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The particles on demand method [Phys. Rev. Lett. 121, 130602 (2018)] was recently formulated with a
conservative finite-volume discretization and validated against challenging benchmarks. In this work, we focus
on the properties of the reference frame transformation and its implications on the accuracy of the model.
Based on these considerations, we propose strategies that simplify the scheme and generalize it to include
a tunable Prandtl number via quasi-equilibrium relaxation. Finally, we adapt concepts from the multiscale
semi-Lagrangian lattice Boltzmann formulation to the proposed framework, further improving the potential and
the operating range of the kinetic model. Numerical simulations of high Mach compressible flows demonstrate
excellent accuracy and stability of the model over a wide range of conditions.
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I. INTRODUCTION

Understanding of the nature of high-speed compressible
flows has been a long sought goal in the scientific and
engineering communities. Accurate prediction of complex hy-
drodynamic features is crucial in modern research, as well
as in technology, with examples such as the interpretation
of astrophysical jets, captured in the images of deep space
telescopes [1,2] and the design of air frames and propul-
sion systems of high-Mach low-altitude flying vehicles [3].
Throughout the history of computational fluid dynamics
(CFD), a number of numerical approaches has been suggested
for the simulation of high-speed flows, including artificial
viscosity methods [4], total variation diminishing (TVD) [5],
essentially nonoscillatory (ENO) schemes [6,7] and weighted
ENO (WENO) schemes [8,9]. The challenging nature of these
flows renders the field an active research area [10,11], with
developments such as positivity-preserving limiters and tar-
geted ENO (TENO) schemes [12] extending the domain of
CFD towards even more exotic hydrodynamics [13–15].

In contrast with conventional CFD, the lattice Boltzmann
method (LBM) addresses the evolution of hydrodynamic
fields through the dynamics of a fully discrete kinetic system
of designed particles associated with the discrete velocities
ci, i = 0, . . . , Q − 1. The state is described in terms of the
populations fi(x, t ), which evolve in time and space by a
simple algorithm “stream along links ci and collide at the
nodes x in discrete time t .” LBM has evolved into a versatile
tool for the simulation of complex flows including transi-
tional flows [16], flows in complex moving geometries [17],
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thermal and convective flows [18–20], multiphase and mul-
ticomponent flows [21–24], reactive flows [25], and rarefied
gas [26], to mention a few recent instances; see Refs. [27–29]
for a discussion of LBM and its application areas. However,
despite the high efficiency and low numerical dissipation
of LBM for nearly incompressible flows, the domain of
high-speed compressible flows presents a number of se-
vere challenges [18,19,30–32]. The main directions to extend
conventional LBM towards the compressible realm includes
standard LBM augmented with correction terms [33–36],
multispeed lattices [37–41], and hybrid approaches [42–45].

A common feature of the conventional LBM is the propa-
gation of the populations with fixed discrete velocities, which
translates as fixing the reference frame “at rest.” It is well
known that, when the fluid velocity significantly deviates
from the frame velocity, errors and numerical instabilities
corrupt the solution, impeding the applicability of LBM to
high-Mach flows [30,33,46]. A remedy was the introduction
of uniformly shifted lattices, which amounts to a constant
shift of the reference frame, at every grid point of the nu-
merical domain [47]. The concept demonstrated excellent
performance for predominately unidirectional compressible
flows, shifting the operational domain of the method in par
with the chosen reference velocity shift [34,41,47]. While the
concept of the uniform frame shift maintains key advantages
of the scheme, such as simplicity and exact propagation, its
potential diminishes for flows exhibiting large variations in
flow velocity and temperature due to the inevitable presence
of strong deviations between the velocity of the actual flow
and the imposed reference frame.

In contrast with the conventional LBM, the recently pro-
posed particles on demand (PonD) method reformulates the
kinetic equations in a space-time adaptive reference frame,
dictated by the actual local fluid velocity and tempera-
ture [48]. Two key elements were introduced with the PonD
method: First, PonD uses a consistent representation of pop-
ulations in different reference frames, an operation termed as
reference frame transformation. Second, a predictor-corrector
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iteration loop was applied, which ensured the realization of
the propagation and collision step in the local comoving
reference frame, thereby optimizing accuracy and stability.
Early realizations of PonD employed a semi-Lagrangian dis-
cretization, providing off-lattice flexibility to accommodate a
varying reference frame, and validated the central concepts
with a series of benchmarks, including multiphase and rar-
efied flows [49–55]. However, the semi-Lagrangian method
is prone to errors in conservation of mass, momentum, and
energy, deteriorating the accuracy of the solution in the pres-
ence of discontinuities (shock waves) [56]. As a remedy
to these shortcomings, a finite-volume formulation of PonD
was proposed in Ref. [56], following the discrete unified gas
kinetic scheme (DUGKS) [57–59]. The resulting conserva-
tive scheme, combined with a reference frame transformation
based on Grad’s projection of populations, demonstrated ex-
cellent performance in an array of challenging hypersonic
compressible benchmark flows, including extreme hydrody-
namic features such as the formation of near-vacuum regions.
It is worth noting earlier approaches with adaptive particles
velocities, e.g., a finite-volume solver for the Euler equa-
tions suggested by Nadiga [60] and an adaptive LBM model
by Sun [61]. In these works, no reference frame transfor-
mation is involved, which constitutes a major limitation as
compared with PonD. In particular, the model of Sun [61] is
designed for a fixed relaxation time equal to one.

In this paper, we aim at a further development of the
finite-volume formulation of PonD, targeting strategies that
simplify the scheme. The implications of the reference frame
transformation and the frame invariant moments are the pri-
mary focus of this work. The scheme is extended to include
a forcing term, as well as a variable Prandtl number. Finally,
we combine the idea of the multiscale framework suggested
in Ref. [53] with Grad’s projection frame transformation. The
theoretical findings are validated in a series of numerical ex-
periments along with extensive benchmarking of the scheme
in challenging hydrodynamic flows.

The paper is organized as follows: The formulation of the
kinetic equations in an adaptive reference frame is laid out in
Sec. II. Section III presents the kinetic model, which allows
for variable adiabatic exponent and Prandtl number. Subse-
quently, Sec. IV describes the numerical discretization of the
model. The model is extensively benchmarked in Sec. V,
along with a demonstration of importance of the reference
frame transformation. Finally, concluding remarks are pro-
vided in Sec. VI.

II. ADAPTIVE REFERENCE FRAME FORMULATION

A. Discrete velocities

Without loss of generality, we consider discrete speeds in
two dimensions formed by tensor products of roots of Hermite
polynomials ciα ,

ci = (cix, ciy ). (1)

The model is characterized by the lattice temperature TL and
the weights Wi associated with the vectors (1),

Wi = wixwiy, (2)

where wiα are weights of the Gauss–Hermite quadrature [26].
The discrete speeds and the associated weights are shown in

TABLE I. Lattice temperature TL , roots of Hermite polynomials
ciα and weights wiα of the D = 1 Gauss–Hermite quadrature, and
nomenclature.

Model TL ciα wiα D = 2

D1Q3 1 0 2/3 D2Q9
±√

3 1/6

D1Q4 1 ±
√

3 − √
6 (3 + √

6)/12 D2Q16

±
√

3 + √
6 (3 − √

6)/12
D1Q5 1 0 8/15 D2Q25

±
√

5 − √
10 (7 + 2

√
10)/60

±
√

5 + √
10 (7 − 2

√
10)/60

Table I. With the discrete speeds (1), the particles’ velocities
vλref

i are defined relative to a reference frame λref , specified by
the frame velocity uref and the frame temperature Tref ,

λref = {uref , Tref}, (3)

vλref
i =

√
Tref

TL
ci + uref . (4)

The optimal reference frame is the comoving reference frame,
which is specified by the local temperature Tref = T (x, t ) and
the local flow velocity uref = u(x, t ).

B. Reference frame transformation

A critical element of our construction is the transformation
of the populations f λ

i , defined with respect to a λ reference
frame, to a different reference frame λ′,

λ′ = {u′, T ′}. (5)

In this work, we follow the strategy of Ref. [56]. Let us denote
Mλ

k a moment tensor of order k,

Mλ
k =

Q−1∑
i=0

f λ
i vλ

i v
λ
i · · · vλ

i︸ ︷︷ ︸
k

. (6)

The reference frame transformation is then defined by the con-
dition of invariance of the moments of orders k = 0, 1, . . . , K ,

Mλ′
k = Mλ

k , k = 0, 1, . . . , K, (7)

where K denotes the maximal moment order which is required
to be frame invariant. The transformed populations are then
sought as a Grad projection,

f λ′
i = Wi

K∑
n=0

1

n!
α(n)(m; λ′) : H (n)(ci ), (8)

where H (n)(ci ) correspond to the Hermite polynomials of
the lattice speeds and the expansion coefficients α(n)(m; λ′)
are calculated such that the moment invariant system (7) is
satisfied (detailed in Appendix A). The latter depend on the
vector of frame invariant moments m = {M0, . . . , MK} and
the target reference frame λ′. As a shorthand notation for the
reference frame transformation, we use the following formula:

f λ′
i = Gλ′

i,λ f λ. (9)
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C. Solution methodology

To illustrate the solution methodology of PonD, we con-
sider a domain with N grid points with the following initial
conditions,

f
λ(x j )
i (x j, t0), j = 1, . . . , N. (10)

To simplify the notation, we drop the spatial dependence of
the reference frame and λ is reserved for the local reference
frame, λ = λ(x). The objective is to solve the kinetic equa-
tions with an adaptive reference frame; the populations at the
grid point x j shall be updated in a reference frame λ j . The idea
of PonD is the following: instead of solving one governing
kinetic equation over the numerical domain, we formulate N
different problems, each of which solves the kinetic equa-
tion in a uniform reference frame. To accomplish this strategy,
we first need to formulate the proper initial conditions. This
is performed through the reference frame transformation. We
end up with a list of frame copies,

Frame 1 : Gλ1
i,λ f λ(x j, t0), j = 1, . . . , N, (11)

Frame 2 : Gλ2
i,λ f λ(x j, t0), j = 1, . . . , N, (12)

...

Frame N : GλN
i,λ f λ(x j, t0), j = 1, . . . , N. (13)

All frame copies are subsequently updated from time t0 to
t0 + δt . Each grid point has multiple solutions which corre-
spond to the different reference frame realizations. We keep
the solution in which the local reference frame is used: at
the point x j we keep the solution from the λ j frame copy.
Using a semi-Lagrangian discretization scheme, the solution
at (x j, t0 + δt ) in the λ j frame copy is

Gλ j

i,λ f λ(x j, t0 + δt ) = Gλ j

i,λ f λ
(
x j − v

λ j

i δt, t0
)+ Gλ j

i,λ�(x j, t0),
(14)

where � stands for the collision operator. The populations can
be approximated around (x j, t0) with a Taylor expansion:

Gλ j

i,λ f λ
(
x j − v

λ j

i δt, t
) = Gλ j

i,λ f λ(x j, t )

− v
λ j

i δt · ∇(Gλ j

i,λ f λ
)
(x j, t ) + O(δt2). (15)

At this point we stress the importance of our effort into gen-
erating a list of frame copies. In each of these copies, the
reference frame, and therefore the discrete particle velocities,

are uniform. Thus, the velocities v
λ j

i commute with the spa-
tial derivatives. Treating similarly the temporal derivative and
omitting terms of O(δt2) recovers the following equation:

∂t
(
Gλ

i,λ f λ
)+ vλ

i · ∇(Gλ
i,λ f λ

) = Gλ
i,λ�

λ
f . (16)

We emphasize that the kinetic equation (16) is formulated
with respect to a uniform frame λ. Therefore, Eq. (16) consti-
tutes a typical kinetic equation, with constant characteristics,
amenable to usual numerical realizations in the context of
LBM, such as integration along characteristics. The necessary
element is the introduction of the frame transformation opera-
tor. The effect of the varying reference frame is evident in the
operation Gλ

i,λ f λ, inside the nonlocal gradient operations. The
above observation is crucial and determines the requirements
that must be satisfied by the reference frame transformation.

Comments are in order:
(1) The kinetic equations can be formulated in principle

with respect to any arbitrary reference frame. As such, differ-
ent monitoring points can employ different reference frames.
The consistency of the evolution in different reference frames
is established by proper reference frame transformations. In
the limit of infinite discrete velocities, the solution in every
frame would be identical, i.e., no reason to do that. But in
discrete systems, the accuracy of the solution depends on the
proximity of the imposed frame with the actual local frame,
dictated by the local flow conditions. Thus, with this proce-
dure, we maximize the accuracy of a given model across the
domain.

(2) The direct formulation of a kinetic equation with adap-
tive velocities leads to additional “forcing” terms, containing
derivatives of the particles speeds. A thorough discussion in
this direction can be found in Ref. [62]. In the context of
PonD, the solution methodology consists of a set of equations,
each one at its own, spatially uniform, reference frame. This
strategy avoids the explicit requirement for the computation
of forcing terms. The price to be paid instead amounts to the
operation of reference frame transformations.

(3) Which domain needs to be transformed around a
“frame-generating” monitoring point? Thanks to the hy-
perbolicity of the system, only the numerical domain of
dependence needs to be transformed. Of course, this pro-
cedure for elliptic type of equations would be prohibitively
computationally demanding.

The discussion is continued in Sec. V A via the aid of
numerical simulations.

D. Hydrodynamic limit analysis

We analyze the governing kinetic equation (16) with the
Chapman–Enskog method and investigate the consistency
requirements for the moment invariant system. We rewrite
Eq. (16) in terms of a Bhatnagar–Gross–Krook (BGK) col-
lision operator and a small parameter ε for the relaxation time
τ1,

∂t
(
Gλ

i,λ f λ
)+ vλ

i · ∇(Gλ
i,λ f λ

) = 1

ετ1
Gλ

i,λ( f λ,eq − f λ). (17)

Following the conventional notation, we introduce the follow-
ing multiscale expansion:

∂t = ∂
(1)
t + ε∂

(2)
t + O(ε2), (18)

f λ
i = f λ,(0)

i + ε f λ,(1)
i + ε2 f λ,(2)

i + O(ε3). (19)

We inject the expansions into the governing equations and
separate the dynamics according to different orders of ε,

O(ε0) : Gλ
i,λ f λ,(0) = Gλ

i,λ f λ,eq, (20)

O
(
ε1
)

: ∂
(1)
t

(
Gλ

i,λ f λ,(0))+ vλ
i · ∇(Gλ

i,λ f λ,(0))
= − 1

τ1
Gλ

i,λ f λ,(1), (21)

O(ε2) : ∂
(2)
t

(
Gλ

i,λ f λ,(0))+ ∂
(1)
t

(
Gλ

i,λ f λ,(1))
+vλ

i · ∇(Gλ
i,λ f λ,(1)) = − 1

τ1
Gλ

i,λ f λ,(2). (22)
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At the O(ε0) order we obtain the equilibrium populations,

Gλ
i,λ f λ,(0) = Gλ

i,λ f λ,eq ⇔ f λ,(0)
i = f λ,eq

i , (23)

which implies the following solvability constraints,

Q−1∑
i=0

{
1, vλ

i ,
(
vλ

i

)2}Gλ
i,λ f λ,(k) = {0, 0, 0}, k � 1. (24)

1. Equilibrium moments

The functional form of the equilibrium moments is the
basic element of the analysis and determines the recovered
hydrodynamic equations. We underline that all the lattices
discussed in this work and listed in Table I, reproduce the
pertinent equilibrium moments as their Maxwell–Boltzmann
(MB) continuous counterparts in the comoving reference
frame. For example, even for the standard D2Q9 lattice, the
evaluation with the comoving reference frame

λ = {u, T }, (25)

vλ
i =

√
T/TLci + u, (26)

f eq,λ

i = ρWi (27)

retrieves the following moments:

Jeq,λ =
Q−1∑
i=0

vλ
i f eq,λ

i = JMB, (28)

Peq,λ =
Q−1∑
i=0

vλ
i v

λ
i f eq,λ

i = PMB, (29)

Qeq,λ =
Q−1∑
i=0

vλ
i v

λ
i v

λ
i f eq,λ

i = QMB, (30)

qeq,λ =
Q−1∑
i=0

vλ
i

(
vλ

i

)2
f eq,λ

i = qMB, (31)

Req,λ =
Q−1∑
i=0

(
vλ

i

)2
vλ

i v
λ
i f eq,λ

i = RMB, (32)

where the MB moments are

JMB = ρu, (33)

PMB = ρT I + ρuu, (34)

QMB = ρT uI + ρuuu, (35)

qMB = ρu[u2 + T (D + 2)], (36)

RMB = ρT [(D + 2)T + u2]I + ρ[(D + 4)T + u2] uu. (37)

Here, an overline denotes symmetrization. While all pertinent
equilibrium moments in the comoving reference frame are ac-
curate, the same conclusion does not necessarily hold when a
different, noncomoving, arbitrary reference frame λ = {u, T }
is used for the evaluation. Indeed, the crucial difference be-
tween various lattices rests with the frame invariance of the
equilibrium moments.

In the noncomoving reference frame λ, the equilibrium
populations f eq,λ are no longer given by the simple expression

ρWi but must be computed. This can easily be accomplished
by the reference frame transformation,

f eq,λ = Gλ
λ f eq,λ = ρGλ

λW, (38)

operating on the vector of the lattice weights W , from the
comoving frame λ to the λ frame. By construction, the equilib-
rium moments in the λ frame match the MB moments, if they
are frame invariant. For example, the following relation holds
for a third-order Grad projection sustained by the D2Q16
lattice,

Qeq,λ =
Q−1∑
i=0

vλ
i v

λ
i v

λ
i f eq,λ

i = Qeq,λ = QMB. (39)

However, deviations occur for higher-order moments, not in-
cluded in the set of frame invariant moments. Continuing with
the same example, the fourth-order equilibrium moment in the
λ frame becomes

Req,λ = RMB + R′. (40)

The explicit form of the deviation can be computed via alge-
braic manipulations of Eqs. (37) and (38),

R′ = −ρ{ξξξ 2 + θ [(D + 2)θI + ξ 2I + (D + 4)ξξ]}, (41)

where

ξ = u − u, θ = T − T . (42)

As indicated by the previous expressions, the deviations van-
ish when the monitoring reference frame λ approach the
comoving reference frame λ.

2. Full invariant moment system

Let us consider the case where the isotropy of the lattice
supports the frame invariance of moments, up to fourth order.
This case corresponds, in particular, to the D2Q25 lattice
mentioned in Table I. The zeroth-order moment evaluation of
Eq. (21) leads to the following equation,

∂
(1)
t ρeq,λ + ∇ · Jeq,λ = 0, (43)

where

ρeq,λ =
Q−1∑
i=0

Gλ
i,λ f eq,λ, (44)

Jeq,λ =
Q−1∑
i=0

vλ
i Gλ

i,λ f eq,λ. (45)

Both moments belong to the frame invariant system of the ref-
erence frame transformation. As such, they can be evaluated
equally well at the comoving reference frame,

ρeq,λ = ρeq,λ = ρ, (46)

Jeq,λ = Jeq,λ = ρu. (47)

We substitute Eqs. (46) and (47) into Eq. (43) and recover the
continuity equation,

∂
(1)
t ρ + ∇ · (ρu) = 0. (48)

The same reasoning applies to the rest of the conserved mo-
ments of Eq. (21), since all pertinent moments are frame
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invariant. The momentum and energy conservation laws at the
Euler level are as follows:

∂
(1)
t (ρu) + ∇ · PMB = 0, (49)

∂
(1)
t (2ρE ) + ∇ · qMB = 0. (50)

Analogously, the moments of the second-order equation (22)
recover the Navier–Stokes–Fourier (NSF) contributions,

∂
(2)
t ρ = 0, (51)

∂
(2)
t (ρu) + ∇ · P(1) = 0, (52)

∂
(2)
t (2ρE ) + ∇ · q(1) = 0, (53)

where
P(1) = −τ1

(
∂

(1)
t PMB + ∇ · QMB

)
, (54)

q(1) = −τ1
(
∂

(1)
t qMB + ∇ · RMB

)
. (55)

The compressible NSF equations are recovered from the sum-
mation of the O(ε1), O(ε2) contributions,

∂tρ = −∇ · (ρu), (56)

∂t (ρu) = −∇ · (ρuu) − ∇ · π, (57)

∂t (ρE ) = −∇ · (ρEu) − ∇ · q − ∇ · (π · u), (58)

where π is the pressure tensor,

π = ρT I − μ

(
S − 2

D
(∇ · u)I

)
, (59)

S the strain rate tensor,

S = ∇u + ∇u�, (60)

q is the heat flux,

q = −κ∇T, (61)

and viscosity and thermal conductivity are
μ = τ1ρT, (62)

κ = τ1ρCpT, (63)

where Cp is the specific heat at constant pressure.

3. Third-order invariant moment system

We continue with the analysis of a third-order moment
invariant system, which corresponds to the D2Q16 lattice. The
Euler level dynamics and the NSF density and momentum
contributions include moments which are frame invariant.
Thus, Eqs. (49) and (50) and the NSF density and momentum
contributions (51) and (52) are obtained accurately. However,
the NSF energy contribution includes the flux of energy flux
tensor, which is not frame invariant. The evaluation of this
moment at the monitoring frame λ, instead of the comoving
frame λ, induces an error, as seen from Eq. (41). This devi-
ation gives rise to a diffusive error term at the NSF energy
equation (53),

∂
(2)
t (2ρE ) = ∇ · τ1

(
∂

(1)
t qMB + ∇ · RMB

+ ∂R′

∂u
· ∇u + ∂R′

∂T
· ∇T

)
. (64)

As expected from this analysis, the D2Q16 lattice demon-
strates excellent performance in inviscid Euler gas dynamic
systems, even at the presence of very strong discontinuities. In
the presence of important viscous effects, the error term [last
term in Eq. (64)] will affect the accuracy of the solution. The
magnitude of the error scales with the spatial variation of the
reference frame, or in other words the gradients of the velocity
and temperature field. As shown in subsequent numerical
simulations, benchmark viscous hydrodynamic flows can be
accurately captured with D2Q16 lattice, suggesting that the
magnitude of the error term is rather weak. However, as the
velocity and temperature gradients grow, the error terms man-
ifests in the solution. Section V C provides further discussion
on this topic, with the aid of numerical simulations.

4. Second-order invariant moment system

Finally, we examine the hydrodynamic properties of a
second-order frame invariant moment system, with a rep-
resentative example being the D2Q9 lattice. Such a model
cannot support the full energy flux tensor and higher-order
tensors (Q, R) as frame invariant moments. Following the
same reasoning with the previous cases, we observe that error
terms are introduced in the energy equation of the Euler-level
dynamics (50) and the momentum and energy equations of
the NSF-level dynamics (52) and (53). For relatively smooth
flows without shocks, numerical evidence suggests that the
effect of the error terms of the D2Q9 model is rather small.
A prominent example is the case of an advected vortex,
which has been shown to be captured accurately even for
vortex and advection Mach numbers in the range of Mav =
0.8 and Maa = 100 [48]. However, for hydrodynamic flows
with shocks, the errors due to the frame variation are non-
negligible. Importantly, the shock dynamics at the Euler level
are not described accurately, which translate into errors in the
shock propagation speed.

5. Summary of observations

We summarize the domain of validity of the kinetic model,
according to the order of the frame invariant moment system:

(1) Second-order (D2Q9): appropriate for smooth regions
of compressible flows.

(2) Third-order (D2Q16): appropriate for shocked com-
pressible flows, with small dissipation effects (Euler flows).

(3) Fourth-order (D2Q25): generally valid for NSF flows.
At this point we note that our observations, regarding the

applicability domain of the different lattices, are consistent
with a detailed study of the semi-Lagrangian PonD by Reyha-
nian [63]. The hierarchy relating the frame invariant moment
system and its applicability serves as a basis to simplify the
framework. In particular, the low-order model can be applied
to the smooth regions of the flow and the high-order model in
the regions of steep hydrodynamic gradients. In the following
section, we discuss the coupling of the different models, in the
spirit of Ref. [53].

E. Multiscale frame transformation

The Grad projection approach for the reference frame
transformation is advantageous in terms of stability and

015304-5



N. G. KALLIKOUNIS AND I. V. KARLIN PHYSICAL REVIEW E 109, 015304 (2024)

efficiency. In the following, we demonstrate an additional
benefit, which is the deployment of different lattices through-
out the domain with minimal change in the framework. In
essence, we combine the core idea of the multiscale con-
cept [53] along with the Grad projection frame transformation.

Let us consider two velocity sets of different order,

Vq = {cq
i , i = 0, . . . , q − 1

}
,

VQ = {cQ
i , i = 0, . . . , Q − 1

}
,

where q < Q. We distinguish two different operations coupled
with the frame transformation from λ to λ′:

(1) Lifting: The lifting operation switches from the lower-
order q model to the higher-order Q model, requiring thus a
map

f λ
q → f λ′

Q . (65)

(2) Projection: The projection operation switches from the
higher-order Q model to the lower-order q model, requiring
thus a map

f λ
Q → f λ′

q . (66)

The construction of both operations amounts to identify-
ing the proper expansion coefficients of the Grad expansion.
We recall that the expansion coefficients are function of the
moments and the reference frame λ′.

1. Lifting

For the lifting operation, we can identify the list of mo-
ments mq→Q, required for the reference frame transformation,
as a composition,

mq→Q = {mq, mQ−q}, (67)

where mq is operationally available from f λ
q and mQ−q con-

stitutes the remaining unknown higher-order moments. The
lifting operation consists in specifying the respective contri-
butions as

mq = Mq,λ f λ
q , (68)

mQ−q = meq
Q−q, (69)

where Mq,λ is the q × q matrix of the populations to moments
map. With the required moments identified, the construction
of the lifted populations proceeds similarly as in Sec. II B. The
expansion coefficients are computed from the moments mq→Q

and the reference frame λ′,

αn = αn(mq→Q; λ′). (70)

The lifted populations f λ′
Q can then be found from Grad’s

expansion

f λ′
Q,i = W Q

i

K∑
n=0

1

n!
α(n)(mq→Q; λ′) : H (n)

(
cQ

i

)
, (71)

where W Q
i , H (n)(cQ

i ), and K are the weights, the Hermite poly-
nomials, and the order of expansion of the high-order model,
respectively. We note that equilibration of the remaining un-
known higher-order moments is not a unique approach to
describe a lifting operation. For example, the nonequilibrium
components of the missing moments could be extrapolated

from neighboring points, as suggested in Ref. [64]. This ap-
proach, however, increases the complexity of the coupling and
is prone to instabilities, especially for the case of an adaptive
velocity set. On the other hand, the equilibration suggested in
this work retains locality and stability for the lifting operation.

2. Projection

In the projection step, the high-order population f λ
Q con-

tains the subset of the q linearly independent moments, which
is required for the construction of the low-order population
f λ′
q . Hence, in contrast with the lifting procedure, there is no

missing information and the low-order moment vector mQ→q

is operationally available from f λ
Q ,

mQ→q = MQ,λ f λ
Q. (72)

Similarly to the lifting operation, the projected populations f λ′
q

are given by the Grad expansion,

f λ′
q,i = W q

i

k∑
n=0

1

n!
α(n)(mQ→q; λ′) : H (n)

(
cq

i

)
, (73)

where W q
i , H (n)(cq

i ), and k are the weights, the Hermite poly-
nomials, and the order of expansion of the low-order model,
respectively.

III. VARIABLE ADIABATIC EXPONENT
AND PRANDTL NUMBER

A. Kinetic model

The kinetic model can be extended towards a variable
adiabatic exponent via the two-population approach [41]. The
second set of populations (g populations) is designed to carry
the internal energy associated with nontranslational degrees
of freedom and thus enable an adjustable adiabatic exponent
γ = Cp/Cv , where Cp = Cv + 1 is the specific heat of ideal
gas at constant pressure and Cv is the specific heat at constant
volume [65,66]. The governing kinetic equations can be writ-
ten as follows:

∂t fi + vi · ∇ fi = � f ,i = 1

τ1

(
f eq
i − fi

)
, (74)

∂t gi + vi · ∇gi = �g,i = 1

τ1

(
geq

i − gi
)
. (75)

Additionally, the collision operators can accommodate an
intermediate relaxation to quasi-equilibrium states, thus en-
abling a variable Prandtl number [41,67],

� f ,i = 1

τ1

(
f eq
i − fi

)+
(

1

τ1
− 1

τ2

)(
f ∗
i − f eq

i

)
, (76)

�g,i = 1

τ1

(
geq

i − gi
)+

(
1

τ1
− 1

τ2

)(
g∗

i − geq
i

)
, (77)

where f ∗
i , g∗

i are the quasi-equilibria of the f and g pop-
ulations and the relaxation time τ2 determines the Prandtl
number. The local conservation laws for the density ρ,
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momentum ρu, and total energy ρE are

ρ =
Q−1∑
i=0

fi =
Q−1∑
i=0

f eq
i , (78)

ρu =
Q−1∑
i=0

vi fi =
Q−1∑
i=0

vi f eq
i , (79)

ρE =
Q−1∑
i=0

v2
i

2
fi +

Q−1∑
i=0

gi =
Q−1∑
i=0

v2
i

2
f eq
i +

Q−1∑
i=0

geq
i , (80)

where the total energy of ideal gas is

ρE = CvρT + ρu2

2
. (81)

The equilibrium populations in the comoving reference frame
are as follows:

f eq
i = ρWi, (82)

geq
i =

(
Cv − D

2

)
T ρWi. (83)

The expressions for the dynamic viscosity, bulk viscosity, and
thermal conductivity are [41]

μ = τ1ρT, (84)

ς =
(

1

Cv

− 2

D

)
μ, (85)

κ = τ2ρCpT . (86)

The Prandtl number is therefore

Pr = Cpμ

κ
= τ1

τ2
. (87)

For Pr < 1, the quasi-equilibria are designed to conserve the
centered heat flux, resulting in the following expressions:

f ∗
i = f eq

i + WiQ · (eieiei − 3T eiI)/6T 3, (88)

g∗
i = geq

i + Wiς · ei/T, (89)

where ei = vi − u, Q is the nonequilibrium third-order flux
tensor, and ς is the energy flux associated with the internal
degrees of freedom,

Q =
Q−1∑
i=0

eieiei
(

fi − f eq
i

)
, (90)

ς =
Q−1∑
i=0

ei
(
gi − geq

i

)
. (91)

B. Comments on g populations

We note that the concepts presented so far apply equally
well for the g populations, with the sole difference being the
required frame invariant moments, which have to be sup-
ported by the corresponding g lattice. A Chapman–Enskog
analysis [41] shows that g equilibrium moments up to second
order are enough to recover the NSF equations. Therefore, the
D2Q9 is employed in this work for the g populations. The
reference frame transformation (Sec. II B) and its multiscale
realization (Sec. II E) apply equally well for the g populations,

taking into account that the maximal frame invariant moment
is second order.

IV. NUMERICAL IMPLEMENTATION

A. Finite-volume discretization

We proceed with the finite-volume discretization, in the
spirit of PonD-DUGKS framework [56,57]. In accord with
the notions above, the kinetic equation can be formulated in
an arbitrary reference frame λ. We first present the discretiza-
tion for Pr = 1. The extension for variable Prandtl number is
explained in the following section.

1. Updating rule

The evolution of the kinetic model (74) and (75) can be
discretized as follows:

f̃ λ
i (x j, tn+1) =

(
2τ − δt

2τ + δt

)
f̃ λ
i (x j, tn)

+
(

2δt

2τ + δt

)
f eq,λ

i (x j, tn)− δt

Vj
Fλ

f ,i(x j, tn+1/2),

(92)

g̃λ
i (x j, tn+1) =

(
2τ − δt

2τ + δt

)
g̃λ

i (x j, tn)

+
(

2δt

2τ + δt

)
geq,λ

i (x j, tn) − δt

Vj
Fλ

g,i(x j, tn+1/2).

(93)

The update equations are derived from the integration of the
continuous equations (74) and (75), formulated in the refer-
ence frame λ in a control volume centered at x j with volume
Vj from time tn to tn+1 = tn + δt , using the midpoint rule for
the convection term and the trapezoidal rule for the collision
term [57]. To remove the implicitness, the DUGKS scheme
adopts the variable transformation from the standard LBM
practice [18,68],

φ̃λ
i = φλ

i − δt

2
�λ

φ,i = φλ
i − δt

2τ

(
φ

eq,λ

i − φλ
i

)
, (94)

where φ stands for the f and g populations and �φ,i are the
collision BGK kernels defined in Eqs. (74) and (75). The
fluxes of the populations Fλ

φ,i(x j, tn+1/2) across the surface of
the control volume are defined as

Fλ
φ,i(x j, tn+1/2) =

∫
∂Vj

(
vλ

i · n
)
φλ

i (x, tn+1/2)dS, (95)

where n is the outward unit vector normal to the surface.
Finally, we remark that, within the finite-volume context, the
populations and the collision terms are cell-averaged quanti-
ties,

φλ
i (x j, tn) = 1

Vj

∫
Vj

φλ
i (x, tn)dx. (96)

The reference frame, which is used for the evolution of the
populations at (x j, tn), is set to the comoving frame from the
known flow velocity and temperature,

λ(x j, tn) = {u(x j, tn), T (x j, tn)}. (97)
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2. Flux evaluation

The key element of the update equations (92) and (93) is
the evaluation of the flux term Fλ

φ,i(x j, tn+1/2), which contains
the unknown populations φλ

i (xb, tn+1/2) at the cell interface
xb and time tn+1/2. The frame which shall be used for the
flux evaluation is λF = {uF , TF }, with the frame velocity uF

and temperature TF constructed by the average frame of the
adjacent cell centers to the interface x1, x2,

uF = 1
2 [u(x1, tn) + u(x2, tn)], (98)

TF = 1
2 [T (x1, tn) + T (x2, tn)]. (99)

The integration of Eqs. (74) and (75) along the character-
istics for half-time step shows that the required populations
φ

λF
i (xb, tn+1/2) are connected with the known populations at

time tn through the following equation [57]:

φ̄
λF
i (xb, tn+1/2) = φ̄

+,λF
i (xb − vλF

i δt/2, tn), (100)

where

φ̄
λF
i = φ

λF
i − δt/2

2
�

λF
φ,i, (101)

φ̄
+,λF
i = φ

λF
i + δt/2

2
�

λF
φ,i. (102)

Equation (100) is essentially a half-time semi-Lagrangian
step, with the final point located at the interface xb, at tn+1/2.
The populations φ̄

+,λF
i and the spatial gradients σλF

i = ∇φ̄
+,λF
i

are subsequently evaluated in the neighboring cells of the
interface, at time tn. In this work, Van Leer and minmod
slope limiters were used for the computation of the spatial
derivatives [69,70]. We also note that the reference frame
transformation was applied to express the required popula-
tions from their original reference frame to the target reference
frame λF . The populations are reconstructed at the departure
point x′ = xb − vλF

i δt/2, with the MUSCL scheme [71],

φ̄
+,λF
i (x′, tn) = φ̄

+,λF
i (x j, tn) + (x′ − x j ) · σλF

i (x j, tn). (103)

According to Eq. (100), we obtain the φ̄
λF
i populations at the

interface xb and time tn+1/2,

φ̄
λF
i (xb, tn+1/2) = φ̄

+,λF
i (x′, tn). (104)

The density, momentum, and temperature at (xb, tn+1/2) are
finally computed by

ρ =
Q−1∑
i=0

f̄ λF
i (xb, tn+1/2), (105)

ρu =
Q−1∑
i=0

vλF
i f̄ λF

i (xb, tn+1/2), (106)

CvρT =
Q−1∑
i=0

(
v

λF
i

)2
2

f̄ λF
i (xb, tn+1/2)

+
Q−1∑
i=0

ḡλF
i (xb, tn+1/2) − ρu2

2
. (107)

With the calculated macroscopic fields (ρ, u, T ) at
(xb, tn+1/2), the equilibrium populations φ

eq,λF
i (ρ, u, T )

can be computed and subsequently also the populations

φ
λF
i (xb, tn+1/2), after inversion of Eq. (101). We remind that

the equilibrium populations can be obtained through the
reference frame transformation (38),

φeq,λF (ρ, u, T ) = ρG{uF ,TF }
{u,T } W. (108)

Finally, the fluxes which are required to update the cell centers
populations can be found from summation over the faces of
the cell and proper reference frame transformation,

Fλ
φ,i(x j, tn+1/2) =

∑
c

(
vλ

i · nc
)
Gλ

i,λF,c
φλF,c (xb,c, tn+1/2), (109)

where xb,c designates the center of the cth face of the cell, nc

is the outwards normal vector and λ is the reference frame of
the evolution of the cell.

3. Summary of the algorithm

Based on the previous steps, we summarize the evolution
procedure from time tn to tn+1:

(1) Initial data (cell centers x j)
(a) Given (ρ, u, T ), comoving reference frame λ =

{u(x j, tn), T (x j, tn)} and populations φλ
i (x j, tn).

(b) Calculate the φ̄+,λ
i (x j, tn) populations according to

Eq. (102).
(2) Calculation of the fluxes (loop over cell faces xb)

(a) Set reference frame λF at interface and time
(xb, tn+1/2).

(b) Calculate the populations φ
λF
i (xb, tn+1/2) according

to procedure in Sec. IV A 2.
(3) Population update (loop over cell centers x j)

(a) Compute the fluxes to the local reference frame of
the cell, Eq. (109), and update the populations through
Eqs. (92) and (93).
We stress the crucial difference between the proposed

realization and the scheme suggested in Ref. [56], which
is the absence of iterations within the flux evaluation step.
We remind the reader that, according to Eq. (100), a semi-
Lagrangian step is executed to retrieve the populations at the
cell faces. In this work, the reference frame for the above step
is set from the average reference frames of the neighboring
cell centers [Eq. (98)] and the flux evaluation is performed
explicitly. With this approach, it is necessary to obtain nonco-
moving equilibrium populations φeq,λF (ρ, u, T ) to finalize the
flux evaluation. The scheme in Ref. [56] suggested an iterative
predictor-corrector procedure, such that the flux calculation
is realized in the comoving reference frame. While compu-
tationally demanding, the iteration procedure operates only
with the simple comoving equilibrium populations [Eqs. (82)
and (83)]. A further analysis of this aspect via numerical
simulations is provided in Sec. V E.

B. Implementation of variable Prandtl number

The quasi-equilibrium relaxation can be implemented as
a forcing term in the kinetic equations. We follow a typical
approach in the context of DUGKS [59] and realize the quasi-
equilibrium relaxation via the Strang-splitting method [72]:

(1) Quasi-equilibrium relaxation of the populations in the
cell centers (half-time step),

f ′
i = fi + δt

2

(
1

τ1
− 1

τ2

)(
f ∗
i − f eq

i

)
. (110)
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FIG. 1. Schematic for the implementation of boundary conditions.

(2) Update step without quasi-equilibrium relaxation,
Eqs. (92) and (93).

(3) Quasi-equilibrium relaxation of the populations in the
cell centers (half-time step), as in step 1.

We note that half-time relaxations steps occur in each
cell center and are local operations. By construction, the
quasi-equilibrium relaxation conserves the flow velocity and
temperature, and the populations remain in their comoving
reference frame.

C. Multiscale implementation

The presented framework can be implemented in a mul-
tiscale setting with minimal changes in the algorithm. The
different lattices are deployed adaptively in the simulation do-
main following a switching criterion. According to Sec. II D,
the switching criterion is a function of the hydrodynamic
gradients, with the high-order lattice being activated in the
regions of steep gradients. In this work, the switching function
consists of threshold criteria on the numerically computed
flow velocity and temperature gradients. The different lattices
are updated normally as presented in the previous section,
with the difference being that the reference frame transfor-
mations in the vicinity of the interface regions are replaced by
the multiscale frame transformations (presented in Sec. II E).

D. Boundary conditions

The boundary conditions (BCs) are enforced in the current
work via the ghost node approach [73]. First, the density, flow
velocity, and temperature are determined at the ghost cell CG

(see Fig. 1). For fixed values at the wall, e.g., no-slip velocity
uw, the value uG at the ghost cell is

uG = 2uw − uB, (111)

where uB is the corresponding value at the boundary cell.
To impose zero normal gradient condition, e.g., for density
computation, we enforce

ρG = ρB. (112)

With the macroscopic values (ρG, uG, TG) defined, the ref-
erence frame of the ghost cell λG is set to the comoving
reference frame, λG = {uG, TG}. The equilibrium populations

are then

f G,eq
i = ρGWi, (113)

gG,eq
i =

(
Cv − D

2

)
TGρGWi. (114)

The approximation of nonequilibrium contributions follows
the implementation of Ref. [41]. In particular, the first-order
nonequilibrium moments are estimated from the Chapman–
Enskog solution, and they depend on the local hydrodynamic
gradients. The pertinent nonequilibrium moments of the f
populations are [41]

P(1) = −τ1ρGTG

(
S − 1

Cv

(∇ · u)I
)

, (115)

Q(1) = −τ2ρGTG(∇T I) + uP(1). (116)

The zeroth-order up to second-order nonequilibrium moments
of the g populations, M (1)

g,0 , M (1)
g,1, M (1)

g,2 are estimated as [41]

M (1)
g,0 = −τ1ρGTG(2Cv − D)

(
1

Cv

∇ · u
)

, (117)

M (1)
g,1 = −τ2ρGTG(2Cv − D)∇T + M (1)

g,0u, (118)

M (1)
g,2 = −τ1ρGTG(2Cv − D)(T S + u∇T ). (119)

The hydrodynamic gradients are evaluated with a second-
order centered scheme based on previous time step quantities.
The nonequilibrium populations are computed from their
nonequilibrium moments according to Grad’s projection pro-
cedure,

f λ′
i = Wi

3∑
n=0

1

n!
α(n)(P(1), Q(1); λG) : H (n)(ci ), (120)

gλ′
i = Wi

2∑
n=0

1

n!
α(n)

g

(
M (1)

g,0, M (1)
g,1, M (1)

g,2; λG
)

: H (n)(ci ). (121)

V. RESULTS AND DISCUSSION

In this section, we assess numerically the consistency
of the adaptive reference frame formulation. The model is
further validated with one- and two-dimensional (1D and
2D) Euler gas dynamics benchmarks and viscous flows to
assess the Prandtl number as well as the accuracy of the
wall BCs. Subsequently, we focus on the shock structure
problem and demonstrate numerically the implications of
the moment analysis of Sec. II D. The framework is then
implemented with the multiscale setting (Sec. II E), via the
deployment of different lattices across the simulation do-
main. We conclude this section with a summary of our
observations and discussion of the model capabilities. We
remind the reader that the g populations evolve with the D2Q9
lattice. Unless stated otherwise, the numerical parameters of
the simulations are the following: The time step δt is such
that the Courant–Friedrichs–Lewy (CFL) number is CFL =
max |viα|(δt/δx) = 0.2, where δx is the grid resolution. The
adiabatic exponent is γ = 1.4. Additionally, the viscosity for
the Euler flows is low enough such that the results remain
invariant [typically μ ∼ O(10−3–10−2)]. Finally, we note that
the formulation of the initial and boundary conditions are
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FIG. 2. Convergence order analysis (L2 error norm) for the force
driven flow over channel at Re = 100. Solid red line shows uniform
frame “at rest.” Dashed blue line shows PonD. The dotted line indi-
cates a second-order L2 error norm slope.

based on nondimensional variables scaled with appropriate
reference density, velocity, and pressure.

A. Adaptive reference frame consistency

A point which is raised in the context of adaptive parti-
cles velocities is that a straightforward implementation would
lead to the wrong hydrodynamic equations [74]. The non-
commutativity of the particles velocities with the temporal
and spatial derivatives would result then to incorrect hydro-
dynamic equations. Even the continuity equation at the Euler
level would contain nonphysical source terms. This analy-
sis however does not apply in the context of our model,
which achieves consistency through the action of the ref-
erence frame transformation. Given a sufficient number of
frame invariant moments, the Euler or the full NSF hydro-
dynamic equations can be consistently recovered. To address
this point numerically, we compare the performance of the
PonD model with an implementation which imposes a global
uniform frame “at rest” λ0 = {0, TL}. The latter then reduces
to the standard DUGKS algorithm

We begin with an isothermal channel flow with Reynolds
number of Re = 100. The flow is driven by a constant force
and the boundary conditions include no slip at the walls and
periodic conditions in the flow direction. The L2 error of both
simulations, using PonD and the uniform frame at rest, was
measured at steady state,

L2 =
√√√√∑x

[
un

x (x) − ua
x (x)

]2∑
x

[
ua

x (x)
]2 , (122)

where the sum runs over the entire spatial domain and un
x , ua

x
are the x velocity from the simulation and analytical solution,
respectively. Both simulations achieve second-order spatial
convergence with very similar error magnitudes, as shown in
Fig. 2.

We continue with the simulations of the Lax shock tube
problem [75], under low spatial resolutions and high CFL
number. The initial conditions are the following:

(ρ, ux, p) =
{

(0.445, 0.698, 3.528), 0 � x < 0.5

(0.5, 0, 0.571), 0.5 � x � 1.
(123)

FIG. 3. Density profiles with different resolutions for the Lax
shock tube problem at t = 0.14. Blue solid line shows PonD model.
Red dashed line shows solution with a uniform reference frame “at
rest” Black solid line shows reference from an exact Riemann solver.

The results with spatial resolutions, L = 100, 200, 400 and
CFL number equal to 0.9 are shown in Fig. 3. We observe
that, even at the lowest resolution, the solutions agree very
well with each other. In particular, the solution from the
PonD model is more dissipative, which can be attributed to
the regularization stemming from the reference frame trans-
formation. Apart from this, the shock propagation is almost
indistinguishable. We note that such performance would be
impossible, if the recovered hydrodynamic equations of our
model did not match the Euler equations.
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FIG. 4. Taylor–Green vortex problem: L2 error norm for fixed
spatial resolution [100 × 100] and varying CFL and Re number.
The simulations were performed with the D2Q16 (top) and D2Q9
(bottom) velocity sets. Dashed red line shows uniform frame “at
rest.” Solid blue line shows PonD.

To probe the temporal error under fixed spatial resolution
we simulate the Taylor–Green vortex, which obeys the follow-
ing analytical solution:

ux(x, y, t ) = −u0 cos (kx) sin (ky)e−2νk2t , (124)

uy(x, y, t ) = u0 sin (kx) cos (ky)e−2νk2t , (125)

p(x, y, t ) = p0 − ρu0
2

4
[cos (2kx) + cos (2ky)]e−4νk2t . (126)

Here k = 2π/L is the wave number while u0 and p0 are the
initial values of velocity and pressure, respectively. The simu-
lations were performed with a [100 × 100] grid using periodic
boundary conditions. The initial maximum Mach number was
fixed to Ma = u0/

√
TL = 0.05 and the L2 error norm [see

Eq. (122)] was recorded at half-life time, for different Re
and CFL numbers. The results using the D2Q16 and D2Q9
velocity sets are summarized in Fig. 4. For the case of D2Q16,
the error obtained with PonD and with the uniform frame at
rest demonstrate the same dependence. The results are con-
sistent with an extensive theoretical and numerical analysis of
the errors of the DUGKS algorithm presented in Ref. [76].
The simulations of the PonD scheme with the D2Q9 lattice
resulted in very similar errors. The corresponding results with
the uniform rest-frame solution marked higher errors, with
increasing Reynolds number.

We conclude this discussion with an estimate of the reduc-
tion in computational efficiency resulting from the adaptive
reference frame formulation when compared with the uniform
“rest-frame” case. For this purpose, we used the setup of the
Lax shock tube on an eight-core PC without parallelization
(Intel Core i7-9700@3GHz). We highlight that this test serves
solely as an estimate and not as a comprehensive investigation
of the computational efficiency. The velocity sets were the
D2Q16 and the D2Q9, for the f and g populations, respec-
tively. The results of the PonD model indicated a performance
of 0.06 mega lattice updates per second (MLUPS), while the
implementation with the uniform frame at rest achieved 0.4
MLUPS. Consequently, the reference frame transformation
reduces the computational efficiency by a factor of 6.6.

B. Euler gas dynamics

We validate the model using the D2Q16 lattice and a
third-order Grad projection for the moment transformation.
According to the moment analysis in Sec. II D, the hydro-
dynamics at the Euler level should be captured accurately.
Indeed, the model performs very well against a series of
1D Riemann problems, involving low-density near-vacuum
regions and very strong discontinuities. While all benchmarks
of the previous work [56] were tested, we present here two
representative 1D examples. The 2D cases include a high
Mach Riemann problem, a Mach 3 flow over a step obstacle,
and a shock diffraction over a corner.

1. Strong shock tube

We consider the case of a strong shock tube [77], where the
ratio between the temperature of the left and right side is 105.
The initial conditions for this problem are

(ρ, ux, p) =
{

(1, 0, 1000), 0 � x < 0.5

(1, 0, 0.01), 0.5 � x � 1.
(127)

This problem, characterized by the strong temperature discon-
tinuity, probes the robustness and accuracy of the numerical
methods. The results of the simulation at t = 0.012 and L =
800 are shown in Fig. 5. Overall, a very good agreement with
the exact solution is noted. Simulations with low resolutions
are summarized in Fig. 6.

2. Le Blanc problem

The Le Blanc problem is considered next [78] and involves
very strong discontinuities and is initialized with the following
conditions,

(ρ, ux, p) =
{

(1, 0, 2/3 × 10−1), 0 � x < 3

(10−3, 0, 2/3 × 10−10), 3 � x � 9.
(128)

In this problem, the adiabatic exponent is fixed to γ = 5/3.
Figure 7 shows the results at t = 6 and L = 1000. With the
exception of minor oscillations, a very good agreement of the
present scheme with the reference solution [14] is observed.

3. Two-dimensional Riemann, configuration 3

As a first validation in two dimensions we simulate a
2D Riemann problem, which is a classical benchmark for
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FIG. 5. Density (top), velocity (middle), and pressure (bottom)
profiles for the strong shock tube problem at t = 0.012. Solid line
shows PonD model. Dashed line shows reference from an exact
Riemann solver.

compressible flow solvers [79]. A square domain (x, y) ∈
[0, 1] × [0, 1] is divided into four quadrants, each of which
is initialized with constant values of density, velocity and
pressure as follows:

(ρ, ux, uy, p)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1.5, 0, 0, 1.5), x > 0.5, y > 0.5

(0.5323, 1.206, 0, 0.3), x � 0.5, y > 0.5

(0.138, 1.206, 1.206, 0.029), x � 0.5, y � 0.5

(0.5323, 0, 1.206, 0.3), x > 0.5, y � 0.5.

(129)

At the boundaries, zero-gradient BCs were imposed, ∂n f = 0,
where n is the outwards unit normal vector. The simulation

FIG. 6. Density profiles with different resolutions for the strong
shock tube problem at t = 0.012. Solid blue line shows L = 100.
Dashed red line shows L = 200. Dotted-dashed green line shows L =
400. Solid line shows reference from an exact Riemann solver.

FIG. 7. Density (top), velocity (middle), and pressure (bottom)
profiles for the Le Blanc problem, at t = 6. Solid line shows PonD
model. Dashed line shows reference from an exact Riemann solver.
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FIG. 8. 2D Riemann problem with resolution of [500,500] grid
points at t = 0.3. Twenty-five equidistant density contours are su-
perimposed on the results.

was performed with resolution [500,500]. The results of the
density field, as well as density contours near the center of
the domain, are depicted in Fig. 8. The initial conditions of
the Riemann problem lead to shock wave interaction and the
formation of complex patterns. The results show a very good
agreement with the reference solutions in Refs. [79,80].

4. Mach 3 flow over step

In this problem, a uniform Mach 3 flow is imposed on a
wind tunnel containing a step [81]. A transient shock wave
develops from the step, reflects at the walls and forms a com-
plicated flow pattern. The computational domain is bounded
by a [0, 3] × [0, 1] rectangle, while the step is located at
(0.6,0) and has a height of �y = 0.2. Initially, a gas with γ =
1.4 is spatially uniform, with the following hydrodynamic
conditions:

(ρ, ux, uy, p) = (1.4, 3, 0, 1). (130)

The same conditions are imposed as inflow BCs at the left
boundary x = 0 and outflow BCs at the right boundary x = 3.
Reflecting BCs are applied at the walls of the domain. The
results of a simulation resolved with [300,100] grid points are
presented in Fig. 9, at six equal time intervals (t = 0.5 to t =
3). The flow features and dynamics are in very good agree-
ment with the corresponding results from the literature [81].

FIG. 9. Density profiles for the Mach 3 flow over forward step. Six snapshots are shown at equal time intervals from t = 0 to t = 3.
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FIG. 10. Pressure (top) and density (bottom) profiles for the
Mach 5.09 shock diffraction problem over a corner, at t = 2.3. 30
equidistant contours are superimposed on the fields.

5. Shock diffraction over corner

Here we investigate the shock diffraction problem, in
which a shock wave flows over a backward facing corner [15].
The hydrodynamic patterns of this problem have been studied
theoretically, experimentally, and via simulations. From the
numerical standpoint however, this problem has been chal-
lenging due to the development of negative pressure and/or
density around the corner. We follow the conventional setup of
the problem: the computational domain consists of the union
of [0, 1] × [6, 11] and [1, 13] × [0, 11] rectangles. Initially, a
Ma = 5.09 right-moving shock wave is located at x = 0.5 and
6 � y � 11 and propagates into undisturbed air, with density
1.4 and pressure 1. For the BCs, we use inflow with the initial
conditions at x = 0, 0 � y � 11, outflow at x = 13, 0 � y �
11; 1 � x � 13, y = 0; and 0 � x � 13, y = 11. Reflective
BCs are applied at the walls of the domain 0 � x � 1, y = 6
and x = 1, 0 � y � 6. The results, for resolution [390, 330]
and t = 2.3 are shown in Fig. 10 and compare very well with
the reference results from Ref. [15].

C. Viscous flows

In this section, we focus on hydrodynamic flows with
important viscous effects. The discussion pivots around the
accuracy and the limitations of the third-order moment invari-
ant system, sustained by the D2Q16 lattice.

1. Thermal Couette flow

The thermal Couette flow is a benchmark test case to probe
the viscous heat dissipation and the Prandtl number. The up-
per wall with the higher temperature TH is in motion with
a constant speed u0, while the lower wall is at rest and at a
temperature TC . The analytical solution for the temperature is

T − TC

TH − TC
= x

L
+ Pr × Ec

2

x

L

(
1 − x

L

)
, (131)

where Ec = u2
0/(Cp�T ) is the Eckert number and �T =

TH − TC . No-slip and constant-temperature BCs are applied
at the top and bottom walls, while periodic BCs are enforced
in the horizontal direction. The parameters for the simula-
tions are Ma = u0/

√
γ TC = 0.5, L = 50, Re = ρu0L/μ =

100, TC = 1. Figure 11 shows the temperature profiles for
three different Prandtl numbers (Pr = 0.5, 0.75, 1.0) and dif-
ferent Eckert numbers (Ec = 4, 20, 40), which are in very
good agreement with the analytical solution. We note that the
simulations have been performed with the D2Q16 lattice and
thus a third-order Grad projection frame transformation. The
accuracy of the results suggest that the error term in the energy
equation (64) is negligibly small.

2. Viscous shock tube

In this problem we probe the performance of our model
with the viscous shock tube test, proposed by Daru and
Tenaud [82]. A 2D shock tube [0, 1] × [0, 1] is initialized with
the following conditions:

(ρ, ux, uy, p) =
{

(120, 0, 0, 120/γ ), 0 � x < 0.5

(1.2, 0, 0, 1.2/γ ), 0.5 � x � 1,

(132)
where γ = 1.4, the Prandtl number is set to Pr = 0.73, and
the viscosity is set such that Reynolds number is Re = 200.
No-slip and adiabatic BCs are applied at the walls of the shock
tube. Due to the symmetric configuration of the problem, the
actual simulated geometry consists of the [0, 1] × [0, 0.5] do-
main, with symmetric conditions applied on the top boundary.
The initial flow conditions create a right propagating shock
wave of Ma = 2.37, a contact discontinuity, and an expanding
rarefaction wave in both directions. Note that the motion of the
shock wave induces a non-negligible boundary layer along the
horizontal wall of the tube. The boundary layer interacts with
the incident and reflected shock, forming a complicated flow
pattern.

The results of the density contours, the pressure and tem-
perature fields for resolution of [500, 250] at t = 1, are shown
in Fig. 12. Additionally, we repeat the simulation with the
D2Q25 and a fourth-order frame invariant moment system and
compare the results. For the comparison, we report metrics
suggested from Ref. [83]. In particular, Table II summa-
rizes the coordinates associated with the triple point and the
primary vortex. The comparison with the reference data shows
a very good match of both the D2Q16 and D2Q25 simula-
tions. The same conclusion is drawn from Fig. 13, which plots
the density distribution along the solid wall.

Finally, we include for completeness the results from the
Re = 1000 case, simulated with a resolution of [2000, 1000]
and the D2Q16 lattice (the D2Q25 solution is practically
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FIG. 11. Thermal Couette flow problem. Results are shown for
three different Prandtl numbers: Pr = 0.5 (top), Pr = 0.75 (middle),
Pr = 1 (bottom). For each Pr number, the simulation is performed
for Eckert numbers Ec = 4, 20, 40 (symbols) and compared with
analytical solution (solid lines).

indistinguishable). Figure 14 shows contours of the density
field at t = 1 and the density distribution along the solid wall
is compared with the reference solution from a high-order
gas-kinetic solver in Fig. 15. While the main features of the
flow are in line with corresponding reference solutions, no-
ticeable deviations are present. Given that the PonD/DUGKS
finite-volume scheme is second-order accurate, the grid-
converged solution is hard to obtain due to practical limit
on computational time of the present implementation. It is
worth noting that even the results for high-order methods,

TABLE II. Accuracy criteria for viscous shock tube (Re = 200),
according to Ref. [83]. x-TP (y-TP) correspond to the x coordinate
(y coordinate) of the triple point. x-PV corresponds to the horizontal
axis intersection of the line passing through the primary vortex. y-PV
corresponds to the height of the primary vortex.

x-TP y-TP x-PV y-PV

Reference 0.58 0.137 0.78 0.166
D2Q16 0.58 0.133 0.774 0.168
D2Q25 0.58 0.134 0.775 0.168

from different papers or from different methods in the same
paper, are very different [83].

3. Shock structure problem

The problems so far have demonstrated very good accuracy
of the third-order frame invariant moment system and the
associated D2Q16 lattice. The following benchmark involves
steep hydrodynamic gradients and clearly demonstrates the
limitations of the D2Q16. At the same time, the expansion
of the frame invariant moment system from third-order to
fourth-order (D2Q25) restores the accuracy.

The shock structure problem is a classical problem in
kinetic theory of gases in which nonequilibrium effects dom-
inate the flow [84]. We consider a quasi one-dimensional
plane shock wave, with an initial step of density, velocity, and
temperature at the center of the computational domain. The
upstream and downstream flow values are connected through
the Rankine–Hugoniot conditions [85]. The upstream mean-
free path for hard-sphere molecules is defined as

λ1 = 16

5
√

2πγ

(
μ1α1

p1

)
, (133)

where p1, α1, μ1 are the pressure, the speed of sound, and the
viscosity of the gas upstream of the shock, respectively. The
viscosity varies with the temperature as

μ = μ1

(
T

T1

)s

, (134)

where, for the case of hard spheres, s = 0.5. The steady-state
nondimensional density, temperature, normal stress, and heat
flux are defined as follows:

ρn = ρ − ρ1

ρ2 − ρ1
, Tn = T − T1

T2 − T1
,

σ̂xx = σxx

p1
, q̂x = qx

p1
√

2T1
, (135)

where the subscripts 1 and 2 indicate the upstream and down-
stream values, respectively. The Prandtl number is set to Pr =
2/3 and the adiabatic exponent of monatomic ideal gas to
γ = 5/3. The results reported for this case are the steady-state
solutions and compared with the results of Ohwada [86]. The
origin of the coordinate system is the point with ρn = 0.5 and
xn = x/0.5

√
πλ1 is used as the reduced coordinate.

We consider first the shock structure profiles for a Mach
number Ma = 1.2. Two simulations are performed with
different reference frame transformation orders. In particu-
lar, we compare the performance of the D2Q16 and D2Q25
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FIG. 12. Viscous shock tube problem (Re = 200). Top panel shows 30 equidistant density contours ρ ∈ (18, 120). Middle panel shows
pressure field p ∈ (18, 89). Bottom panel shows temperature field T ∈ (0.46, 2.84).

lattices, using third- and fourth-order Grad projections, re-
spectively. The results for the density, temperature, normal
stress, and heat flux profiles are shown in Fig. 16. It is evident
that both models perform very accurately compared with the
reference data.

We continue with the shock structure at a higher Mach
of Ma = 1.6 and repeat the numerical experiments with the
different frame transformation orders. The results are summa-
rized in Fig. 17. Here, the third-order model clearly shows
deviations in all the profiles, with the errors being prominent
in the temperature and heat flux profiles, at the upstream part
of the shock. In this case, the deviation terms due to the frame
variant Req moment are sustained, due to the steep gradients of
velocity and temperature within the shock profile. Including
the Req moment list into the frame invariant list, i.e., the

fourth-order model, recovers the accuracy of the model and
achieves very good agreement with the reference results.

D. Multiscale framework

The final topic of interest is the multiscale extension of
the scheme, with the deployment of different lattices across
the domain. The motivation is twofold: first, the target is
to deploy the D2Q9 and D2Q16 lattices in Euler problems
with steep discontinuities to numerically support the theo-
retical discussion of Sec. II D. In this case, the switching
criterion is a threshold on the local flow velocity and tem-
perature gradients. The high-order lattice is activated at the
portion of the domain with high gradients, while the low-
order lattice everywhere else. Subsequently, we apply the
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FIG. 13. Viscous shock tube problem (Re = 200). Density distri-
bution along the solid wall. Solid line shows D2Q16 model. Dotted
line shows D2Q25. Symbols show reference data from Ref. [83].

multiscale framework in problems with localized rarefaction
phenomena. It is well known that higher-order lattices or
equivalently higher-order Grad expansions of the distribution
function can probe deeper into the nonequilibrium regime
(0.1 � Kn � 1) [26,64,87,88]. A rigorous theoretical rela-
tion however between the Knudsen number and the number
of moments is lacking. Unfortunately, however, it is known
that Grad expansions converge rather slowly, with increasing
number of moments [88]. While an expansion in Hermite
polynomials is feasible in the transitional regime (Kn � 1),
probing deeper into the nonequilibrium regime requires a
change in strategy.

1. Lax tube

We demonstrate a D2Q9-D2Q16 model, with the simula-
tion of the Lax problem [75]. The initial conditions are the
following:

(ρ, ux, p) =
{

(0.445, 0.698, 3.528), 0 � x < 0.5

(0.5, 0, 0.571), 0.5 � x � 1.
(136)

The simulation is performed with L = 600, until t = 0.14.
Figure 18 shows the solution obtained by the D2Q9 and
D2Q16 lattices independently. While the D2Q16 model is in
excellent agreement with the analytical solution, the D2Q9
model develops deviations, which manifest as overestimated
density between the shock wave and the contact discontinuity.
The discrepancy in the Euler level is expected for the case of
D2Q9 and therefore a second-order moment invariant system.
Figure 19 shows the results of the multiscale D2Q9-D2Q16
model and the regions of deployment of the two lattices. In
particular, D2Q16 is active in two thin regions, centered at the
shock wave and the contact discontinuity. The results of the
multiscale model match again very well with the analytical
solution.

2. Shu-Osher problem

The D2Q9-D2Q16 model is further tested with the Shu-
Osher problem [89]. In this setup, a Mach 3 shock wave
interacts with a perturbed density field. The interaction leads
to discontinuities and the formation of small structures. The

initial conditions are

(ρ, ux, p) =
{

(3.857, 2.629, 10.333), 0 � x < 1

(1 + 0.2 sin [5(x − 5)], 0, 1), 1 � x � 10.

(137)
The results for the density profile are presented at t = 1.8
and L = 800. Figure 20 shows the solutions of the D2Q9
and D2Q16 models and the comparison with a reference so-
lution, obtained with characteristic-based fifth-order WENO,
RK4 temporal integration and resolution of 5000 points [90].
Apart from a small underestimation of the postshock waves
amplitudes, it is evident that the D2Q16 captures very well
the shock location and the high-frequency waves. In contrast,
the D2Q9 model clearly deviates from the reference solution.
Figure 21 captures the evolution of the D2Q9-D2Q16 solution
and compares it with the pure D2Q16 solution. The multiscale
model is almost indistinguishable from the D2Q16 model and
thus with the reference solution also. It is also interesting to
observe that D2Q16 is activated only in narrow regions of the
domain, as shown by the spikes in Fig. 21.

3. High Mach astrophysical jet

Here we consider an astrophysical jet of Mach 30, without
radiative cooling [13]. This case is an example of actual gas
flows revealed from images of the Hubble Space Telescope
and therefore is of high scientific interest. Following the con-
figuration in Ref. [13], we initialize the computational domain
[0, 2] × [−0.5, 0.5] with the following conditions:

(ρ, ux, uy, p)

=
{

(5, 11.2, 0, 0.4127), if x = 0, −0.05 � y � 0.05

(0.5, 0, 0, 0.4127), otherwise.

(138)

Outflow BCs are used around the domain except the left
boundary, where the prescribed fixed conditions are imposed.
The simulation was performed with resolution [1200,600].
We compare the results between the D2Q9, D2Q16, and the
multiscale D2Q9-D2Q16 models. Figure 22 shows a compar-
ison of the pressure, density and temperature fields between
the D2Q16 and D2Q9-D2Q16 solutions. The propagation
of the bow shock into the surrounding medium as well as
the developed Rayleigh Taylor instabilities within the jet co-
coon are captured in very good agreement between the two
simulations. Figure 23 depicts the distribution of the D2Q16
lattice in the computational domain. For a quantitative com-
parison, Fig. 24 plots the density field across three horizontal
cuts of the domain. The multiscale D2Q9-D2Q16 model and
the pure D2Q16 are in excellent agreement. On the contrary,
the pure D2Q9 model evolves with clear deviations, as shown
in Fig. 24.

4. Shock structure problem

We revisit the shock structure problem using the D2Q16
and D2Q25 lattices. Similarly to [53], the high-order lattice
is activated inside the region of the shock wave, with the
refinement criterion being based on the local Knudsen number
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FIG. 14. Viscous shock tube problem (Re = 1000). Top panel shows 20 equidistant density contours ρ ∈ (20, 115).

defined as

Kn = λ∣∣ ρ

dρ/dx

∣∣ . (139)

The threshold value was set to Knthr = 0.02, a typical value
suggested in the literature [64,91]. The steady-state results for
Ma = 1.6 are shown in Fig. 25. It is observed that the density,
temperature, as well as the stress profiles match the reference
results very well. Small disturbances are also recorded in the
vicinity of the interface region of the different velocity sets.

5. Micro Couette flow

As a final test case, we simulate a shear driven Couette flow
at a high Knudsen number. It is well known that the D2Q9
lattice fails to capture the Knudsen layer, resulting in sig-
nificant deviations of the velocity profile [87]. Furthermore,
it has been reported that even-order velocity sets perform
significantly better than the odd-orders [92]. The Knudsen
number in this setup can be defined as [92]

Kn = μ
√

T

pL
, (140)

where p and L denote the pressure and the distance between
sharing plates, respectively. We test the multiscale scheme
with the D2Q16 lattice activated in the vicinity of the wall

FIG. 15. Viscous shock tube problem (Re = 1000). Density dis-
tribution along the solid wall. Symbols show reference data from
Ref. [83].

boundaries and the D2Q9 lattice in the main flow. The results
for the nondimensional velocity (normalized with the differ-
ence of the wall velocities) for Knudsen number Kn = 0.5
are presented in Fig. 26, in which comparison is made with
results from linearized BGK [92]. The multiscale model and
the uniform D2Q16 solution agree very well with each other,
as well as with the reference results.

E. Discussion

We summarize the main strategies that we adopted to sim-
plify the PonD finite-volume scheme with minimal sacrifice
of accuracy. The pivotal point is the identification of the
frame invariant moment system for the f and g populations,
according to the target hydrodynamic system. According to
Sec. II D, the frame invariant moment system for the g pop-
ulations should include up to second-order moments. Hence,
irrespective of the f lattice, we used in all simulations in this
work the D2Q9 lattice for the g populations, decreasing the
computational cost for both the g populations update and the g
reference frame transformations. Numerical experiments with
different f and g lattices did not reveal any appreciable effect
on the stability and the accuracy of the scheme.

The multiscale formulation enables the deployment of a
low-order lattice for the f populations, in regions with smooth
flow velocity and temperature variations. In accordance with
observations in Ref. [53], the stability and accuracy of the
solutions are well maintained. The efficiency gains from this
approach are naturally case dependent. We note that the
different lattices communicate solely through the Grad refer-
ence frame transformation, which renders the transition from a
single lattice to a multiscale model easy to program and highly
efficient.

The last element which differs from the PonD formu-
lations in Ref. [56] is the absence of iterations within the
flux calculation, as discussed in IV A 3. We demonstrate a
comparison between the iterative and the current formulation
through the Shu-Osher problem [90]. Figure 27 shows the
results from the two schemes, for different CFL numbers
and resolutions. One observes that for high CFL and coarse
domains, the iterative scheme is marginally more accurate
than its explicit counterpart. For moderate CFL and resolved
domains the two solutions are almost indistinguishable.
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FIG. 16. The shock structure problem with Ma 1.2. Density, temperature profiles (top), normal stress and heat flux profiles (bottom).
Third-order transformation in the left column, fourth-order in the right column.

Additional numerical experiments confirm the above ob-
servations. We can conclude that, for resolved simulations
(spatially and temporally), the noniterative flux calculation
can be safely employed.

Finally, we would like to emphasize that the properties
and, more significantly, the limitations of the DUGKS method
are inherent in the resulting PonD scheme. Regardless of the
choice of reference frame, the linear reconstruction through

slope limiters introduces numerical dissipation, as expected
from this family of schemes. Fortunately, the considerations
presented in this work associated with the adaptive reference
frame formulation of PonD extend beyond the confines of the
specific DUGKS implementation. Combining state-of-the-art
high-order and low-dissipation CFD schemes with kinetic
modeling and the PonD formulation can yield promising fluid
solvers capable of operating across a wide range of conditions,

FIG. 17. The shock structure problem with Ma 1.6. Density, temperature profiles (top), normal stress and heat flux profiles (bottom).
Third-order transformation at the left column, fourth-order at the right column.
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FIG. 18. Density profile for the Lax tube problem at t = 0.14.
The red line corresponds to D2Q16 lattice, the blue dashed line to
D2Q9, and the black dashed line to the analytical solution.

even in the presence of nonequilibrium phenomena. A rele-
vant study in the context of semi-Lagrangian PonD can be
found in Ref. [93].

VI. CONCLUSIONS

In this work, we presented the PonD formulation with
an emphasis on the requirements of the reference frame
transformation. According to the target hydrodynamic equa-
tions, conventional LBM models on a static reference frame
require a set of equilibrium moment constraints. In contrast,
PonD utilizes an adaptive comoving reference frame with
the pertinent equilibrium moment constraints being automat-
ically satisfied by exact equilibrium populations. However,
the target hydrodynamic equations introduce requirements on
the frame invariant moment system of the reference frame
transformation. The framework presented in this work is a
finite-volume DUGKS discretization of the governing kinetic
equations in an adaptive reference frame. In comparison with
the conventional DUGKS scheme, the cost to be paid for the
adaptive formulation amounts to the reference frame transfor-
mations. The benefit of this approach is enhanced accuracy,
stability and an increased operating window in terms of Mach
number and temperature. Additionally, a multiscale extension

FIG. 19. Density profile for the Lax tube problem at t = 0.14.
The red line corresponds to the D2Q9-D2Q16 model and the black
dashed line to the analytical solution. The gray dashed line indicates
the occupancy regions of the D2Q16 lattice (φ = 1) and of the D2Q9
lattice (φ = 0).

FIG. 20. Density profile for the Shu-Osher problem at t = 1.8.
The red line corresponds to the D2Q16 lattice, the blue dashed line
to the D2Q9, and the black dashed line to the reference solution [90].

can easily be incorporated and results in further efficiency
gains. Further high Mach three-dimensional simulations with
the presence of curved boundaries shall be the focus of future
work.
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APPENDIX A: HERMITE POLYNOMIALS

The Hermite polynomials up to fourth order and with dis-
crete velocities scaled such that TL = 1 are the following:

H (0)
i = 1, (A1)

H (1)
iα = ciα, (A2)

H (2)
iαβ = ciαciβ − δαβ, (A3)

H (3)
iαβγ = ciαciβciγ − [ciαδβγ ]cyc, (A4)

H (4)
iαβγ δ = ciαciβciγ ciδ − [ciαciβδγ δ]cyc + [δαβδγ δ]cyc, (A5)

where [ ]cyc stands for cyclic permutations without repetition
over indices. The contracted fourth-order polynomial is the
following:

H (4)
i,αβ = ciαciβ

[
c2

i − (D + 4)
]− δαβ

[
c2

i − (D + 2)
]
. (A6)

Calculation of expansion coefficients for given mo-
ments m = {M (0), M (1)

α , M (2)
αβ , M (3)

αβγ , M (4)
αβ } and target refer-

ence frame λ = {T, u}. The population in the target reference
frame is expanded in Grad series,

f λ
i = Wi

4∑
n=0

1

n!
α(n)(m; λ)H (n)(ci ). (A7)
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FIG. 21. Density profile for the Shu-Osher problem at different times. The red line corresponds to the D2Q9-D2Q16 model and the black
dashed line to the D2Q16 solution. The gray dashed line indicates the occupancy regions of the D2Q16 lattice (φ = 1) and of the D2Q9 lattice
(φ = 0).

The constraints which enforce the reference frame invari-
ance of the selected moments are

M (0) =
Q−1∑
i=0

f λ
i , (A8)

M (1)
α =

Q−1∑
i=0

f λ
i vλ

iα, (A9)

M (2)
αβ =

Q−1∑
i=0

f λ
i vλ

iαvλ
iβ, (A10)

M (3)
αβγ =

Q−1∑
i=0

f λ
i vλ

iαvλ
iβvλ

iγ , (A11)

M (4)
αβ =

Q−1∑
i=0

f λ
i vλ

iαvλ
iβvλ

iγ vλ
iγ , (A12)

where the discrete velocities are vλ
iα = (

√
T ciα + uα ). The

solution for the expansion coefficients is

α(0) = M (0), (A13)

α(1)
α = 1

T 1/2

(
M (1)

α − uαM (0)), (A14)

α
(2)
αβ = 1

T

{
M (2)

αβ − M (0)(T δαβ − uαuβM (0))
− [uα

(
M (1)

β − uβM (0))]
cyc

}
, (A15)

α
(3)
αβγ = 1

T 3/2

{
M (3)

αβγ − uαuβuγ M (0)

− [(M (1)
α − M (0)uα

)(
T δβγ − uβuγ

)]
cyc

− [(M (2)
αβ − M (0)uαuβ

)
uγ

]
cyc

}
. (A16)

APPENDIX B: PARTICLES ON DEMAND EQUATION

We start with the kinetic equation formulated at a constant,
uniform monitoring reference frame λ̄,

∂t f λ
i + vλ

i · ∇ f λ
i = �λ

i . (B1)

The moments mλ̄ at the monitoring frame λ̄ are connected
with the corresponding populations via a linear matrix Mλ̄,

mλ̄
i = Mλ̄

i, j f λ
j , (B2)

f λ̄
i = [Mλ̄]−1

i, j mλ
j . (B3)

We insert Eq. (B3) into Eq. (B1) and obtain the following
equation:

∂t
(
[Mλ̄]−1

i, j mλ
j

)+ vλ
i · ∇([Mλ̄]−1

i, j mλ
j

) = [Mλ̄]−1
i, j mλ

�, j, (B4)

where mλ
�, j denotes the moments from the collision opera-

tor. Next, we invoke the reference frame invariance of the
moments,

mλ̄
i = mλ(x,t )

i , (B5)

where λ(x, t ) denotes the local reference frame. We insert the
moments evaluated from the local reference frame (B5) into
Eq. (B4),

∂t
(
[Mλ̄]−1

i, j mλ(x,t )
j

)+ vλ
i · ∇([Mλ̄]−1

i, j mλ(x,t )
j

)
= [Mλ̄]−1

i, j mλ(x,t )
�, j . (B6)

Subsequently, we interchange the moments mλ(x,t )
j

with their populations at the local reference frame,
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FIG. 22. Mach 30 astrophysical jet problem. Top panel shows pressure p ∈ (0.4, 305), middle panel shows density ρ ∈ (0.1, 42), bottom
panel shows temperature T ∈ (0.1, 105). Left column shows D2Q16. Right column shows D2Q9-D2Q16.

mλ(x,t )
j = Mλ(x,t )

j,k f λ(x,t )
k and retrieve the following equation:

∂t
(
[Mλ̄]−1

i, j M
λ(x,t )
j,k f λ(x,t )

k

)+ vλ
i · ∇([Mλ̄]−1

i, j M
λ(x,t )
j,k f λ(x,t )

k

)
= [Mλ̄]−1

i, j M
λ(x,t )
j,k �

λ(x,t )
k . (B7)

FIG. 23. Mach 30 astrophysical jet problem. Lattice distribution
for the D2Q9-D2Q16 model. Black regions indicate the D2Q16
lattice.

The multiplication of the matrices [Mλ̄]−1
i, j M

λ(x,t )
j,k is the

definition of the reference frame transformation,

[
G λ̄

λ(x,t )

]
i,k

= [Mλ̄
]−1

i, j
Mλ(x,t )

j,k , (B8)

from the local frame λ(x, t ) to the monitoring frame λ̄. Thus,
Eq. (B7) is the final PonD equation,

∂t
(
Gλ

i,λ(x,t ) f λ(x,t ))+ vλ
i · ∇(Gλ

i,λ(x,t ) f λ(x,t )) = Gλ
i,λ(x,t )�

λ(x,t ),

(B9)
where, for convenience, the summation over repeated indices
is not explicit,

Gλ
i,λ(x,t ) f λ(x,t ) = [G λ̄

λ(x,t )

]
i,k f λ(x,t )

k . (B10)

APPENDIX C: CONSERVATION PROPERTIES

Without loss of generality, we consider a face at xI , with
a unit normal vector pointing at the x direction. According to
the presented scheme, the fluxes have been calculated with a
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FIG. 24. Mach 30 astrophysical jet problem. Density profiles of
the D2Q16 (black dashed line), D2Q9 (red dashed dotted line), and
D2Q9-D2Q16 (blue solid line) models, across horizontal cuts of the
domain. The horizontal cuts intercept the y axis at y/Ly = 0.66 (top),
y/Ly = 0.7 (middle), and y/Ly = 0.73 (bottom).

reference frame λ and are calculated as

Fλ
f ,i(xI ) = vλ

ix f λ
i (xI ), (C1)

Fλ
g,i(xI ) = vλ

ixgλ
i (xI ). (C2)

The f populations at the left and right neighboring cells xL,
xR are updated due to the fluxes Fλ

f ,i(xI ) as

f λL
i (xL, tn+1) = f λL

i (xL, tn) − δtGλL

i,λ
Fλ

f (xI ), (C3)

f λR
i (xR, tn+1) = f λR

i (xR, tn) + δtGλR

i,λ
Fλ

f (xI ), (C4)

FIG. 25. The shock structure problem with the multiscale frame-
work at Ma = 1.6. Top panel shows the density and temperature
profiles. Bottom panel shows the normal stresses and heat flux.
Comparison with the results of Ohwada [86]. φ = 1 indicates the
D2Q25 lattice and φ = 0 the D2Q16 lattice.

and accordingly the g populations

gλL
i (xL, tn+1) = gλL

i (xL, tn) − δtGλL

i,λ
Fλ

g (xI ), (C5)

gλR
i (xR, tn+1) = gλR

i (xL, tn) + δtGλR

i,λ
Fλ

g (xI ). (C6)

By summing over the population, we obtain the updates of the
mass, momentum, and energy at the left δρL, δ(ρu)L, δ(ρE )L

and right δρR, δ(ρu)R, δ(ρE )R neighboring cells due to the

FIG. 26. Normalized velocity for the shear driven Couette flow
with the D2Q9-D2Q16 multiscale framework, at Knudsen number
equal to 0.5. The vertical dotted line indicates the interface of the
different velocity sets. The D2Q16 lattice is activated in the vicinity
of the walls, while the D2Q9 everywhere else. The reference results
are obtained from Ref. [64].
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FIG. 27. Density profile for the Shu-Osher problem, comparing the scheme with (red dashed line) and without (blue solid line) iterations.
Black solid line corresponds to the reference results [90]. Results are shown for different CFL numbers and resolution.

fluxes of the interface,

δρL =
Q−1∑
i=0

{
f λL
i (xL, tn+1) − f λL

i (xL, tn)
} = −δt

Q−1∑
i=0

GλL

i,λ
Fλ

f (xI ), (C7)

δ(ρu)L =
Q−1∑
i=0

{
vλL

i f λL
i (xL, tn+1) − vλL

i f λL
i (xL, tn)

} = −δt
Q−1∑
i=0

vλL
i GλL

i,λ
Fλ

f (xI ), (C8)

δ(ρE )L =
Q−1∑
i=0

{(
v

λL
i

)2
2

f λL
i (xL, tn+1) + gλL

i (xL, tn+1) −
(
v

λL
i

)2
2

f λL
i (xL, tn) − gλL

i (xL, tn)

}

= −δt
Q−1∑
i=0

⎧⎨
⎩
(
v

λL
i

)2
2

GλL

i,λ
Fλ

f (xI ) + GλL

i,λ
Fλ

g (xI )

⎫⎬
⎭, (C9)

δρR =
Q−1∑
i=0

{
f λR
i (xR, tn+1) − f λR

i (xR, tn)
} = δt

Q−1∑
i=0

GλR

i,λ
Fλ

f (xI ), (C10)

δ(ρu)R =
Q−1∑
i=0

{
vλR

i f λR
i (xR, tn+1) − vλR

i f λR
i (xR, tn)

} = δt
Q−1∑
i=0

vλR
i GλR

i,λ
Fλ

f (xI ), (C11)

δ(ρE )R =
Q−1∑
i=0

{(
v

λR
i

)2
2

f λR
i (xR, tn+1) + gλR

i (xR, tn+1) −
(
v

λR
i

)2
2

f λR
i (xR, tn) − gλR

i (xR, tn)

}

= δt
Q−1∑
i=0

{(
v

λR
i

)2
2

GλR

i,λ
Fλ

f (xI ) + GλR

i,λ
Fλ

g (xI )

}
. (C12)
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The finite volume is strictly conservative with respect to mass,
momentum, and total energy when

δρR + δρL = 0, (C13)

δ(ρu)R + δ(ρu)L = 0, (C14)

δ(ρE )R + δ(ρE )L = 0. (C15)

Substituting from the above expressions we arrive at the fol-
lowing constraints:

Q−1∑
i=0

GλL

i,λ
Fλ

f =
Q−1∑
i=0

GλR

i,λ
Fλ

f , (C16)

Q−1∑
i=0

vλL
i GλL

i,λ
Fλ

f =
Q−1∑
i=0

vλR
i GλR

i,λ
Fλ

f , (C17)

Q−1∑
i=0

(
vλL

i

)2
2

GλL

i,λ
Fλ

f + GλL

i,λ
Fλ

g =
Q−1∑
i=0

(
vλR

i

)2
2

GλR

i,λ
Fλ

f + GλR

i,λ
Fλ

g .

(C18)

The constraints are satisfied if the following moments of
the f populations are invariant upon reference frame transfor-
mation,

Q−1∑
i=0

v
λL
ix f λL

i =
Q−1∑
i=0

v
λR
ix f λR

i , (C19)

Q−1∑
i=0

vλL
i v

λL
ix f λL

i =
Q−1∑
i=0

vλR
i v

λR
ix f λR

i , (C20)

Q−1∑
i=0

(
vλL

i

)2
v

λL
ix f λL

i =
Q−1∑
i=0

(
vλR

i

)2
v

λR
ix f λR

i , (C21)

and the following for the g populations,

Q−1∑
i=0

v
λL
ix gλL

i =
Q−1∑
i=0

v
λR
ix gλR

i . (C22)

APPENDIX D: FORCING SCHEME

We consider the continuous kinetic equation with a forcing
term

∂t fi + vi · ∇ fi = 1

τ

(
f eq
i − fi

)+ Fi. (D1)

The body force can be expressed as

Fi = −a · (vi − u)

T
f eq
i . (D2)

The force can be incorporated by the Strang-Splitting ap-
proach,

∂t fi = Fi (for δt/2), (D3)

∂t fi + vi · ∇ fi = 1

τ

(
f eq
i − fi

)
(for δt ), (D4)

∂t fi = Fi (for δt/2). (D5)

The intermediate step is the kinetic update without body force.
In the two half-time forcing steps, the distribution function
and the macroscopic velocity are updated as

f ∗
i = fi + 1

2δtFi, (D6)

u∗ = u + 1
2δta. (D7)
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