCD cal-
culations on classical computers exclusively rely on Monte
Carlo algorithms to compute the high-dimensional path inte-
grals required for precise calculations of hadron properties.
Monte Carlo algorithms are very efficient for path inte-
grals whose integrands are positive definite, but the presence
of sign problems—integrands with sign or complex-phase
fluctuations—leads to computational resource requirements
that grow exponentially with system size [10]. Many sys-
tems of interest cannot presently be studied with lattice
QCD using classical computers because of challenges aris-
ing from sign problems, including all systems involving
nonequilibrium real-time evolution. Although there has been
progress in developing novel classical lattice gauge theory
(LGT) algorithms [11–14], simulations of the dynamics of

four-dimensional LGTs relevant for studying hadronization of
quarks and gluons, heavy-ion collisions, and phase transitions
in the early universe remain unfeasible.

Quantum computers offer the possibility to simulate real-
time dynamics of LGTs without sign problems by using
Hamiltonian time evolution of quantum states instead of
Monte Carlo evaluations of path integrals [15]. As with the
evolution of LGT on classical computers, however, realizing
this potential will require a sustained effort over many years
to understand and address theoretical issues, develop and test
efficient algorithms, and identify and control systematic un-
certainties. Therefore, even though large-scale fault-tolerant
quantum computers capable of realistic four-dimensional
LGT simulations will not be realized for many years, it is
timely to begin exploring the possibilities and tackling the
challenges associated with quantum simulations of LGTs.

Extracting accurate physical results from noisy
intermediate-scale quantum (NISQ) hardware requires
quantifying and reducing systematic uncertainties. Substantial
effort has been dedicated to developing and testing strategies
for quantum error mitigation (QEM) in quantum simulations
for chemistry, physics, and mathematics [16–38]. In LGT
calculations, the use [39–48] and systematic study [49–64]
of QEM techniques has primarily focused on using zero
noise extrapolation, random compilation, and readout error
mitigation. Because many approaches for digitization of
LGTs (see Sec VI.b of Ref. [65] for a review) have
been proposed, it will be illuminating to compare their
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performance on currently accessible systems to understand
which approaches should be pursued for large-scale quantum
simulations.

Quantum electrodynamics (QED) in 1 + 1d , also called the
Schwinger model [66], demonstrates both chiral symmetry
breaking and confinement. Therefore, the Schwinger model
and its approximations provide relatively simple yet non-
trivial test cases for quantum simulation methods, and have
been the focus of much activity. State-preparation techniques
using adiabatic [67,68] and variational [69–71] methods as
well as thermal-pure-quantum states [72] have been tested.
Ground state properties have been calculated at finite tem-
perature [70,73] and density [71,72], including topological
terms [68,74,75]. Additional work has studied nonequilib-
rium dynamics [73,76] and the role of dynamical quantum
phase transitions [77,78]. Error mitigation [59] and correction
[64,79] strategies have been developed for the Schwinger
model, and practical resource estimates have been derived for
some digitization schemes [80].

In this paper, we simulate 1 + 1d Z2 gauge theory
with a single massive fermion, which is the simplest dis-
crete subgroup approximation of the Schwinger model,
[74,81–83]1 as well as a model of condensed matter Lut-
tinger liquid systems with interesting phenomena that has
attracted recent interest [83,86–92]. We compute real-time
(Minkowski) two-point correlation functions and extract the
energy of the lowest-lying spin-1 state from their time
dependence. In the infinite-volume continuum limit, this
energy corresponds to the mass of the lightest spin-1
fermion-antifermion bound state in the theory. In realistic
four-dimensional LGT studies, a set of analogous quantities
can be matched to experimentally measured particle masses
to set the scale of the lattice spacing in physical units and
fix the quark masses. This scale setting is a necessary step
before calculations of other spectral quantities can be used to
predict other particle masses as well as some nonequilibrium
observables. Strategies for determining the lattice spacing in
quantum simulations have been proposed in Refs. [93–95].

The remainder of this paper is organized as follows. We
first discuss in Sec. II the Hamiltonian time evolution in Z2

gauge theory and its implementation via quantum circuits in
Sec. II. Section III discusses the study of QEM strategies
for these circuits. We apply the QEM strategies in Sec. IV
to compute the real-time evolution of fermion-antifermion
bound states and determine the mass gap from these results.
The performance and interplay of various QEM techniques is
detailed for simulations using multiple IBM quantum comput-
ers. Finally, we conclude with a discussion of the results and
future work in Sec. V.

II. THEORY

In this paper, we use the Kogut-Susskind lattice Hamil-
tonian for 1 + 1d Z2 gauge theory with two-component

1Other proposed schemes for rendering the photon-field Hilbert
space finite dimensional include truncating the compact QED
variables [67], quantum link models [84], and quantum cellular au-
tomatons [85].

FIG. 1. Pictorial representation of the Ns = 4 one-dimensional
lattice used in this work. The lattice is represented using seven qubits:
two represent electron components of the staggered fermion en

(green), two represent the analogous positron components pn (red),
and three represent Z2-valued photon fields for which operators are
labeled by adjacent pairs of lattice sites, e.g., σn,n+1 (orange).

staggered fermionic matter and open boundary conditions
(OBCs) [96,97].2 A convenient feature of this model is that
both the fermionic and bosonic degrees of freedom have the
same local Hilbert space dimension as qubits. This allows for
a straightforward mapping to qubit-based quantum computers.
Further simplifications are possible in 1 + 1d to reduce the
quantum resources required, e.g., integrating out the non-
dynamical gauge fields or using the block structure of the
symmetry sectors. We do not employ such optimizations here,
however, since they do not persist in higher dimensions [98].

Our simulations were performed on the IBM quantum
computers ibmq_manila, ibm_nairobi, ibmq_jakarta,
and ibmq_quito. Typical specifications for these machines
during our running period are provided in the files accompa-
nying this paper, while their physical qubit layouts are shown
in Fig. 2.

A. Hamiltonian

The Hamiltonian governing Z2 gauge theory on a lattice of
length Ns with OBCs is

H =
Ns−1∑
n=1

[
1

2as
σ x

n,n+1 + asη

2

(
ψ̄nσ

z
n,n+1ψn+1 + H.c.

)]

+ asm0

Ns∑
n=1

(−1)nψ̄nψn, (1)

where m0 and η are the bare fermion mass and the gauge
coupling, respectively, ψn is a fermion field on lattice site n,

2Open boundary conditions minimize the complexity of our circuits
on the available IBM hardware topology (see Sec. II 2).

(a)

(c)

(b)

FIG. 2. Qubit layout and connectivity for (a) ibm_nairobi and
ibmq_jakarta, (b) ibmq_manila, and (c) ibmq_quito.
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ψ̄n is the corresponding antifermion field, the Pauli matrices
σ x

n,n+1 and σ z
n,n+1 act on the two-component state of the Z2

gauge field, and as is the spatial lattice spacing. The three
terms in H represent the gauge kinetic term, the fermion
hopping term, and the fermion mass term, respectively. For
the remainder of the paper, we will set as = 1 such that all
dimensionful quantities are in lattice-spacing units.

In the Kogut-Susskind fermion formulation, a single two-
component spinor ψ (x) is described by two one-component
staggered fields ψn on neighboring sites. Here we denote
the components on even sites by pn (for positron) and the
components on odd sites by en (for electron). The field content
of an Ns-site lattice with OBCs is Ns/2 electron sites, Ns/2
positron sites, and Ns − 1 gauge-field links, where Ns must be
even. A depiction for the case of Ns = 4 is provided in Fig. 1.

After a Jordan-Wigner transformation [99] to convert the
fermionic degrees of freedom to bosonic ones, H becomes

H = 1

2

Ns−1∑
n=0

σ x
n,n+1 − m0

2

Ns−1∑
n=0

(−1)nZn

+ η

4

Ns−2∑
n=0

(XnXn+1 + YnYn+1)σ z
n,n+1. (2)

The operators Xn, Yn, and Zn denote Pauli matrices acting
on the electron and positron qubit states. This form of the
Hamiltonian is used in the quantum simulations below.

B. Circuits

For Z2 LGT with Kogut-Susskind fermions, the state of
each fermion component and gauge field can be encoded in
a single qubit. Hence, a lattice with Ns sites (or, equivalently,
Nx = Ns/2 spatial points) can be encoded in Nq = 2Ns − 1 =
4Nx − 1 qubits. Here we simulate two-site and four-site sys-
tems using three and seven qubits, respectively. As hardware
constraints will be important, we show various compilations
for the operators which are optimized for different quantum
computers shown in Fig. 2.

We approximate the time evolution operator U (t ) = e−itH

via second-order Trotterization [100–102] as

U (t ) ≈ U (t/ε)Nt , (3)

where Nt is an integer and ε ≡ t/Nt . Performing simulations
of real-time evolution on a quantum computer requires en-
coding U (t/ε) as a quantum circuit. To simplify the circuit
encoding, we first express the Hamiltonian as a sum of three
commuting operators.

H1 = 1

2

Ns−1∑
n=0

σ x
n,n+1 − m0

2

Ns−1∑
n=0

(−1)nZn,

H2 = η

2

Ns−2∑
n=even

(XnXn+1 + YnYn+1)σ z
n,n+1, (4)

H3 = η

2

Ns−2∑
n=odd

(XnXn+1 + YnYn+1)σ z
n,n+1,

each of which is easily diagonalizable. Operator H1 comprises
the gauge-kinetic and fermion-mass terms, while H2 and H3

are the even- and odd-site fermion-hopping terms, respec-
tively. In terms of the Hi, the Hamiltonian in Eq. (2) is given
by

H =
3∑

i=1

Hi, (5)

and the Trotterized time-evolution operator in Eq. (3) is

U (t/ε) =
3∏

i=1

Ui(t/ε), (6)

where

Ui(t ) ≡ e−itHi . (7)

For the simulations described in this paper, we time evolve
the quantum system using the circuits shown in Fig. 3. Op-
erator U1 requires only single-qubit gates, and we employ
the simple circuit implementation shown in the left panel.
Operators U2 and U3 require entangling gates because the
hopping term couples neighboring fermion and gauge degrees
of freedom. They can be represented by the same quantum
circuit, however, since H2 and H3 differ only by the lattice
sites upon which they act. We employ the two equivalent
circuit representations of the hopping-term operator in our
simulations, U f h,1 and U f h,2. These are shown in the upper-
and lower-right panels, respectively. Because the locations of
the entangling CNOT gates differ between U f h,1 and U f h,2,
combining both circuit variations allows us to more efficiently
use the available quantum hardware without the need for
costly SWAP gates.

For circuit U f h,1, in which the fermion and antifermion are
coupled via a central gauge field, the physical qubit layout
matches the 1d lattice picture in Fig. 1. This straightforward
implementation has been employed in recent quantum simu-
lations of the lattice Schwinger model and its approximations,
e.g., [68,71,73], and it is well-suited to quantum hardware
with linear topology. Many NISQ-era computers, however,
have nonlinear qubit layouts [103–106]. On these devices,
the number of lattice sites that can be simulated using the
hopping-term circuit layout U f h,1 is limited by the longest
linear graph, and the resulting efficiency loss can be sub-
stantial. For example, on the machines ibmq_jakarta and
ibm_nairobi [see Fig. 2(a)], with the standard qubit layout
U f h,1 only three out of seven qubits would be usable, thereby
wasting over 60% of the available resources.

To address this limitation, we employed circuit identi-
ties to derive from the standard circuit U f h,1 a new circuit
U f h,2 in which the gauge and antifermion fields are cou-
pled via a central fermion. Using both fermion hopping-term
circuits together allows us to employ all seven quibits on
ibmq_jakarta and ibm_nairobi in our quantum simula-
tions. Further, these two circuits form a basis for efficient
1+1d Z2 simulations using all qubits on any quantum device
with heavy-polygon topology.3 To illustrate how U f h,1 and
U f h,2 can be effectively combined, Fig. 4 shows an example
circuit mapping of 1+1d Z2 LGT with five spatial points onto
a 22-qubit heavy-square device. This is the maximum possible

3An N-sided heavy polygon has qubits on both the N edges and the
N vertices.
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FIG. 3. The quantum circuit U1 implementing the gauge kinetic term and the fermion mass term is shown in the left panel. In the right
panel, two equivalent quantum circuits implementing the fermion hopping term appearing in U2 and U3 are shown. These two circuits have
different qubit connectivities and are used in conjunction to provide efficient mappings between logical and physical qubits as described in the
main text.

efficiency since simulating this system with Nx spatial points
requires 4Nx − 1 qubits as discussed above.

C. Simulation prescription

Correlation functions describing the real-time evolution
of a quantum state of interest |φ〉 ≡ φ†|0〉 and subsequent
interaction with a Hermitian4 operator O are generically of
the form

C(t ) = 〈φ|U †(t )OU (t )|φ〉 = 〈0|φ U †(t )OU (t ) φ†|0〉. (8)

By inserting complete sets of energy eigenstates, it is straight-
forward to show that C(t ) has the spectral representation

C(t ) =
∑
n,m

〈φ|Em〉〈En|φ〉〈m|O|n〉e−i(En−Em )t . (9)

Measurements of |C(t )|2 from quantum simulations can be fit
to this oscillatory form in order to extract energy differences
En − Em.

Because we do not explicitly project to the gauge-invariant
sector of Hilbert space during time evolution, our simula-
tions must start with gauge-invariant initial states to construct
gauge-invariant correlation functions. Here we choose our

4Computing the expectation value of non-Hermitian operators is
possible but requires multiple circuits and ancilla qubits as in e.g. the
Hadamard test (see Sec. 2.4.3 of Ref [107]).

FIG. 4. Example mapping of 1+1d Z2 which tessellates heavy-
square qubit connectivity layouts relevant for ibm_nairobi and
ibmq_jakarta. Solid (dashed) lines indicate Uf h,1 (Uf h,2) gates are
used to implement fermion hopping terms involving a given pair
of lattice sites and grayed qubits denote ones unnecessary for even
numbers of lattice sites. This is the fewest number of idle qubits
possible for this graph.

initial state to be a linear superposition of two gauge-invariant
states: the noninteracting vacuum state |�〉 and a state |P〉
that is expected to have significant overlap with excited states
such as electron-positron bound states. Explicitly, the states
|�(Ns)〉 and |P(Ns)〉 are defined for lattices of size Ns as

|�(Ns)〉 =
(

N2−2∏
n=even

Hn,n+1Xn+1

)
|0〉⊗2Ns−1,

|P(Ns)〉 = Xmσm,m+1Xn+1|�(Ns)〉, (10)

where H is the Hadamard gate and m = Ns/2 − 1 is the center
lattice site. The superposition of these two states,

|φ(Ns)〉 = 1√
2

(|�(Ns)〉 + |P(Ns)〉), (11)

is used as the initial state in our simulations. The circuit to
build this state from the computational |0....0〉 state for Ns = 4
is given in Fig. 5.

In this paper, we compute correlation functions involving
this state and the operator

O = ψ†
n σ z

n,n+1ψn+1 + ψ†
n σ z

n,n+1ψ
†
n+1 + H.c. (12)

This operator takes a simple form in the qubit spin basis,

O = Xnσ
z
n,n+1Xn+1, (13)

which allows it to be included efficiently in quantum simu-
lations. Further, using Eqs. (10) shows that diagonal matrix
elements of O vanish for these states,

〈�(Ns)|O|�(Ns)〉 = 0 = 〈P(Ns)|O|P(Ns)〉, (14)

FIG. 5. Quantum circuit implementing initial-state preparation
as |ψe.g., 〉 = Usp|0....0〉.
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while off-diagonal matrix elements are unity:

〈�(Ns)|O|P(Ns)〉 = 1 = 〈�(Ns)|O|P(Ns)〉. (15)

Thus, the value of C(t = 0) can be computed exactly:

C(0) = 〈φ(Ns)|O|φ(Ns)〉 = 1. (16)

Correlation functions C(t ) defined using this state as in
Eq. (8) have time dependence generically given by Eq. (9),
and in the limit of large t their Fourier transformations should
be sharply peaked about values corresponding to some energy
differences. If |�〉 and |P〉 each overlap predominantly with a
single energy eigenstate with energy E� and EP, respectively,
then the time-dependence of C(t ) reduces to the simple form

〈φ|U †(t )OU (t )|φ〉 ≈ cos[(EP − E�)t]〈�|O|P〉
+ 1

2 〈�|O|�〉 + 1
2 〈P|O|P〉

= cos[(EP − E�)t]. (17)

This means that C(t ) can be expressed as

C(t ) = 〈φ(Ns)|U †(t ) O U (t )|φ(Ns)〉
= cos(Mt ) + . . . , (18)

where M is the energy difference between the eigenstates
dominantly overlapping with |P(Ns)〉 and |�(Ns)〉 and the . . .

denotes contributions from other states that can lead to differ-
ent t dependencies than a single-cosine form. Fits of quantum
simulation results to Eq. (18) can be used to study the validity
of this approximation. If the single-state contribution cos(Mt )
provides a good fit to correlation function results, then the
fit parameter M can be expected to describe the energy gap
between an electron-positron bound state and the vacuum,
which corresponds to the mass of the particle associated with
this state in the continuum and infinite-volume limits. This
accuracy of this method can be directly tested by compar-
ing fitted results for M with exact spectral results, which
can be numerically computed on classical computers for
small Ns.

Finally, we employ the Trotterized approximation to C(t )
in our simulations, which is defined as

C(t/ε) = 〈φ(Ns)|U†(t/ε)Nt O U (t/ε)Nt |φ(Ns)〉, (19)

where U (t/ε) is defined in Eq. (3).

III. ERROR MITIGATION OF A QUANTUM SIMULATION

Many QEM strategies have been studied for reducing the
systematic uncertainties associated with errors in NISQ-era
quantum simulations. A primary goal of this paper is to
study the interplay between different QEM methods and the
reliability of quantum simulation results using combinations
of state-of-the-art methods. This section briefly introduces
the QEM methods that we found to provide significant
improvements in these calculations: randomized compil-
ing (RC), readout error mitigation, rescaling, and dynamic
decoupling.

These QEM strategies introduce additional correlations
between quantum simulation results, and it is important to
accurately determine and include these correlations in anal-
yses of quantum simulation results. Throughout this paper we

TABLE I. Details of the simulations performed in this paper. The
different dynamic decoupling (DD) schemes are described below in
Sec. III 4.

m0 Ns Machine Date Timea DD Qubitsb

1 2 ibmq_jakarta 1/3/23 20:59c None (5,6,3)
1 2 ibmq_jakarta 1/4/23 18:41c XY4 (5,6,3)
1 2 ibm_nairobi 9/10/22 13:28 None (5,4,6)
1 2 ibm_nairobi 9/10/22 11:53 XY4 (5,4,6)
1 4 ibmq_jakarta 9/21/22 15:23 None (0,2,1,3,5,4,6)
1 4 ibmq_jakarta 9/21/22 19:39 XY4 (0,2,1,3,5,4,6)
1 4 ibm_nairobi 1/5/23 08:57c None (0,2,1,3,5,4,6)
1 4 ibm_nairobi 1/5/23 09:30c XY4 (0,2,1,3,5,4,6)
2 2 ibmq_jakarta 8/27/22 22:04 None (5,6,3)
2 2 ibmq_jakarta 9/22/22 21:44 XY4 (5,6,3)
2 2 ibm_nairobi 1/4/23 21:41c None (5,4,6)
2 2 ibm_nairobi 1/5/23 22:51c XY4 (5,4,6)
2 4 ibmq_jakarta 1/4/23 20:36c None (0,2,1,3,5,4,6)
2 4 ibmq_jakarta 1/4/23 21:01c XY4 (0,2,1,3,5,4,6)
2 4 ibm_nairobi 9/12/22 11:26 None (0,2,1,3,5,4,6)
2 4 ibm_nairobi 9/14/22 11:22 XY4 (0,2,1,3,5,4,6)

1 2 ibmq_manila 8/4/22 10:25 XY4 (3,1,4)

1 2 ibmq_manila 8/4/22 09:06 CMPG (3,1,4)
1 2 ibmq_manila 8/4/22 10:26 EDD (3,1,4)
1 2 ibmq_manila 8/4/22 16:57 XY4 (1,0,2)
1 2 ibmq_manila 8/4/22 14:58 CMPG (1,0,2)
1 2 ibmq_manila 8/4/22 16:56 EDD (1,0,2)
1 2 ibmq_quito 7/27/22 13:38 XY4 (3,2,4)
1 2 ibmq_quito 7/27/22 13:26 CMPG (3,2,4)
1 2 ibmq_quito 7/27/22 13:39 EDD (3,2,4)
1 2 ibmq_quito 7/27/22 12:05 XY4 (1,0,2)
1 2 ibmq_quito 7/27/22 11:46 CMPG (1,0,2)
1 2 ibmq_quito 7/27/22 12:08 EDD (1,0,2)

aCentral Daylight Time.
bLayouts found in Fig. 2.
cRandom compilation not used

use bootstrap resampling [108–110] to determine all statistical
uncertainties and correlations between observables, in partic-
ular, using correlated resampling of quantities arising through
QEM that appear in multiple observables computed using the
same quantum computer.

We performed quantum simulations of C(t ) using the
parameter choices m0 ∈ {1, 2} and Ns ∈ {2, 4} in the Hamil-
tonian in Eq. (2) with η = 1 in all cases. Each simulation
was performed for Nt = 20 Trotter steps with ε = 0.3. For
each Nt , Nrc = 30 randomly compiled circuits were run with
Nmeas = 2000 measurements collected for each. These pro-
duction simulations were carried out on ibm_nairobiand
ibmq_jakartawhile additional testing simulations were also
investigated on ibmq_manilaand ibmq_quito. The full de-
tails of the simulations are listed in Table I. For each
simulation, we performed Nmeas = NshotsNrc = 6 × 104 mea-
surements of each quantum circuit and used Nboot = 104

random bootstrap samples of this ensemble of measurements.
Bootstrap covariance matrices were determined for all cor-
related observables and the associated uncertainties were
propagated to fitted quantities in a correlated way using the
gvar and lsqfit packages [111–115].
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A. Randomized compiling

Randomized compiling transforms coherent systematic
uncertainties associated with the imperfect fidelity of quan-
tum gates into stochastic systematic uncertainties that can
be quantified with a Markovian noise model [116–122]. It
has seen great success in other (1 + 1)d LGT applications
[45,46,48,63,123]. At present, it must be implemented by
hand, but it is expected to become a standard part of transpila-
tion through parametric compilation [124–130]. RC utilizes
multiple gates that are equivalent in the absence of noise
but that differ in the presence of gate errors. Therefore, the
averages of the results often have smaller errors than any
individual circuit and the variance of the results provides a
partial measure of the size of systematic uncertainties arising
from gate errors.

A strategy for implementing RC is Pauli twirling, in which
a gate 	 is replaced by a gate including additional sets of Pauli
gates {σi} and {σ ′

i }, where i indexes the qubits acted on by 	

that are chosen to satisfy [120,121][⊗
i

σi

]
	

⎡⎣⊗
j

σ ′
j

⎤⎦ = 	. (20)

Any solution to Eq. (20) provides a valid gate that is equiv-
alent to 	 on an ideal quantum computer and can be used
for RC. For any choice of {σi}, the {σ ′

i } required to produce
such a solution is simply obtained by multiplying both sides
of Eq. (20) by the inverses of the gates appearing and is given
by ⎡⎣⊗

j

σ ′
j

⎤⎦ = 	†

[⊗
i

σi

]
	. (21)

For complicated gates such as the fermion hopping term
above, 64 solutions to Eq. (21) can be produced in this
manner, while for the CNOT there are 16. To better handle
circuit scheduling constraints on cloud computing platforms,
a random set of NRC solutions can be chosen at compile
time, with solutions chosen independently for each instance
of 	 appearing in a quantum circuit. The optimal value of
Ntwirl depends on both 	 and the hardware is run and can be
determined empirically by increasing Ntwirl until the effects of
RC saturate or are offset by a prohibitively larger number of
simulations.

Pauli twirling removes correlations between repeated 	,
but any internal correlations persist. Thus, as the correlation
between native gates decreases with hardware and implemen-
tation improvements, resources devoted to Pauli twirling can
be reduced by only implementing them for larger gates like
Uf h. On present systems, we investigate pauli twirling at the
level of Uf h and at the level of the CNOTs within it. A mild
but statistically significant preference to twirling the CNOTs
was observed, which will be used for the remainder of this
paper.

B. Readout error mitigation

The measurement operation on quantum computers is quite
noisy. There are many causes for these errors, such as classical
bit-flips, amplitude dampening, and cross talk [131–137]. It

is important to mitigate these errors as they will bias the ob-
served value of an operator measured on a quantum computer.

While many methods to correct these errors exist
[138–143], we use regularized response matrix inversion
[144–148]. For a single qubit, if we prepare the system in
the state |0〉 there is a probability p0 that we measure the
qubit in the state |0〉 and a probability 1 − p0 that we measure
it in the |1〉 state. We can then use these and the analogous
probabilities for an initial |1〉 state to construct a calibration
matrix:

M =
(

p0 1 − p0

1 − p1 p1

)
. (22)

By acting on the vector of measured qubit state results with
M−1, one can mitigate the readout error and return a corrected
output closer to the underlying distribution. Assuming that
readout errors are uncorrelated, we can construct a tensor
product M⊗N and correct the readouts individually rather than
the exponentially time consuming task of measuring all pos-
sible elements of the full readout correction matrix. QISKIT

RUNTIME has readout mitigation built in [149].
The size of readout mitigation effects will depend on the

observable under study, which is taken to be C(t ) below. The
calibration matrix may introduce correlations between any
simulations that are transformed using the same estimated
process. The absolute shift in the correlation function due to
readout mitigation is defined as

A(t ) = |CRO(t ) − Craw(t )|, (23)

where CRO(t ) is the readout mitigated observable and Craw(t )
is the observable calculated using the unmitigated data. The
relative shift is defined as

R(t ) = A(t )

|Craw(t )| . (24)

Figure 6 shows the relative shift of the observable as a
function of the observable magnitude for the simulations per-
formed on ibm_nairobi. The relative independence of R on
Craw indicates that the absolute size A of readout mitigation
effects is correlated with, and, in particular, approximately
proportional to, Craw. This is not unexpected, as errors on
physical hardware are commonly asymmetric [150]. Similar
patterns were observed on ibmq_jakarta and together we
can conclude the relative shift is approximately constant with
circuit depth, as seen in Fig. 7.

Separate simulations with the same or different numbers of
Trotter steps may become correlated because of the calibration
matrix. The correlations between randomly compiled circuits
were observed to be � 5%. Including these correlations has
a noticeable effect when averaging these circuits, as seen in
Fig. 8.

Figure 9 shows the correlations introduced by readout miti-
gation between different time steps for the same parameters as
Fig. 8. It is unsurprising that observables involving different
numbers of Trotter steps are less significantly correlated than
those with the same number because the wave function is not
as similar.
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FIG. 6. Relative shifts R in the Trotterized correlation function Craw (aggregated across t/ε) defined in Eq. (24) due to readout mitigation
for ibm_nairobi and ibmq_jakarta. The data points are aggregated across all possible randomized compiling circuits that did not use
dynamic decoupling. Each data point was measured with Nmeas = 2000.

C. Rescaling

Measured observables will include an exponential decay
with respect to the circuit depth [151]. It is possible to coun-
teract this signal damping using rescaling [62,152,153]. This
method rescales the measurements of one set of circuits us-
ing information from a related set of circuits. The first set
is the randomly compiled quantum simulation circuits C(t )
of interest. The second set uses the same circuits except all
non-Clifford gates are removed, which is denoted r(t ). The
first set of circuits has an unknown output that the quantum
simulation is designed to determine. On the other hand, the
second set containing only Clifford gates can be efficiently
simulated classically [154]. Such classical algorithms can be
extended further to some cases where some non-Clifford gates
are allowed [155,156]. This allows for comparison between
the exact answer and the noisy result, which can be used to
mitigate some errors.

On a quantum computer, assuming only a depolarizing
noise channel, the noisy estimate r̃(t ) of the classically com-
putable observable r(t ) is

r̃(t ) = (1 − ε)r(t ) + ε

2n
〈Tr[Ur (t )]〉, (25)

where Ur (t ) is an operator satisfying r(t ) = 〈Ur (t )〉 for expec-
tation values taken in the state |φ(Ns)〉 and ε is the strength
of the depolarizing noise. Since Ur (t ) in our case is traceless
and Hermitian because it is a tensor product of Pauli matrices,
the result simplifies to r̃(t ) = (1 − ε)r(t ). Since r(t ) is easily
computable, we can determine (1 − ε) from a measurement of
r̃(t ). Then we can correct for the same depolarizing noise in
our correlation function of interest by rescaling the analogous
noisy estimator C̃(t ) by (1 − ε)−1 [62,152,153]. The resulting

rescaled correlation function is given by

Crescaled(t ) = C̃(t )

1 − ε
= C̃(t )r(t )

r̃(t )
. (26)

This method is less feasible for long depth circuits because
r̃(t ) can be vanishingly small. A pictorial representation is
shown in Fig. 10. The efficacy of rescaling is found to signif-
icantly depend on whether or not dynamical decoupling (DD)
is included and is discussed further in the next section.

D. Dynamical decoupling

DD is a method to reduce errors arising from spectator
qubits that are acted on trivially by a given gate. When a
qubit is idling, a set of single-qubit operations are interleaved
using basis transformations so environmental contamination
or spurious signals from other qubits become decoupled. As
a result, the coherence time of the quantum circuit becomes
extended. See Ref. [157] for a review of the method. There
exist many methods for DD [25,157–161] and extensive stud-
ies on different DD sequences have been done [25,162–164].
It is well known the effectiveness of a given DD sequence is
problem- [165–168] and hardware-dependent [25,162].

The time-dependent evolution can be described using a
total Hamiltonian H that depends on the Hamiltonian of the
ideal system HS , the Hamiltonian of the environment HE , and
the interaction between the system and the environment HSE

as

H = HS + HE + HSE . (27)

We can view HSE as an error term in the desired error-
mitigated Hamiltonian and cancel them out to some degree
using time-dependent inversion pulses in long periods of
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FIG. 7. Effects of readout correction for various depth circuits
corresponding to t/ε Trotter steps. The top (bottom) figure cor-
responds to the Ns = 2 (Ns = 4) lattice volume, and the different
colored points in each plot correspond to the different bare
fermion masses indicated. Note that simulations for different
masses were performed using different machines in both cases
(ibm_nairobifor parameters {Ns = 2, m0 = 1} and {Ns = 4, m0 =
2} and ibmq_jakartafor the other combinations), and the central
values and uncertainties of the results will therefore differ.

system-environment interaction. These pulses can be incor-
porated into a circuit via a transpiler pass, as described below,
and are available within QISKIT.

When a circuit is prepared to be run on a quantum com-
puter, it is first transformed into a logically equivalent circuit
in terms of the basis gates supported by the quantum computer
through a process called transpiling. The DD transpiler pass
[169] analyzes a transpiled circuit for idle periods and inserts
delay instructions. Although this will be effective in keeping
a system in phase during single-qubit gates, CNOTs have
longer gate times (ten or more times that of a single-qubit
gate) and require a DD pulse sequence to decouple the idle
qubits. Research on CNOT-induced idle periods and the best
strategies for DD implementation is detailed in Ref. [170].

In this paper, we studied three different DD sequences:
Carr-Purcell-Meiboom-Gill (CPMG) [158,159], XY4 [160],
and Eulerian Dynamical Decoupling (EDD) [161], which are
described below. These pulse sequences are shown in Fig. 11,
where τ is the length of idle time on the qubit minus the single
qubit gate operation times.

One of the earliest described decoupling sequences was
proposed by Carr sand Purcell in 1954 [158] and elaborated
on by Meiboom & Gill four years later [159]. Called CPMG,
this sequence gives first-order protection to environmental

FIG. 8. Comparison of the absolute shifts from readout mitiga-
tion using calibration matrices computed with and without taking
into account correlations between different circuit measurements.

coupling. It involves two X pulses, symmetrically placed on
a spectator like in Fig. 11. While CPMG has been shown
to perform better than a system without DD [25], it makes
assumptions about the pulses being ideal. In addition, CPMG
can only decouple states close to the equator of the Bloch
sphere (such as the |+〉 and |−〉 states). To protect all states
universally, more than just X pulses are needed.

Following previous work on DD sequences, Maudsley
brought forward a sequence with universal first-order protec-
tion of states in the ideal pulse limit [160] by introducing a Y
rotation to the CPMG sequence as seen in Fig. 11. This ad-
ditional direction of rotation cancels out the final undesirable
HSE terms. It is important to note that to properly implement
XY4, the total delay time t must be bounded by the number
of single qubit gates. If the total CNOT time is less than the
time it takes to implement four single qubit gates, then XY4
cannot be implemented. For IBM devices, this issue does not
arise because CNOT times are ten or more times that of single

FIG. 9. Correlation matrices (that is, normalized covariance ma-
trices) for circuits with different numbers of Trotter steps for the
representative case of simulations with m0 = 1 and Ns = 2.
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FIG. 10. Pictorial representation of how rescaling circuits restore
the signal. A noisy measurement (black dashed line) of an observable
with a known t-independent expectation value (black solid line) is
used to rescale a noisy measurement of an observable (yellow dashed
line), resulting in the rescaled observable (yellow solid line).

qubit gates. However, other factors such as pulse alignment
can place restrictions on the allowed ft . Like CPMG, XY4’s
efficacy is based on an ideal pulse model and may not accu-
rately describe some noise sources arising on real quantum
computers.

EDD is a class of sequences proposed by Viola and Knill
[161] that provides universal first-order protection and takes
into account imperfect pulses as well. The name of this pro-
cedure is derived from the Eulerian cycles on a Cayley graph
of the discrete group (in our case, rotational gates from which
a sequence is constructed), a formalism which is elaborated
on in Ref. [162]. The explicit sequence of gates we used is
described in Ref. [25] and shown in Fig. 11.

Environmental couplings can introduce both oscillatory
effects and exponential damping to the underlying signal as
discussed above. DD can mitigate these oscillatory and ex-
ponential damping effects. It is easiest to see these effects
on the simple observables r(t ) used for rescaling. With an
ideal quantum computer, the expected value of r(t ) for our
studies should be 1, regardless of the circuit depth. We show
the effects of including DD on the rescaling circuit in Fig. 12.
If only Pauli or depolarizing noise channels are affecting the
quantum system, then this circuit should decay exponentially
with depth. However, we observe that without DD, environ-
mental effects introduce oscillatory terms which invalidate
Eq. (25).

To quantify the efficacy of the different DD sequences, we
ran simulations of the rescaling circuit on ibmq_quito and
ibmq_manila with CPMG, XY4, and EDD protocols. To
avoid overoptimizing our choice of DD sequence, these stud-
ies used a different initial state than the one used in our final
results, corresponding to |ψ〉 = 1√

2
(|0〉|+〉|0〉 + |1〉|−〉|1〉).

The results were then fit to the ansatz

f (x) = Ae−Bx cos(Cx) + D, (28)

which is inspired by studies in Ref. [157]. The inclusion of
the oscillatory term is often seen when superposition states
are prepared [171]. When comparing the fits with and with-
out DD, we expect to see that the coefficients B and C
should decrease when DD sequences are included into the

TABLE II. Best-fit parameters and associated goodness of fit for
fits of rescaling circuit results to Eq. (28) using the three dynamical
decoupling sequences described in the main text. Calculations were
performed using ibmq_manilaand ibmq_quito.

Machine Qubits Sequence B C χ2

dof

ibmq_quito (1,0,2) CPMG 0.1137(72) 0.070(43) 0.87
ibmq_quito (1,0,2) XY4 0.117(72) 0.069(58) 2.2
ibmq_quito (1,0,2) EDD 0.116(10) 0.116(76) 1.6
ibmq_quito (3,2,4) CPMG 0.0870(37) −0.068(18) 0.97
ibmq_quito (3,2,4) XY4 0.0836(49) 0.0006(81) 1.4
ibmq_quito (3,2,4) EDD 0.0725(31) −0.075(18) 2.2
ibmq_manila (1,0,2) CPMG 0.1493(60) 0.076(23) 0.53
ibmq_manila (1,0,2) XY4 0.1321(46) 0.095(14) 0.42
ibmq_manila (1,0,2) EDD 0.1418(54) 0.087(15) 0.60
ibmq_manila (3,1,4) CPMG 0.1163(97) 0.1939(68) 1.4
ibmq_manila (3,1,4) XY4 0.1079(84) 0.0001(31) 1.9
ibmq_manila (3,1,4) EDD 0.0793(60) 0.00007(62) 3.2

quantum simulation. We find fit coefficients for the example
case shown in Fig. 12 and in this and all other cases it is indeed
observed that DD lowers the fitted values of B and C. For
the example shown in Fig. 12, we find that B = 0.1356(58)
and C = 0.3664(68) without DD and B = 0.1016(18) and
C = −0.0919(54) when DD is included. Similar trends are
observed with the other simulations.

The rescaling circuits were also fit to Eq. (28) and the
resulting B values are shown in Figs. 13 and 14 and Table II.
The results show that XY4 and EDD generally perform better
for this study than CPMG since they have a smaller value of
B. There is a slight preference for EDD over XY4, however,
there are physical hardware constraints that limit the ability to
implement EDD due to its large number of gates. Thus, XY4
was used for all further simulations.

IV. NUMERICAL RESULTS

Quantum simulation results with and without QEM are
shown for one set of simulation parameters in Fig. 15. Exact
results can be obtained classically for the lattice sizes studied
in this paper and are shown for comparison. It is clear that with
only RC and readout error mitigation, quantum simulation
results deviate significantly from their expected values for
all t/ε > 1. This demonstrates that RC is able to transform
some but far from all systematic uncertainties into statistical
uncertainties. The inclusion of DD without rescaling improves
agreement between quantum simulation results and expecta-
tions for small circuit depths, but there are still statistically
significant discrepancies visible for t/ε � 2. In particular, the
amplitude of the signal decays with increasing t/ε, while the
expected result describes a fixed-amplitude oscillation.

This decay is effectively counteracted for some values of
t/ε by including rescaling alone; however, at other values of
t/ε, rescaling leads to overcorrections or drives the simulation
results further away from the expected result. The overcorrec-
tion could arise from the fact that the rescaling circuit and
the time evolution circuit are not exactly the same length and
the small mismatch leads to an accumulation of error as the
simulation circuit depth increases. In addition, RC using only
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CPMG: f τ
4 X f τ

2 X f τ
4 XY4: f τ
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4 X f τ

4 Y f τ
4 X f τ

8

EDD: X f τ
8 Y f τ

8 X f τ
8 Y f τ

8 Y
τ
8 X f τ

8 Y f τ
8 X f τ

8

FIG. 11. The dynamical decoupling sequences studied in this paper. The notation τ

N indicates a delay on the qubit equal to τ

N .

Pauli matrices does not exactly map the coherent error to a
depolarizing channel. This mapping is only true if the full
Clifford group is used. Given this, the rescaling procedure de-
fined in Eq. (28) is not exactly correct. Rescaling will typically
fail if the observable used for rescaling has any oscillatory
components.

The simultaneous inclusion of DD and rescaling leads to
significant improvements over the use of either technique
alone. The quantum simulation results for t/ε � 10 agree
with theoretical expectations within 5% precision. Even for
larger t/ε, results obtained with DD and rescaling are much
closer to theoretical expectations than unmitigated results.
These results show that the amplitude of the fully mitigated
results still leaves the expected physical range for large t/ε
but suggest that the frequency of observed oscillations approx-
imately matches the expected frequency. Similar behavior can
be observed in fully mitigated quantum simulation results for

FIG. 12. Effects on the rescaling circuit for m0 = 1 and 3 qubits
with and without using dynamical decoupling. The rescaling circuits
r(t ) (or in the notation of Sec. III 3 our noisy estimators r̃(t )) for
both cases are shown as a function of the number of Trotter steps
(top) along with the resulting (noisy estimator C̃(t ) of the) unrescaled
correlation function C(t ) (bottom) including readout mitigation but
not rescaling.

each set of parameters m0 and Ns considered here, as shown
in Fig. 16.

To quantify the accuracy of our simulation results with
and without QEM, we perform fits of C(t ) to the spectral
representation discussed in Sec. II 3. The simplest ansatz is
the single-cosine form shown in Eq. (18), which assumes that
the initial state can be approximated as a superposition of two
energy eigenstates. The largest correction to this form arising
from Trotterization is that physical times t are equal to at Nt ,
where the renormalized Trotterization scale at is only equal to
the Trotter step size t/ε for a noninteracting theory and oth-
erwise is a function at (ε, m0, η, Ns) that must be determined
for a given set of parameters by matching a dimensionful
observable to a known value through scale setting. Taking
t = at Nt in Eq. (18) allows us to express the single-state fit
ansatz as

C(t ) ≈ cos(at MNt )e
Bt , (29)

where eBt factor introduces a nuisance parameter B to ac-
count for residual effects of depolarizing noise that are not

FIG. 13. Comparison of noisy estimates of the rescaling circuits
and correlation functions using the three DD sequences described in
the main text for an Ns = 2 lattice representing [e0, σ0,1, p1] using
qubits [3, 2, 4] on ibmq_quito.
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FIG. 14. Comparison of noisy estimates of the rescaling circuits
and correlation functions using the three DD sequences described in
the main text for an Ns = 2 lattice representing [e0, σ0,1, p1] using
qubits [3, 2, 4] on ibmq_manila.

completely removed by rescaling. This shows that at M is
the dimensionless Fourier conjugate variable to the number
of Trotter steps Nt . Correlated χ2-minimization fits to this
functional form are used to extract at M. The ansatz is then fit
to all possible ranges of fit data with six or more consecutive
Trotter steps. We then use Bayesian model averaging from
Ref. [172] to determine the time-dependent mass and asso-
ciated systematic and statistical uncertainties. If these results
described a physically relevant LGT, we could match observ-
ables like at M to their experimental values to determine at and
therefore make unambiguous predictions for other energies in
physical units. For the 1+1 dimensional model at hand, at M
provides a proof-of-principle demonstration of the calculation
of an observable that could be used for scale setting and is the
final result of this paper.

Results for at M obtained from fitting our quantum simula-
tion results at each m0 and Ns studied are shown in Table III.
The theoretically expected exact results (at M )expected com-

TABLE III. Mass gap determined by fitting quantum simulation
results to the single-state ansatz described in the main text.

Ns m0 ε at M (at M )exact

2 1.0 0.3 0.89(13) 0.9473
4 1.0 0.3 1.02(18) 0.9386
2 2.0 0.3 1.619(53) 1.5204
4 2.0 0.3 1.591(27) 1.5168

puted classically are shown for comparison in the same table,
and 1σ agreement between quantum simulation results and
these expectations is found in the asm0 = 1 cases. However,
significant discrepancies are found in the asm0 = 2 cases.
These discrepancies may arise from couplings to other excited
states whose exact energies are close to the ones extracted
from fits to our quantum simulations. It is noteworthy that
applying QEM methods and, in particular, the combination
of rescaling and DD, is found to be necessary for achieving a
good fit to Eq. (29). Performing analogous fits to results with-
out either of these techniques leads to less accurate estimates
of the mass gap with larger uncertainties.

The effect of QEM can also be studied in Fourier space by
calculating the discrete Fourier transform (DFT):

f (atω) ∝
Nt∑

t/ε=0

C(t ) cos(atωt/ε). (30)

The squared magnitude | f (atω)|2 for the m0 = 2 and Ns = 4
(seven-qubit lattice) correlation functions with and without
DD and rescaling are shown in Fig. 17. In a noiseless sim-
ulation, a clear peak around atω ≈ (at M )expected should be
visible that would approach a δ function as Nt → ∞. While
the simulation without DD and rescaling shows an apparent
peak close to this value, it is statistically not significant at 1.3
σ . Including DD and rescaling leads to a drastic decrease in
relative uncertainty in frequency space and the peak close to
(at M )expected is clearly visible at 6.4σ . The frequencies atω as-
sociated with these peaks in the Fourier spectrum correspond
to energy gaps (relative to the vacuum) for states that have sig-
nificant overlap with the state studied here. As expected from
the success of single-cosine fits to correlation functions in the
time domain, the location of the statistically significant peak
visible in mitigated results is consistent with the fitted values
of at M in Table III and with (at M )exact. We provide graphical
depiction in Fig. 18. The remaining spurious oscillations in
the simulation including all error mitigation techniques could
arise from correlations between different frequency DFTs and
possible ringing artifacts due to the finite number of Trotter
steps.

To measure the efficacy of QEM, we use a figure of merit
that quantifies how much longer a mitigated circuit can be
simulated over an unmitigated one. This definition uses the
relative deviation δMλ (t ) of a simulation with parameters λ =
{m0, Ns, ε, device} at a time t/ε from the noiseless exact
value with a mitigation strategy M:

δMλ (t ) =
√√√√∑t

ti=0 [Cexact(ti) − CM(ti )]2∑t
ti=0 Cexact(ti)2

. (31)

We then define tMλ (�) as the first Trotter step t/ε such that
δMλ (t ) is larger than a threshold �. An improvement factor
from mitigation can then be defined as

Tλ(�) = tMλ (�)

t0
λ (�)

, (32)

where M = 0 corresponds to the unmitigated or only ran-
domly compiled cases that we use as baselines. This is
similar to the relative error mitigation metric proposed in
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FIG. 15. Effects of rescaling and/or DD on correlation-function results. The results labeled “No QEM” include readout mitagation and
randomized compiling but neither rescaling nor DD. Errors show statistical uncertainties determined using bootstrap methods as described in
the main text. The parameters for this simulation are m0 = 1 and Ns = 2. Data points outside of the range ±2 are not shown.

Refs. [173,174]. For three of our parameter sets, we have
M = 0 results available for comparison. We find that 1 �
Tλ(�) � 20 for 0 � � � 1 with T monotonically increasing
with �—here � � 0.2 trivially shows no signs of improve-
ment because tMλ (�) is equal to 1 for all M, while the
maximum value of Tλ achieved corresponds to the number

of Trotter steps Nt . Finally, to compute a single value, we
average over a wide range of reasonable choices � = d/25
with d ∈ {1, . . . , 25} as

T̄ = 1

N�Nλ

∑
�,λ

Tλ(�). (33)

FIG. 16. Fully mitigated results (including rescaling and DD) for m0 = 1 and Ns = 2 on ibm_nairobi (top left), m0 = 1 and Ns = 4 on
ibmq_jakarta (bottom left), m0 = 2 and Ns = 2 on ibmq_jakarta (top right), and m0 = 2 and Ns = 4 on ibm_nairobi (bottom right)
simulations. Points that are overly noisy, unreliable, or outside the plot range are not shown.
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FIG. 17. Fourier transform of the m0 = 2 and Ns = 4 correlation-
function results. The yellow dash-dotted line is from the simulation
only applying readout mitigation and randomized compiling, while
the black solid line is from the simulation including dynamic de-
coupling and rescaling. The apparent oscillatory behavior of the
amplitude could arise from correlations among neighboring points
and ringing artifacts. The blue line indicates the exact mass gap of
the Trotterized Hamiltonian.

This leads to T̄ = 5.92(12), which indicates that QEM en-
ables about six times more Trotter steps to be computed with
a given level of precision.

V. CONCLUSIONS

Quantum simulations offer promising methods for com-
puting the nonequilibrium responses of strongly coupled
quantum systems to applied currents. In high-energy physics,
such responses can be used to predict observables ranging
from transport coefficients to scattering cross sections [65].
Predictions for these nonequilibrium observables require cal-
culations of Minkowski correlation functions including the
time-evolution operator U (t ). In this paper, we computed

FIG. 18. The mass gap in lattice units, at M, determined using
quantum simulation results is shown as a function of the bare mass
asm0 as points with error bars. Solid lines indicate exact results for
the Trotterized Hamiltonian.

a simple two-point Minkowski correlation function in 1 +
1d Z2 gauge theory to study how such observables might
be determined using quantum simulations. After combining
several QEM strategies, we obtained an accurate description
of the time dependence of the correlation function and thereby
the energy of the lowest-lying spin-1 state. These QEM strate-
gies were essential for extracting accurate predictions from
the NISQ-era quantum hardware used here.

During our studies, we found interesting synergies between
various QEM techniques. RC allows some hardware-level
stochastic systematic errors to be converted to quantifiable
statistical uncertainties, but quantum simulation results using
only this technique still differ significantly from exact results.
Rescaling can be used to remove exponential signal decay
with respect to circuit depth but requires a noise model that
correctly describes the remaining systematics. We find that
a simple noise model including only a depolarizing channel
does not adequately describe our simulation results when only
RC and readout error correction are employed. However, this
simple noise model satisfactorily describes our results when
dynamic decoupling is included. Leveraging all of these error
mitigation strategies together, we extend the range of simula-
tion times over which accurate results are achieved by a factor
of 6 in comparison to results using only RC and readout error
correction.

Extending these simulations to realistic LGTs in four
dimensions will require further theoretical and algorithmic
developments. The simplicity of 1 + 1d Z2 gauge theory al-
lowed us to construct initial states that predominantly overlap
with a small number of energy eigenstates. Constructing such
initial states will be increasingly difficult to achieve for more
complex theories and in higher dimensions, and a variety of
methods for efficient initial-state preparation are under active
investigation [52,67–73,175–199]

Trotterization errors were not found to be numerically sig-
nificant for the range of times used in this analysis, but these
issues are also likely to be more challenging in more com-
plex simulations. One promising avenue for addressing these
errors is the construction of improved Hamiltonians [46,176]
along the lines of the Symanzik improvement program used
in classical LGT simulations [200]. Finally, it is anticipated
that the efficacy of particular error mitigation strategies will
change dramatically for larger gauge groups and non-Abelian
gauge theories where the gauge and fermion registers them-
selves require multiple qubits. For these cases, additional
QEM methods such as those discussed in Refs. [54,64] may be
important to include. Although NISQ-era quantum computers
are not large enough for phenomenologically relevant lattice-
QCD simulations, it is crucial to develop QEM strategies and
identify best practices for Hamiltonian simulations of lattice
gauge theories so the community is ready to efficiently and
effectively utilize large-scale quantum computers when they
become available.
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