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Energy, temperature, and heat capacity in discrete classical dynamics
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Simulations of objects with classical dynamics are in fact a particular version of discrete dynamics, since
almost all the classical dynamics simulations in natural science are performed with the use of the simple
“leapfrog” or “Verlet” algorithm. It was, however, Newton who in Principia, Proposition I in 1687 first
formulated the discrete algorithm, which much later in 1967 was rederived by L. Verlet. Verlet also formulated
a first-order approximation for the velocity v(t ) at time t , which has been used in simulations since then. The
approximated expressions for v(t ) and the kinetic energy lead to severe errors in the thermodynamics at high
densities, temperatures, strong repulsive forces, or for large discrete time increments used in discrete “molecular
dynamics” (MD) simulations. Here we derive the exact expressions for the discrete dynamics, and show by
simulations of a Lennard-Jones system that these expressions now result in equality between temperatures
determined from the kinetic energies and the corresponding configurational temperatures determined from the
expresssion of Landau and Lifshitz, derived from the forces.
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I. INTRODUCTION

Simulations of objects with classical dynamics are in fact
a particular version of discrete dynamics. since almost all
the classical dynamics simulations in natural science are per-
formed with the use of a simple algorithm, first formulated by
Newton [1,2]. A new position in Newton’s discrete dynamics,
ri(t + δt ), at time t + δt of an object i with the mass mi is de-
termined by the force fi(t ) acting on the object at the discrete
position ri(t ) at time t together with the position ri(t − δt ) at
t − δt as

mi
ri(t + δt ) − ri(t )

δt
= mi

ri(t ) − ri(t − δt )

δt
+ δtfi(t ), (1)

where the velocities vi(t + δt/2) = [ri(t + δt ) − ri(t )]/δt
and vi(t − δt/2) = [ri(t ) − ri(t − δt )]/δt and corresponding
momenta are constant in the time intervals in between the
discrete positions. Newton begins Principia by postulating
Eq. (1) in Proposition I, and he obtained his second law as
the limit limδt→0 of the equation. For Newton’s derivation of
his second law and his discrete algorithm in Proposition I see
Ref. [3], Chap. 2.

The algorithm, Eq. (1), is usually presented as the Leapfrog
algorithm

vi(t + δt/2) = vi(t − δt/2) + δt/mifi(t ) (2)

ri(t + δt ) = ri(t ) + δtvi(t + δt/2), (3)

where the positions are obtained from the discrete values of
the velocities. The rearrangement of Eq. (1) gives the Verlet
algorithm [4]

ri(t + δt ) = 2ri(t ) − ri(t − δt ) + δt2fi(t )/mi. (4)

The algorithm is used in almost all discrete “molecular
dynamics” (MD) simulations and with Verlet’s expression for

the velocity at the discrete time t ,

v0(t ) = r(t + δt ) − r(t − δt )

2δt
. (5)

The approximation (5) for the velocity v(t ) is the first
term in a symmetrical Taylor expansion from the position r(t )
on the classical analytic trajectory, but the discrete dynamics
trajectory is not analytic. Furthermore, there are times for an
analytic trajectory where a Taylor expansion is very slowly
converging, e.g., at particle collisions or for fast vibrations
of atoms in molecules with covalent bonds. The velocity is,
however, as Newton noticed in Principia, constant in time
except at the discrete times where it is exposed to an impulsive
force (see next section), and it is given by Eq. (2). Verlet’s
inaccurate expression for the velocity results in a correspond-
ing inaccurate measure of the energy, temperature, and heat
capacity.

The purpose of the article is to show that Newton’s discrete
dynamics has the same properties as his analytic classical
mechanics, and to correct the expressions for the energy, tem-
perature, and heat capacity in MD simulations [3].

In Sec. II we first present Newton and Verlet’s formulation
of the discrete classical dynamics and derive the energy in-
variance. The connections between the “Verlet” expressions
for the energy, temperature, and heat capacity and the corre-
sponding exact Newtonian discrete dynamic expressions are
derived in Sec. III. In Sec. IV we determine the differences
between the traditional (Verlet) values of the temperature and
heat capacities, and the corresponding Newtonian values for a
system of N = 2000 particles with Lennard-Jones (LJ) inter-
actions. Section V summarizes the results.

II. DISCRETE NEWTONIAN DYNAMICS

The classical discrete dynamics between N spheri-
cally symmetrical objects with masses mN = m1, m2, . . . ,
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mi, . . . , mN and positions rN (t ) = r1(t ), r2(t ), . . . , ri(t ), . . . ,
rN (t ) is obtained by Eq. (1). Let the force fi(t ) on object i
be a sum of pairwise forces fi j (t ) between pairs of objects i
and j:

fi(t ) =
N∑
j �=i

fi j (t ). (6)

A. Newton’s formulation of discrete classical dynamics

Newton begins Principia by postulating Eq. (1) in Propo-
sition I. The English translation of Proposition I is

Of the Invention of Centripetal Forces.
PROPOSITION I. Theorem I.
The areas, which revolving bodies describe by radii drawn

to an immovable centre of force do lie in the same immovable
planes, and are proportional to the times in which they are
described.

For suppose the time to be divided into equal parts, and in
the first part of time let the body by its innate force describe
the right line AB. In the second part of that time, the same
would (by Law I.), if not hindered, proceed directly to c, along
the line Bc equal to AB; so that the radii AS, BS, cS, drawn
to the centre, the equal areas ASB, BSc, would be described.
But when the body is arrived at B, suppose that a centripetal
force acts at once with a great impulse, and, turning aside the
body from the right line Bc, compels it afterwards to continue
its motion along the right line BC. Draw cC parallel to BS
meeting BC in C; and at the end of the second part of the
time, the body (by Cor. I of Laws) will be found in C, in
the same plane with the triangle ASB. Join SC, and, because
SB and Cs are parallel, the triangle SBC will be equal to
the triangle SBc, and therefore also to the triangle SAB. By
the like argument, if the centripetal force acts successively in
C, D, E, & c., and makes the body, in each single particle
of time, to describe the right lines CD, DE, EF, & c., they
will all lie in the same plane; and the triangle SCD will be
equal to the triangle SBC, and SDE to SCD, and SEF to SDE.
And therefore, in equal times, equal areas are described in
on immovable plane: and, by composition, any sums SADS,
SAFS, of those areas, are one to the other as the times in which
they are described. Now let the number of those triangles be
augmented; and their breadth diminished in infinitum; and (by
Cor. 4, Lem III) their ultimate perimeter ADF will be a curve
line: and therefore the centripetal force, by which the body is
perpetually drawn back from the tangent of this curve, will act
continually; and any described areas SADS, SAFS, which are
always proportional to the times of description, will, in this
case also, be proportional to those times. Q.E.D.

Proposition I in Principia is illustrated with a figure
(Fig. 1). The assumption suppose that a centripetal force acts
at once with a great impulse in Proposition I is highlighted
here. It is the central part in Principia (Fig. 1). Newton’s
second law is derived from his discrete dynamics, where the
time, forces, and the change in momenta are quantized and the
velocities are constant in between the discrete times. Newton’s
discrete dynamics in Proposition I is in fact classical quantum
dynamics [3].

Nobel Laureate T. D. Lee was perhaps the first to suggest
that difference equations are to be preferred in the foundation

FIG. 1. Newton’s figure at Proposition I in Principia, with the
formulations of the discrete dynamics. The discrete positions are
A: r(t − δt ); B: r(t ); C: r(t + δt ), etc. The deviation cC from the
straight line ABc (Newton’s first law) is caused by a force from the
position S at time t .

of dynamics, and with a classical difference equation as the
classical limit path of Feynman’s quantum paths [5]. This
classical limit path is Newton’s discrete dynamics in Proposi-
tion I. Our classical world is of course analytic. The difference
between analytic and discrete dynamics is proportional to the
square of δt = Planck time (≈10−43 s), and negligible. But
one can say that Newtonian discrete dynamics simulations
with time increments δt ≈ 10−14 s, used in many MD sim-
ulations, is in the same “universality class” as the analytic
dynamics, and exact in the same manner as classical analytic
dynamics. If so it places Newtonian discrete dynamics as a
remarkably useful scientific tool.

B. The Verlet algorithm

Loup Verlet (1931–2019) published in 1967 the article
Computer “Experiments” on Classical Fluids. I. Themody-
namical Properties of Lennard-Jones Molecules [4], where
Newton’s discrete algorithm with the formulation by Eq. (4)
was introduced. The algorithm was derived by a forward and
backward Taylor expansion [6]

r(t + δt ) = r(t ) + δt
∂r(t )

∂t
+ 1

2
δt2 ∂2r(t )

∂t2

+ 1

6
δt3 ∂3r(t )

∂t3
+ · · ·

r(t − δt ) = r(t ) − δt
∂r(t )

∂t
+ 1

2
δt2 ∂2r(t )

∂t2

− 1

6
δt3 ∂3r(t )

∂t3
+ · · · , (7)

and the algorithm was obtained from the sum r(t + δt ) +
r(t − δt ) and δt2∂2r(t )/∂t2 = δt2

m f (t ). All the odd terms in
the sum cancel, and the Verlet algorithm was formulated as
a fourth-order time symmetric predictor of the positions at
the analytic trajectories. The velocity is correspondingly de-
rived from the difference r(t + δt ) − r(t − δt ); all even terms
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cancel, and it is

v(t ) = r(t + δt ) − r(t − δt )

2δt
+ 1

6

δt2

m
f ′(t ) + · · · . (8)

The scientific community and Verlet were much later aware
that it actually was Newton who first published the geometric
formulation of the algorithm in Proposition I [7].

C. The energy invariance in discrete Newtonian dynamics

Newton’s algorithm is a symmetric time centered differ-
ence whereby the dynamics is time reversible and symplectic.
The conservation of momentum and angular momentum for
a conservative system follows directly from Newton’s third
law for a conservative system with the forces fi j (t ) = −f ji(t )
between objects i and j, but the energy invariance is not so
obvious.

The energy in a system with analytic dynamics is the sum
of potential energy U (rN (t )) and kinetic energy K (t ), and
it is time invariant for a conservative system. The kinetic
energy in the discrete dynamics at time t is, however, not
well defined since the velocities change at t . Traditionally one
uses Verlet’s first-order expression for the velocity at time t ,
Eq. (5), obtained by the symmetric Taylor expansion, and

K0(t ) =
N∑
i

1

2
miv0,i(t )2, (9)

E0(t ) = U (rN (t )) + K0(t ). (10)

The energy E0 obtained by using the approximation (5) and
with K (t ) = K0(t ) for the kinetic energy fluctuates with time,
although it is constant when averaged over long time intervals.

The velocities are, however, constant in between the dis-
crete times in Newton’s discrete dynamics, and the energy
invariance can be obtained by considering the energy in the
time interval [t − δt/2, t + δt/2] and dividing the interval
into two subintervals [t − δt/2, t] and [t, t + δt/2, t]. The
energy invariance ED in Newton’s discrete dynamics (D) can
then be obtained by considering the change in kinetic energy,
δKD, the change in potential energy, δUD, and the work WD

done by the forces in the time interval [t − δt/2, t + δt/2].
The loss in potential energy, −δUD, is defined as the work

done by the forces for a change of positions [8]. The work
WD done in the time interval by the discrete dynamics from
the position [ri(t ) + ri(t − δt )]/2 at t − δt/2 to the position
[ri(t + δt ) + ri(t )]/2 at t + δt/2, and with the change δri of
the position δri = [ri(t + δt ) − ri(t − δt )]/2, is [3]

−δUD = WD =
N∑
i

fi(t )[(ri(t + δt ) − ri(t − δt )]/2. (11)

By rewriting Eq. (4) to

ri(t + δt ) − ri(t − δt ) = 2[ri(t ) − ri(t − δt )] + δt2

mi
fi(t )

(12)

and inserting Eq. (11) one obtains an expression for the total
work in the time interval:

−δUD = WD =
N∑
i

[
[(ri(t ) − ri(t − δt )]fi(t ) + δt2

2mi
fi(t )2

]
.

(13)
The mean kinetic energy KD of the discrete dynamics in the

time interval [t − δt/2, t + δt/2] is

KD = 1

2

N∑
i

1

2
mi

[
[ri(t + δt/2) − ri(t )]2

δ(t/2)2

+ [ri(t ) − ri(t − δt/2)]2

δ(t/2)2

]

= 1

2

N∑
i

1

2
mi

[
[ri(t + δt ) − ri(t )]2

δt2

+ [ri(t ) − ri(t − δt )]2

δt2

]
, (14)

with the change

δKD =
N∑
i

1

2
mi

[
[ri(t + δt ) − ri(t )]2

δt2

− [ri(t ) − ri(t − δt )]2

δt2

]
. (15)

By rewriting Eq. (4) to

ri(t + δt ) − ri(t ) = ri(t ) − ri(t − δt ) + δt2

mi
fi(t ) (16)

and inserting the squared expression for ri(t + δt ) − ri(t ) in
Eq. (15), the change in kinetic energy is

δKD =
N∑
i

[
[ri(t ) − ri(t − δt )]fi(t ) + δt2

2mi
fi(t )2

]
. (17)

The energy invariance from the a discrete change of time
from t − δt/2 to t + δt/2 in Newton’s discrete dynamics is
expressed by Eqs. (13) and (17) as [3]

δED = δUD + δKD = 0. (18)

III. THE KINETIC ENERGY, TEMPERATURE, AND HEAT
CAPACITY IN A NEWTONIAN DISCRETE

CONSERVATIVE SYSTEM

The constant velocities in the time intervals between force
impulses at time t are related. It is easy to derive the relation
[9]

v0,i(t )2 = 1

2
vi(t + δt/2)2 + 1

2
vi(t − δt/2)2 − 1

4

(
δt

mi
fi(t )

)2

(19)

from Eq. (4) between the square of the first term in Verlet’s
Taylor expansion v0,i(t )2, Eq. (5), for the velocity at time t
and Newton’s exact expression for the square of the constant
velocities in the time intervals [t − δt, t] and [t, t + δt]. The

015306-3



SØREN TOXVAERD PHYSICAL REVIEW E 109, 015306 (2024)

corresponding expression for the kinetic energy, K0(t ), and the
traditional value for the temperature used in MD simulations,

T0 = 〈2K0(t )〉
Nf

, (20)

used in MD simulations for a system with Nf degrees of
freedom is less than the mean kinetic energy KD and the tem-
perature TD. In the discrete time interval [t − δt/2, t + δt/2]
the relation is

K0(t ) = KD(t ) −
N∑
i

1

8

δt2

mi
fi(t )2, (21)

and the systematic difference TD − T0 in the time interval by
using Verlet’s first-order approximation is

TD(t ) − T0(t ) =
N∑
i

1

4

δt2

mi
fi(t )2/Nf . (22)

Newton’s discrete dynamics depends purely on the posi-
tions and the forces. The momenta are not dynamic variables,
but only “bookkeeping” expressions in the dynamics [3].
Therefore, the configurational temperature

TConf(t ) = 〈∇2U (rN )〉 =
∑N

i fi(t )2

−∑N
i ∇ · fi(t )

(23)

could be a more relevant expression for the temperature since
it depends purely on the forces. Equation (23) is derived from
the average of the Laplacian of the potential energy ∇2U (rN ),
and is obtained from canonical averaging in the configura-
tional phase space [10,11]. The value of TConf(t ) fluctuates
with time, but its mean value obtained from long simulations
agrees with the corresponding temperatures TD obtained from
the kinetic energy.

The heat capacity CV = 3/2R + Ci
V consists of two terms:

the term from the kinetic energy and the term Ci
V from the

interactions. The heat capacity can be determined either from
numerical differentiation of the energy U (T, ρ) or from the
mean square fluctuation 〈K (t )2〉 − K̄2 of the kinetic energy
[12]. The term KD(t ) − K0(t ) = ∑N

i
δt2

8m f2
i in the kinetic en-

ergy K0(t ) is important at high densities with hard particle
collisions, and it affects Ci

V . The ratio

�Ci
V = 〈(KD(t ) − K̄D)2〉 − 〈(K0(t ) − K̄0)2〉

〈(KD(t ) − K̄D)2〉 (24)

is a measure of the relative error in Ci
V by using Eq. (9) for the

kinetic energy.

IV. SIMULATIONS

Verlet used Lennard-Jones (LJ) forces to simulate argon,
and his force field (FF) has been a standard used in many
simulations, e.g., simulations of organic molecules to describe
the atom-atom FF in the molecules together with the stronger
FF, e.g., for covalent bonds. The errors TD − T0, ED − E0, and
in the heat capacities by using Verlet’s first-order approxima-
tion for the velocity are biggest for strong force fields, and
especially at collisions where the FF is strongly repulsive. So
the errors for systems with strong intramolecular FF and by
using Eq. (20) are bigger than for an LJ system.
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FIG. 2. The relative mean difference 〈(TD − T0)/TD〉 between TD

and T0 as a function of the density for an LJ fluid system at TD = 1.

LJ systems with N = 2000 LJ particles were simulated at
TD = 1.00 for different densities, temperatures, strength of
the repulsive forces, and time increments. The differences
between TD and T0 at TD = 1.00 as a function of density
for 106 time steps are shown in Fig. 2 for different time
increments δt and repulsive forces given by the exponent n
in the n − 6 LJ potential [13]. The differences increase with
density, temperature, the strength of the repulsive forces, or
the discrete time step δt , but they are relatively small at state
points with low densities. But the differences are significant
for state points with high densities, systems with stronger
forces, and for large time increments δt .

Most MD simulations are with a thermostat (NV T and
NPT ensemble MD) and with the thermostat tempera-
ture T (thermostat) = T0. We have performed NV T sim-
ulations with a Nosé-Hover thermostat [14,15] and with
T (thermostat) = T0 as well as T (thermostat) = TD. The re-
sults from the NV T simulations agree with the NV E data. So
the NV E results in Fig. 2 are also valid for the other ensemble
simulations.

The fluctuations of the temperatures TD(t ), T0(t ), and
TConf(t ) in the time interval t ∈ [4000δt, 4300δt] for the MD
are shown in Fig. 3. The temperatures are obtained for N =
2000 LJ particles at (TD, ρ) = (1.00, 1.40), and with δt =
0.010. The red curve is for 300 time steps for TD(t ), and the
green curve is TConf(t ). The mean temperatures TD and TConf

from 106 time steps are approximately equal, TD = 0.999 ±
0.011 and TConf = 1.008 ± 0.020, and higher than the mean
T0 = 0.954 ± 0.011 for T0(t ) shown in blue. The tempera-
tures in Fig. 3 show that the temperature TD in Newtonian
discrete dynamics is consistent with the otherwise ob-
tained configurational temperature TConf, but is not consistent
with T0.

The relative difference between fluctuations in the square
of the excess kinetic energies �Ci

V for a few hundred time
steps is shown in Fig. 4 for the LJ system, and with the
corresponding fluctuations KD(t )2 − K̄2

D and K0(t )2 − K̄2
0 in

the inset in the figure. The fluctuations are for the LJ system
at (TD, ρ) = (1.00, 1.40) with the corresponding temperature
fluctuations shown in Fig. 3. At first glance, the fluctuations
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FIG. 3. Temperature fluctuations in a NV E system of N = 2000
LJ particles at the density ρ = 1.40, temperature TD = 1, and with
δt = 0.010. The red plot is TD(t ), blue is the traditional expression
T0(t ) for the temperature, and green is the configurational tempera-
ture TConf (t ).

are synchronous (Fig. 3 and the inset in Fig. 4), but a closer
examination reveals that there are significant differences of
the order of 12% for the state point with relatively high density
ρ = 1.40 and for the time increment δt = 0.010.

The relative difference in Ci
V with 106 time steps for the

system at TD = 1.00 and at different densities and time in-
crements is shown in Fig. 5. (The corresponding relative
temperature differences are shown in Fig. 2.) The differences
between Ci

V obtained by fluctuations in KD(t ) and K0(t ),
respectively, increase with increasing density, temperature,
strength of the repulsive forces, or time increment.
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FIG. 4. The relative difference in the time interval t ∈
[4000δt, 4300δt] between the fluctuations in the square of the excess
kinetic energies �Ci

V for the LJ system at (T, ρ ) = (1.00, 1.40) and
with δt = 0.010. The mean of the difference of the square excess
kinetic energies [Eq. (24)] is −0.12. The inset shows the two excess
squared kinetic energies per particle: red is KD(t )2 − K̄2

D and blue is
K0(t )2 − K̄2
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FIG. 5. The relative difference between the fluctuations in the
square of the excess kinetic energies �Ci

V for the LJ system at T =
1.00 for different densities and time increments. The corresponding
relative differences in temperatures are shown in Fig. 2.

V. CONCLUSION

Newton published his discrete algorithm in Principia
Proposition I, and the algorithm is now used everywhere
in natural science disciplines ranging from simulations of
planetary systems to simulations of atoms, molecules, and
systems with complex proteins. L. Verlet rederived in 1967
the algorithm from a forward and backward Taylor expansion
[6] and performed his MD simulations with Eq. (5) for the
velocity and Eq. (9) for the kinetic energy. Discrete dynamics
with Newton’s algorithm has been further developed and is
now a standard tool used in natural science, and MD work
resulted in a Nobel Prize in 2013.

Newton’s discrete dynamics has the same properties as his
analytic classical mechanics: it is time reversible, symplectic,
and has the same invariances for a conservative system [3].
Furthermore, there exists a shadow Hamiltonian where the
positions of the discrete dynamics are located on the analytical
trajectories for the shadow Hamiltonian [3,16,17]. This means
that there is no qualitative difference between the analytical
and the discrete dynamics, and MD with the Newton-Verlet
algorithm is the exact generation of positions for the discrete
dynamics.

Verlet’s approximative expression for the velocity at time
t , Eq. (5), which is used in MD simulations, does not affect
the discrete dynamics and the discrete positions, but it is an
unnecessary approximation. It is the first term in his Taylor
expansion, and the corresponding expression for the kinetic
energy, Eq. (9) ought to be replaced with the exact expression,
Eq. (14). Doing so, one achieves an agreement between the
kinetic and configurational temperatures (Fig. 3). Potential
energy fluctuations δU should be obtained by Eq. (11) or (13),
and velocities and their time correlations by the (constant) ve-
locities in the respective time intervals. Most MD simulations
are canonical NV T ensemble or NPT ensemble simulations
with the thermostat temperature T (thermostat) = T0, and not
only are the NV T0 and NPT0 temperatures wrong, so are also
the values of Ci

V . The errors caused by using Eq. (5) for the
velocity and Eq. (9) for the kinetic energy might only be a few
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percent for systems with relatively weak forces. But the errors
increase according to Eq. (22) with the strength of the forces
and the time increment δt used in the simulations, and can lead
to severe errors for systems with strong forces such as full-
atomic models of e.g. biomolecules with fast intramolecular
vibrations.

The biggest challenge with an MD simulation of a real sys-
tem, however, is to formulate a correct force field, and also for
this reason it is important to use the correct expression for the
kinetic energy, whereby one avoids introducing a systematic
error in the calculated energies. The public software used for
MD simulations should be corrected.
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