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Growth regimes in three-dimensional phase separation of liquid-vapor systems
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The liquid-vapor phase separation is investigated via lattice Boltzmann simulations in three dimensions. After
expressing length and time scales in reduced physical units, we combined data from several large simulations
(on 5123 nodes) with different values of viscosity, surface tension, and temperature, to obtain a single curve
of rescaled length [ as a function of rescaled time 7. We find evidence of the existence of kinetic and inertial
regimes with growth exponents o; = 1/2 and «; = 2/3 over several time decades, with a crossover from oy,
to a; at £ ~ 1. This allows us to rule out the existence of a viscous regime with o, = 1 in three-dimensional
liquid-vapor isothermal phase separation, differently from what happens in binary fluid mixtures. An in-depth
analysis of the kinetics of the phase separation process, as well as a characterization of the morphology and the
flow properties, are further presented in order to provide clues into the dynamics of the phase-separation process.
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I. INTRODUCTION

In fluid mixtures, the interplay of hydrodynamics and ther-
modynamics gives rise to a wealth of complex effects of
great fundamental significance and industrial practical value
[1]. One of the most striking examples is provided by phase
separation. When a fluid is brought into a coexistence region
by a quench from a temperature above the critical point, the
initial single phase becomes unstable and the phase separation
occurs through the formation at a molecular length scale of
domains that grow in time to a macroscopic extent.

This phenomenon has been extensively studied in the past
years by theoretical approaches, experiments, and numerical
simulations [1-3]. The observation that domains grow in self-
similar ways led to the scaling concept that a typical size
L exists in forming domains. This quantity follows a power
law L ~ t* where ¢ is the time and the growth exponent «
depends only on the physical mechanism operating during
phase separation. In the following, we will refer to systems
with symmetric composition producing bicontinuous growing
patterns.

In the case of binary fluids, the initial growth is purely
diffusive since hydrodynamics does not play a significant role.
The growth proceeds via the Lifshitz-Slyozov (LS) mecha-
nism by which smaller droplets shrink by diffusion of material
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to larger droplets that grow. In this case, the value oy = 1/3
is observed [2]. Hydrodynamics is, in general, relevant at late
times and the coupling with the velocity field is responsible
for changing the value of the growth exponent. In particu-
lar, two regimes can be accessed which are characterized by
viscous and inertial hydrodynamic growths with exponents
oy, = 1 and o; = 2/3, respectively [2]. The expected mech-
anism leading to the exponent «, = lin three dimensions is
the Rayleigh instability, which produces the pinch off of the
necks of connected domains. The resulting broken channels
retract, promoting the growth of domains. It is worth men-
tioning that the exponent o, = 1 has also been found in two
dimensions for binary fluids with initial asymmetric droplet
morphology [4]. The inertial regime, with o; = 2/3, is driven
by the Laplace pressure difference between the inner and outer
parts of a domain producing more spherical patterns. The
viscous and the inertial regimes were observed in simulations
of three-dimensional binary fluid mixtures [5,6], providing
a convincing confirmation of the existence of these scaling
regimes.

The study of phase separation in liquid-vapor systems
did not receive the same attention. When hydrodynamics is
absent, the growth dynamics is found to have an exponent
oy = 1/2 for isothermal one-component nonideal fluids [7]
and has been observed in molecular dynamics (MD) simu-
lations both in two and three dimensions [8]. In this case
the growth exponent can be attributed to a different realiza-
tion of the LS evaporation-condensation mechanism, where

©2024 American Physical Society


https://orcid.org/0000-0003-1755-7051
https://orcid.org/0000-0001-6267-4957
https://orcid.org/0000-0003-1437-0988
https://orcid.org/0000-0003-1514-0359
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.015305&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1103/PhysRevE.109.015305

G. NEGRO et al.

PHYSICAL REVIEW E 109, 015305 (2024)

TABLE 1. Growth exponents. The table summarizes the 3D
growth exponents and their different mechanisms for isothermal one-
component nonideal fluids.

Growth Exponent Mechanism

1/3 Lifshitz-Slyozov

1/2 Kinetic evaporation-condensation

1 Viscous hydrodynamic regime
(Rayleigh instability)

2/3 Inertial hydrodynamic regime

(Laplace pressure difference)

the transport of molecules is kinematic rather than diffusive
[1,7,9]. It was recently put forward [9] that this coarsening
law is of more general validity for liquid-vapor-type phase
separation in simple and complex fluids, far from the critical
point. The same exponent was also found for dynamically
symmetric binary mixtures where it was attributed to the
Brownian-coagulation mechanism for two-dimensional flu-
ids [10]. For two or more component liquid-vapor systems
the overall physics is more complicated since both diffu-
sive and hydrodynamic processes are relevant due to the
different compositions of liquid and vapor phases [11]. For
completeness we add that the use of stochastic thermostats
(e.g., Andersen thermostat [12]) in MD studies would give a
diffusive growth exponent 1/3 [13], as in the LS mechanism.
Table I offers a concise overview of all the growth exponents
discussed thus far, along with their corresponding physical
mechanisms.

An interesting question, concerning phase separation of
liquid-vapor systems, is whether the same hydrodynamic
growth exponents of binary mixtures are also valid. Previous
numerical studies in two dimensions, based on the lattice
Boltzmann (LB) algorithm, found the value oy = 1/2 at high
viscosity and «; = 2/3 at low viscosity [14-18]. A differ-
ent numerical approach was adopted in Ref. [19], where the
Navier-Stokes equation, supplemented by a nonequilibrium
body force to describe a van der Waals fluid, was numeri-
cally solved in three dimensions. In Ref. [19], only the value
a; = 2/3 was observed and it was argued that this behavior
is due to the balancing of capillary forces, active at initial
times, with inertial forces acting at late times. For the sake of
completeness, we add that in three-dimensional molecular dy-
namics simulations [13] it was found, after the initial growth,
a narrow time window with an asymptotic growth exponent
oscillating around the mean value one. However, this result
was obtained on a rather small system (96%) for a single case.

In this work, we present a full numerical study of the
quench of a van der Waals fluid below the critical temper-
ature 7, in three dimensions to provide a detailed study of
the growth exponents. To this purpose, we adopt a lattice
Boltzmann equation (LBE) for liquid-vapor systems based on
a Gauss-Hermite projection of the corresponding continuum
Boltzmann equation [20]. A body force, derived from a proper
free-energy, is added to the LBE [21,22] and the equilibrium
distribution functions are properly redefined [23] to model
a van der Waals fluid described by the Navier-Stokes equa-
tions. By adopting the approach proposed for binary fluids

[6], we construct characteristic space Ly = n*>/po and time
to = n*/po? scales where 5 is the viscosity, o is the sur-
face tension, and p is the density of the fluid. By defining
dimensionless quantities = L/Ly and f o t/tg, data from
several simulations with different values of 1, o, and p can
be combined to obtain a single (1, 7) curve. We find evidence
for the growth exponents oy = 1/2 and «; = 2/3 over several
time decades with a crossover from one exponent to the other
atf ~~ 1, thus ruling out the existence of a viscous regime with
o, = 1 in the liquid-vapor phase separation.

The paper is organized as follows: we will first present
the LB model used to simulate a phase-separating liquid-
vapor system in three dimensions. We will then discuss the
kinetics of the phase separation process quantitatively, and
characterize the morphology of the different regimes using the
Minkowski functionals [17,24-27]. Finally, we will discuss
the flow properties of the low and high-viscosity regimes.

II. NUMERICAL MODEL

For the simulation of the liquid-vapor system, in this paper
we use the three-dimensional D3Q15 LB model [20,28] where
each site of the lattice is connected to its six first neighbors
and its eight third neighbors. All quantities are expressed
in lattice units, as discussed in Ref. [29]. This isothermal
model is defined on a cubic lattice with spacing As = 1 and
involves N = 15 distribution functions f; (i =0, ..., N — 1)
which obey the dimensionless Boltzmann equation

fi(r +e;At,t + At) — fi(r, 1)
At
T

[fite,) = f79(e, )] + At F, €]

where r is the position vector in the coordinate space, ¢ is the
time, {e;} (i =0, ..., N — 1) is the set of discrete velocities (to
be later determined), At is the time step, t is the relaxation
time, and F; is a forcing term to be determined. The moments
of the distribution functions f; define the local fluid density
p =Y, fi and the local velocity v =), fie;/p.

The local equilibrium distribution functions f;? (i =
0, ..., N — 1) are expressed by Maxwell-Boltzmann (MB) dis-
tribution. Here we adopt a discretization in velocity space of
the MB distribution based on the quadrature of a Hermite
polynomial expansion of it. In this way, it is possible to get
a LBE that allows us to exactly recover a finite number of
leading order of moments on the MB distribution. The form
of fi%is

[ ) =wip[l +e v+ %VV :(eje; — 1)
+ 3T — 1)(e; - & — 3)], 2)

where I is the unit matrix and 7 is the (constant) value
of the fluid temperature. The term in the second line of
the equation above, which is proportional to (T — 1), would
be absent when simulating isothermal systems at the reference
temperature 7 = 1. Throughout the present work, we use
the critical value 7, = 1 as reference and we will consider
isothermal liquid-vapor systems at temperatures 7' < T. This
expression of f; allows one to retrieve all the moments of the
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MB distribution function up to the second order:

Zﬁeq = 107 (33)
> e = pv. (3b)
Zfieqeiei = pTI+ pvv. (3¢)

1

The Cartesian projections of the lattice vectors e;, which
span the velocity space, are given by the abscissas of the
Gauss-Hermite quadrature of order three [20]. On the cho-
sen lattice D3Q15, the previous second order expansion
fixes the values |eg| = O(rest velocity), |e;| = As/At = V3
for i=1—6 (first neighbors), and |e;| = +/3As/Ar =3
for i =7 — 14 (third neighbors) for the lattice velocities.
This requires that the time-step is At = +/3/3 with the
choice As = 1. Finally, the weights at the r.h.s. of Eq. (2)
are wyp=2/9, w;=1/9 for i=1-6, and w; = 1/72 for
i=7—14 [20]. For some cases, we ran simulations us-
ing the D3Q27 lattice with 27 lattice speeds and found
no significant differences in the results presented in the
following.

To simulate a liquid-vapor system we use the forcing
scheme proposed in Ref. [23]. According to this scheme, the
fluid velocity v is replaced by the physical velocity

1 1
v = — i€ + —FAZ, 4
@f 2 “)

where F is the force density acting locally on the fluid
particles. This force density will be used to model a
van der Waals fluid described by the Navier-Stokes equa-
tions. The forcing term JF;, which appears in Eq. (1),
is expressed as a second order expansion in the discrete
velocities e;,

Fi=wi[A+B-e+3C: (ee; — D], 5)
where A, B, and C are functions of F. With the choice
A=0, (6a)
At
B, = (1 - —)Fa, (6b)
2t

At
Cos= (1= Vv Fy+ Fvi+ (1 =T
B ( 2T>{Va ﬂ+ V,B+( )

x [V dpp + Vidap + 8, (V) Sap)l}, (6¢0)

a second-order Chapman-Enskog expansion would lead to the
mass and momentum conservation equations,

p + 8a(pvy) =0, (7a)
3 (pvy) + 0p(pVivs) = —dup' + Fu
+ 3503V + dpvy)l,  (7b)

where p' = pT is the ideal gas pressure, n = p(t — At/2)
is the shear viscosity, and F, = 3, (p' — p*) + k3, (V?p)
are the Cartesian components of the force density F. Here
p¥ =3pT /(3 — p) —9p?/8 is the van der Waals pressure
with the critical point at p. = 1 and 7, = 1, and « is the pa-
rameter controlling the surface tension. The spatial derivatives

in the expression of F, are calculated using a second-order
finite-difference scheme [30]. For the sake of clarity, we
use the symbol v in place of v* in the rest of the paper.
The continuum assumption of hydrodynamics, as described
by the continuity (7a) and Navier-Stokes (7b) equations, is
valid as far as the Knudsen number Kn is negligible. In
our model it comes out to be Kn = (Ast)/(AtL), with L =
512 being the system size. For our choice of parameters
it is Kn < 0.01, thus making the continuum approximation
reliable.

We made use of a parallel approach implementing message
passing interface (MPI) to parallelize the code. The computa-
tional domain was divided into slices that were individually
assigned to a particular task in the MPI communicator. Non-
local operations (such as derivatives) were treated through the
ghost-cell approach [31]. Simulations presented in the next
section were performed using 128 CPU cores (on AMD Epyc
Processors at the ReCaS Infrastructure), taking 72 hours for
each run.

II1. RESULTS

The simulations were performed on three-dimensional lat-
tices having 512 nodes along each spatial direction with
periodic boundary conditions. At ¢ = 0, the systems were
prepared in a symmetric disordered state with small den-
sity fluctuations, namely 0.1%, around the mean value p, =
(pL + pv)/2, pr and py being the coexisting densities of the
liquid and vapor phases at the quenching temperature 7 < T,
respectively. The surface tension, which can be approximated
as o = 2k (py — pv)?/3€ [32], where £ =2/ 2«T/(1 —T)
[33] is the interface width, was changed by varying « and T'.
The viscosity was varied via the relaxation time t. The results
regarding the kinetics of the phase separation process, the
characterization of the morphology, and the flow properties
are presented below.

A. Kinetics

In order to estimate the size of domains we measure the
characteristic domain size L(z) from the inverse of the first
moment of the spherically averaged structure factor

[ S(k, t)dk

Lo =" sk, nar

(®)
where k = |Kk| is the modulus of the wave vector in the Fourier
space. The structure factor is [5,34]

Sk, 1) = (p(k, 1)p(—k, D), €))

where p(k, t) is the spatial Fourier transform of the density
difference p — p,. The angle brackets denote an average over
a shell in k-space at fixed k.

The domain growth is illustrated in Fig. 1 for 7 = 0.95
and « = 0.1 (these values ensure the interface width to be
& ~ 4), and two values of 7. When t = 0.5 (the red curve),
the observed growth exponent is «; = 2/3, which is typi-
cal for the inertial hydrodynamic regime occurring at late
times [35,36]. When we increase the viscosity, the phase
separation is delayed, as observed in the case with v = 2.0
(the orange curve): after a long crossover, the domain growth
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FIG. 1. Kinetics. Evolution of domain size L(t), calculated ac-
cording to Eq. (8), for T = 0.95, « = 0.1 and two values of the
relaxation time, namely v = 0.5 (red) and v = 2.0 (orange). The
dashed and dotted black lines have slopes 2/3 and 1/2, respectively.
All quantities are expressed in lattice units.

is characterized by the exponent oy >~ 1/2 [14,16-18]. As-
suming that only capillary forces, viscous dissipation, and
fluid inertia are involved in liquid-vapor phase separation,
as commonly assumed in previous works on fluid mixtures
[5,6], the only control parameters are the viscosity 1, the
density p, and the surface tension o. From these quanti-
ties, one can define a single length scale Ly = n*>/p,0 and
a single time scale #y = n°/p,0> where we have used the
average value p, as characteristic density. After conduct-
ing several simulations with various values of «, 7, and
T, keeping fixed the interface width, we fitted the resulted
data sets L(t) using the formula a(t — ti,)*, where a, tiy,
and o are free parameters. Plotting the simulation results
using the dimensionless variables f = (t — #;,)/to and 11 @)=
L(t)/Ly (see Fig. 2), we can observe the growth exponents
og = 1/2 and o; = 2/3 over several time decades, with a
crossover at 7 ~~ 1. This result gives convincing evidence of
the existence of the two aforementioned regimes with a tran-
sition between them, that seems to exclude the presence of
an intermediate viscous regime for three-dimensional liquid-
vapor systems, differently from what holds for binary fluid
mixtures.

B. Morphology

We now characterize the morphology of the two kinetic
regimes observed. The differences between the patterns in
the low and the high viscosity regimes may be observed by
comparing the snapshots shown in Fig. 3, where the two faces
of the liquid-vapor interface are represented in white and
coral color, respectively (see also movie 1 and movie 2 in
the Supplemental Material [37]). The snapshots were taken
during the time intervals 10° <t < 6 x 10° (for r = 0.5,
first row), and 4 x 10> < < 10* (for T = 2.0, second row)
when the growth exponents «; =2/3 and oy = 1/2 are
observed, respectively (see Fig. 1). In the first case, the
Laplace pressure difference between the inner and outer

k=017=20T=0.95

k=0.17=037T =095 4
1024 ‘ 5
k=0.17=043T = 0.95 P
£=0027=20T=0.99 el
k=017=10T=0.95 P
k=017=075T=095 /’
101 1 k=0.17=05T=0.95 //
;= 0.06 7 = 2.0 T = 0.97 s
k=0047=20T=0098 Pt
<~ g7
105 o
1071-
10724

10 102 100 10° 100 102 10
i

FIG. 2. Scaling. Scaling of the dimensionless domain size [ =
L(t)/Ly as a function of the dimensionless time f = (t — ti,)/fy (see
text for details). The dotted and dashed black lines have slopes 1/2
and 2/3, respectively. In all the runs the interface width is & >~ 4.

regions of a domain is expected to induce the formation of
more spherical patterns, driving the fluid motion [38]. The
interfaces then evolve smoothly between isolated breakups
and topological reconnections, corresponding to the breakage
of fluid necks (see movie 1 in the Supplemental Material
[37]). This mechanism, which is induced by curvature and
controlled by inertia [39], seems to be the dominant one
in this regime and is expected to endure until the phase
separation process is completed. At higher viscosity, in the
time regime where the exponent ¢ is observed, which occurs
at later times compared to the previous case, domains are
already formed and are larger (see Figs. 1 and 3). Topological
reconnections are still visible, but much less frequent (see
movie 2 in the Supplemental Material [37]). The slower
growth appears in the delayed motion of interfaces (see
the region tracked with cyan boxes in Fig. 3). To look into
the average phase composition of the two-phase fluid, we
measure the distance of the single-phase density from the
corresponding equilibrium value during the phase separation
process. This is done by measuring the separation depth S

defined as
S=<Mw—m>’ (10)
peq (l') — Pa

where p, is the initial mean density and brackets indicate
volume averaging. Here p.q denotes the equilibrium density
of the liquid phase, pr, or the vapor phase, py, depending on
the local density p(r), as

oL, if p(r) > p,
e = . 11
Pealr) {Mu if p(r) < pa. (v

Figure 4(a) shows the temporal evolution of the separation
depth S for various values of 7, at 7 = 0.95 and « = 0.1.
For 7 < 0.5, the phase separation takes place in three

recognizable steps. First, there is a time delay, when no
detectable phase separation occurs. Then, at the onset of
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t=10000

FIG. 3. Morphological Characterization. Snapshots of the system at consecutive times, showing the isosurfaces of p, for r = 0.5 (upper
row) and T = 2.0 (lower row) with 7 = 0.95 and x = 0.1. The cyan rectangles track the time evolution of a liquid-vapor interface during the

kinetic growth regime (see Fig. 1).

phase separation, the process is very rapid and the separation
depth jumps to a value >~ 0.6, meaning that the system reaches
local equilibrium shortly after sharp interfaces are formed.
Afterward, in the third stage, phase separation proceeds much
more slowly, as the density gradients within the single-phase
domains are very small, while the densities of the two phases
across any interface change only very slowly in time, asymp-
totically approaching equilibrium at S = 1. The behavior of
S changes when increasing tv. At v = 2.0, after the initial
time delay, when domains start to form, the separation depth
jumps to a value close to 0.5 and then increases with values
that stay always lower than in the cases with smaller values
of 7. This indicates that the system at higher viscosity relaxes
more slowly to local equilibrium while phase separation
takes place.

To better understand the different morphological behaviors
in the low and high viscosity regimes, we use the Minkowski
functionals [24]. These have been previously used also to
characterize patterns in phase separation of complex fluids
[17,25-27]. Since every continuous pattern can be decom-
posed in black and white convex subsets using a thresholding
procedure [27], the first step is to assign a binary variable
to each lattice site (black/white voxels) by introducing a
suitable density cut-off given by p, in our case. For a cubic
lattice, the four Minkowski functionals are the volume V,
the surface area A, the mean breadth B (directly proportional
to the mean curvature [27]), and the Euler characteristic .
The last quantity equals the number of regions of connected
black voxels plus the number of completely enclosed regions
of white voxels minus the number of tunnels, i.e., regions
of white pixels piercing regions of connected black voxels.
The calculation of these morphological measures relies on the
preliminary determination of the total number of black voxels
ne, black-white faces ny, edges n,, and vertices n, [27], so that

one has
V=n, A=—6n.+2ns, B=(QGn.—2n5+n.)/2,
X = —Ne+np—n,+n,. (12)

The inset of Fig. 4(b) shows the evolution of the Euler char-
acteristics x for two values of t. In both cases, after an early
delay characterized by x = 0 (a vanishing Euler characteristic
indicates a highly connected structure with equal numbers of
black and white domains), x increases to values above zero,
meaning that the number of domains with p > p, increases.
This marks the beginning of phase separation, corresponding
to the first stage discussed at the beginning of the section. Im-
mediately after, x drops to negative values, meaning that the
number of tunnels increases. After reaching a minimum value,
X starts to increase, signaling that the number of domains be-
longing to both phases starts to grow. For T = 2.0 the process
is delayed. In addition, the number of domains with p > p,,
as well as the number of tunnels, is lower at the beginning
of the phase separation process. Following Refs. [25,26], one
can assume the following scaling behavior:

V~1, A~L", B~L72 x~L73. (13)

In Fig. 4(b) we show the Euler characteristic x plotted against
the mean domain size L for t = 0.5 and 7 = 2.0. The curves
show a good agreement with the proposed scaling. Moreover,
one can safely assume that, since the initial composition is
symmetric, there is one continuous connected liquid phase
(black voxels) and one continuous vapor phase (white voxels)
throughout the phase separation process (see also the Sup-
plemental Material [37]). Therefore, the value of x will be
determined by the number of vapor tunnels (i.e., regions of
white voxels piercing regions of connected black voxels). The
minimum value of x in the inset of Fig. 4(b) corresponds to
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FIG. 4. Morphological Characterization. (a) Separation depth
S(t) at T = 0.95 and « = 0.1, for different values of . (b) Euler
characteristic x as a function of mean domain size L for r = 0.5 (red
curve) and 7 = 2.0 (orange curve). The dashed curve has a slope of
—3. The inset of panel (b) shows the time evolution of yx at early
times.

the maximum number of tunnels and to the onset of the phase
separation. The pinchoff of each vapor tunnel (equivalent to
the closure of liquid-phase domains [40]) increases the value
of x by one unit. Consequently, the growth of x is determined
by the vapor tunnel pinchoffs and is connected to the growth
of the domain length L through the scaling in Eq. (13). The
difference between the low and the high viscosity cases in the
inset of panel (b) of Fig. 4 shows evidence of the lower rate of
closures of pinchoffs when the viscosity is higher.

C. Flow Field

We now look more closely at the flow properties in the
two regimes. Figure 5 shows snapshots of the system with
the isosurfaces p = p,, and the superimposed velocity field
colored by its magnitude. The snapshots are taken at the same
times in the two regimes. Panels (a) and (e) have almost the
same domain size L; >~ 80 as panels (b) and (f) for which
the domain size is L, >~ 100. A visual comparison shows that
in the low viscosity (upper panels of Fig. 5) case coherent

motion occurs inside domains with the same composition.
Such correlated motion is lost when increasing the viscosity
(see lower panels of Fig. 5). To characterize quantitatively the
typical length scale of fluid velocity correlation, we measure
the function,

(v(0,7) - v(r, 1))

“=""N0.n

; (14
where the brackets denote volume averaging. The results for
T =0.5 and v = 2.0 at the times corresponding to the typ-
ical sizes L; and L, (in Fig. 5) are presented in Fig. 6. We
observe an exponential decay in all the plotted cases, with
C, ~ exp(—r/&,). Two main differences appear between the
two cases. At low viscosity the exponential decay is always
slower than at high viscosity, meaning that the flow field corre-
lates on a larger length scale. Moreover, in the inertial regime,
the correlation length increases from &, ~ 93 (t = 6 x 10°) to
£, ~ 133 (t = 9 x 10%), while the typical size increases from
Ly to L,, always being &, 2 L. At high viscosity it comes
out to be &, < L since the velocity correlation length scale
grows from &, ~ 64(t =9 x 10°) to &, ~ 86(t = 14 x 10%).
The same loss of correlated motion has been observed and
discussed in three-dimensional simulations of binary mixtures
when going from low to high viscosity [41].

IV. DISCUSSION AND CONCLUSIONS

In this work, using a LB model for liquid-vapor systems,
we have studied the phase separation of a van der Waals fluid
in three space dimensions at fixed temperature. When the la-
tent heat is negligible, the present isothermal model would be
experimentally meaningful. This condition is realized at large
length scales such that the thermal energy in the domains is
much larger than the interfacial energy. In this case, a variation
of the interface during phase separation will cause a negligible
variation in the temperature. This condition applies to our
model since the system size L is much larger than the interface
width & being L/€ > 10%. We find evidence for two regimes
with growth exponents 1/2 and 2/3 corresponding to high and
low viscosity systems. By using rescaled length [ and time 7
scales as in the case of binary fluids [6], we combined data
from several simulations, with different values of viscosity,
surface tension, and temperature, to obtain a single curve of 7
as a function of . We observe that the aforementioned growth
regimes span several time decades with a crossover at scaled
time 7 ~ 1. In our results, we do not find the existence of a
viscous regime in the liquid-vapor phase separation, different
from what is observed for binary mixtures [5]. The morpho-
logical characterization of the observed growth regimes also
shows some differences in the composition of liquid and vapor
phases during the phase separation stages, and in the structure
of the domains. The different scaling behaviors in the growth
regimes are reflected in the morphological behavior. This is
witnessed by the scaling relation x ~ L™, connecting the
Euler characteristic x to the domain size L, which holds in
both growth regimes. A closer inspection of the flow field
reveals a correlation on longer length scales in the inertial
regime compared to the kinetic one.

We hope our work is useful in clarifying the phase-
separation process in liquid-vapor systems, stimulating further

015305-6



GROWTH REGIMES IN THREE-DIMENSIONAL PHASE ...

PHYSICAL REVIEW E 109, 015305 (2024)

FIG. 5. Flow properties. Snapshots of the system at different times for t = 0.5 (top row) and t = 2.0 (bottom row), with 7 = 0.95 and
k = 0.1, showing the isosurfaces at p = p, with the velocity field next to the interface at times ¢ = 6 x 103, 9 x 10%, 1.4 x 10* (from left to

right).

investigations also taking into account the thermal effects. The
latter are known to produce a rich phenomenology [17,18,42],
worth investigating in three spatial dimensions.
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APPENDIX: MOVIES DESCRIPTION

In this section we provide a brief description of the movies
accompanying the paper.

(i) Movie 1: Inertial Growth Dynamics

The movie illustrates the time evolution of the liquid-
vapor interface (represented by an isosurface of p,), for
T =0.5 and T = 0.95. After a brief transient regime (see
also Fig. 1), during which small domains of the two
phases are formed, inertial growth with an exponent «; =
2/3 commences (approximately at = 700). The interfaces
evolve smoothly between isolated breakups and topologi-
cal reconnections, corresponding to the breakage of fluid
necks.

(i) Movie 2: Kinetic Growth Dynamics

The movie depicts the time evolution of the liquid-vapor
interface for t = 2.0 and T = 0.95. Following the forma-
tion of small domains of the two phases, domain growth
is once again propelled by breakups and topological re-
connections. Conversely, during the kinetic regime (starting
at t >~ 4000), topological reconnections remain visible but
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occur much less frequently (see also the discussion of the
time evolution of the Euler characteristic in the main text).

The slower growth is evident in the delayed movement of
interfaces.
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