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Noise-cancellation algorithm for simulations of Brownian particles

Regina Rusch ,1 Thomas Franosch ,1 and Gerhard Jung 2

1Institut für Theoretische Physik, Technikerstraße 21-A, Universität Innsbruck, A-6020 Innsbruck, Austria
2Laboratoire Charles Coulomb (L2C), Université de Montpellier, Centre National de la Recherche Scientifique, 34095 Montpellier, France

(Received 14 September 2023; accepted 12 December 2023; published 18 January 2024)

We investigate the usage of a recently introduced noise-cancellation algorithm for Brownian simulations to
enhance the precision of measuring transport properties such as the mean-square displacement or the velocity-
autocorrelation function. The algorithm is based on explicitly storing the pseudorandom numbers used to create
the randomized displacements in computer simulations and subtracting them from the simulated trajectories. The
resulting correlation function of the reduced motion is connected to the target correlation function up to a cross-
correlation term. Using analytical theory and computer simulations, we demonstrate that the cross-correlation
term can be neglected in all three systems studied in this paper. We further expand the algorithm to Monte Carlo
simulations and analyze the performance of the algorithm and rationalize that it works particularly well for
unbounded, weakly interacting systems in which the precision of the mean-square displacement can be improved
by orders of magnitude.
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I. INTRODUCTION

Since Einstein’s work in 1905 on the motion of sus-
pended particles in fluids [1], over 100 years of research
have been devoted to better understand Brownian motion
[2,3] with implications for statistical physics, biophysics [4,5],
biochemistry [6], and beyond. Scientific progress has been
achieved through experiments [7] as well as the development
of advanced theories [8]. Later, computer simulations have
become essential for studying Brownian particles [9]. Com-
puter simulations have matured into an important tool for
understanding the complex behavior and transport of Brown-
ian particles and making quantitative comparisons with theory
and experiments [10–13]. The main limitation of computer
simulations is the available computational resources, which
restrict the precision of the extracted transport properties, such
as the calculation of the mean-square displacement (MSD)
or the velocity-autocorrelation function (VACF). Therefore,
extensive research has been devoted to address these chal-
lenges, resulting in numerous algorithmic improvements and
enhanced sampling methods suitable for specific contexts
[14–18].

In a recent study by Mandal et al. [19], a novel
noise-cancellation (NC) algorithm was introduced to further
enhance precision in Brownian dynamics simulations beyond
the usage of suitable sampling techniques. The algorithm,
motivated by an earlier algorithm by Frenkel [20] for hopping
transport on lattices, was used to investigate the VACF in
dilute hard-sphere fluids and revealed a long-time tail in the
VACF with a decay rate of t−5/2, indicating the existence of
persistent anticorrelations despite the absence of momentum
conservation. These tails arise due to particle conservation
and repeated encounters with scatterers and were predicted
using analytical theory in the dilute regime [21–24]. Ex-
tracting this tail from the VACF, which is dominated by
Brownian noise, is notoriously difficult and would require

extensive computer simulations without the usage of the NC
algorithm.

The basic idea of the algorithm is to store the pseudoran-
dom numbers used to create the randomized displacements
in computer simulations and subtract them from a simulated
trajectory to obtain a reduced trajectory. Similar concepts
can be found in earlier publications [25–27]. The MSD of
the reduced trajectory contains the potential- and collision-
induced displacements and can subsequently be linked to the
standard MSD with an additional cross-correlation (CC) term.
In Ref. [19] this CC term has been found to be negligible com-
pared to the reduced MSD for the specific case of Brownian
dynamics simulations of hard-sphere fluids.

In this paper we provide analytical support for the em-
pirical findings of Ref. [19] since we see applications of
the algorithm far beyond the specific system analyzed in
Ref. [19]. We further supply detailed algorithms and guide-
lines for implementations, in particular for Monte Carlo
simulations. Our strategy to increase the understanding of the
algorithm and its limitations is to use quite simplistic systems
which still allow for generalization of the results.

We consider Brownian dynamics simulations [19] and
Monte Carlo simulations and apply the algorithm to three
different one-dimensional potentials: the harmonic potential,
the periodic barrier potential [28,29], and the cosine potential.
Harmonic potentials are widely used in Brownian motion
research, such as in optical tweezers, because of their sim-
plicity and ability to confine particles [11,12]. Periodic cosine
potentials also have broad applications, including modulated
liquids [30], fluctuations of Josephson supercurrents through
a tunneling junction [31], lattice systems [32], and directed
transport [33,34].

Varying the strength of the external potentials enables us to
study the performance of the NC algorithm. The performance
is determined by comparing the error of the MSD obtained
from the NC algorithm with the error of the MSD determined
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using standard simulations. We find a decrease of up to two
orders of magnitude in the periodic models for small potential
heights. In contrast, we found an increase of the error in
systems in which the particle is bounded. In addition, we
compute the VACF and illustrate the system dynamics, and
confirm the algebraic initial decay of t−1/2 for the periodic
potential in Sec. V [21,22,35].

The paper is organized as follows. The NC algorithm is
introduced in Sec. II and the implementation explained in
Sec. III. For the harmonic model in Sec. IV we solve analyt-
ically the discretized overdamped Langevin equation to show
that the CC term vanishes for sufficiently short simulation
time steps and compare the results to Brownian dynamics
simulations. This also gives detailed insight into the nontrivial
convergence behavior of the variance of this distribution. For
the periodic models in Secs. V and VI we perform Monte
Carlo simulations to show that the CC term is much smaller
than Brownian noise and analyze the performance of the
model. Finally, a summary and conclusion are provided, and
potential future applications of the NC algorithm are pre-
sented in Sec. VII.

II. NOISE-SUPPRESSION ALGORITHM

The NC algorithm, motivated by Frenkel [20] and elab-
orated by Mandal et al. [19], was implemented to increase
the precision in computing the MSD 〈�x(t )2〉 and its
derived quantities, computed from particle displacements
�x(t ) = x(t ) − x(0) calculated using standard simulations.
We define the VACF for a colloidal suspension,

Z (t ) := 1

2

d2

dt2
〈�x(t )2〉, (1)

such that it corresponds to the standard VACF in the Newto-
nian case. The fundamental idea behind the algorithm is to
generate an additional trajectory of free particles with iden-
tical noise (i.e., pseudorandom numbers). The free particle
displacement �xf(t ) = xf (t ) − xf (0) can be subtracted from
the original trajectory to obtain the reduced displacement:

�xred(t ) := �x(t ) − �xf (t ). (2)

A visualization of the algorithm is displayed in Fig. 1 for the
case of a one-dimensional periodic barrier potential. The free
particle moves only due to Brownian noise. If this noise is
subtracted from the trajectory, what remains is the reduced
trajectory, which varies only due to interactions with the
potential-energy landscape.

The core concept of the NC algorithm involves rewriting
the standard MSD in terms of the reduced MSD and the free
particle MSD:

〈�x(t )2〉 = 〈�xf(t )2〉 − 〈�xred(t )2〉 + 2〈�x(t )�xred(t )〉. (3)

Importantly, the MSD for a free particle is noiseless, be-
cause it can be replaced with the exact result 〈�xf (t )2〉 = 2Dt
in one dimension, where D denotes the bare diffusion con-
stant. In addition, the CC term 〈�x(t )�xred(t )〉 will be shown
to be often much smaller than the MSD of a free particle
minus the reduced MSD. If the CC term can be neglected, the
MSD can therefore be computed by subtracting the reduced

FIG. 1. Trajectory of a free Brownian particle �xf(t ), a Brow-
nian particle in a periodic barrier potential �x(t ) with identical
noise (see Sec. V), and the difference between the two, the reduced
trajectory �xred(t ).

MSD from the solution of a free particle:

〈�x(t )2〉 ≈ 2Dt − 〈�xred(t )2〉. (4)

This is the core relation for the NC algorithm as it shows
that the calculation of the full MSD can be replaced by an
exact result combined with a—hopefully—much less noisy
interaction term 〈�xred(t )2〉. It should also be mentioned that
neglecting the CC term simplifies the implementation and
eliminates the component containing Brownian noise. How-
ever, if the CC term is not negligible but adds sufficiently less
noise, the algorithm implemented as in Eq. (3) is still exact
and can perform well.

Inserting Eq. (4) into the definition Eq. (1), we similarly
find an expression for the VACF:

Z (t ) = 1

2

d2

dt2
〈�x(t )2〉 ≈ −1

2

d2

dt2
〈�xred(t )2〉 = ZNC(t ). (5)

This relation shows that the VACF of the interacting parti-
cle can be determined from the reduced trajectories, thereby
increasing the precision of the simulation by typically two
orders of magnitude. Therefore, the algorithm is particularly
suitable for unraveling subtle correlations hidden beneath the
dominant Brownian noise.

III. IMPLEMENTATION OF THE NC ALGORITHM

The algorithm can be applied to Brownian dynamics:

d

dt
x(t ) = μF [x(t )] + η(t ), (6)

which describes the evolution of the particle position x(t ) at
time t . Here F [x(t )] is the force acting on the particle and
μ denotes the mobility. For simplicity, we restrict the discus-
sion to one-dimensional systems; however, the considerations
can be readily transferred to higher dimensions or interacting
particles. The Brownian particle in the overdamped regime
(no inertia) moves due to thermal fluctuations modeled by
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Gaussian white noise η(t ) with the properties

〈η(t )〉 = 0, 〈η(t )η(t ′)〉 = 2Dδ(t − t ′), (7)

where D is the (short-time) diffusion coefficient. Temperature
enters the problem via the Einstein relation D = μkBT .

Similarly, the NC algorithm can be used in combination
with Monte Carlo simulations in which the free trajectory
without interactions uses the identical trial moves in each
Monte Carlo step as the standard simulation with interactions.

To apply this algorithm in computer simulations, we gener-
ate two trajectories relying on the identical noise history. We
discretize the equation of motion, Eq. (6) with a time step �t
such that xn approximates x(n�t ). Using the Euler-Maruyama
discretization [36–38] we find the iteration scheme

xn+1 = xn + μF (xn)�t + ηn, (8a)

xf
n+1 = xf

n + ηn, (8b)

with n ∈ Z. Here ηn are Gaussian random variables character-
ized by

〈ηn〉 = 0, 〈ηnηm〉 = 2D�tδnm. (9)

Rather than calculating the free motion, Eq. (8b), we eliminate
the free dynamics in favor of the reduced motion xred

n := xn −
xf

n with iteration scheme

xn+1 = xn + μF (xn)�t + ηn, (10a)

xred
n+1 = xred

n + μF (xn)�t, (10b)

highlighting that the reduced dynamics is much smoother
than the original one. Ensemble-averaged observables such as
the MSD are then obtained as moving time averages of the
corresponding discretized version. The standard MSD can be
derived from the reduced MSD, as in Eq. (4). The VACF of the
system can be approximated by the negative discrete second
derivative of the reduced MSD as indicated in Eq. (5).

Importantly, the implementation and computational effort
of the algorithm are minimal, as they only require calculating
the difference to a second trajectory of free particles and
no additional force calculations are necessary, which are the
bottleneck of most computer simulations.

IV. BROWNIAN PARTICLE IN A HARMONIC POTENTIAL

In this section, we demonstrate that the CC term is neg-
ligible in the harmonic relaxator and thus Eqs. (4) and (5)
are valid. We calculate the CC term analytically by solving
the discretized overdamped Langevin equation and compare
Brownian dynamics simulations to the analytic solution. The
model consists of a one-dimensional, single Brownian particle
in a harmonic potential

U (x) = k

2
x2, (11)

with spring constant k. Then, the discretized equation of mo-
tion Eq. (10) reads

xn+1 = xn − xn�t/τ + ηn, (12a)

xred
n+1 = xred

n − xn�t/τ, (12b)

with the trap relaxation time τ = 1/μk. By induction one
finds the closed solution

xn = x0rn +
n∑

k=1

rn−kηk, (13a)

xred
n = x0(rn − 1) +

n∑
k=1

(rn−k − 1)ηk, (13b)

with the abbreviation r = 1 − �t/τ where �t � τ is antici-
pated. The angular brackets are to be understood as ensemble
averages which in simulations are replaced by time averages.
We therefore consider the simulation to have started in the
remote past such that the system is in equilibrium at time zero.
Correspondingly x0 is drawn from the stationary probability
distribution of the discrete stochastic process (xn)n∈Z. From
Eq. (12) one can see that for a stationary process, it holds that

〈xn+1〉 = r〈xn〉 + 〈ηn〉 != 〈xn〉, (14)

which implies 〈xn〉 = 0 as 0 < r < 1. We find that xn is a cen-
tered Gaussian variable and for the variance in the stationary
case we impose

Var[xn+1] = r2Var[xn] + Var[ηn]
!= Var[xn], (15)

from which

Var[xn] = 2D�t

1 − r2
= Dτ + D�t

2
+ O(�t2) (16)

follows. This shows that the discrete Langevin equation does
not lead exactly to the Boltzmann distribution with variance
Dτ = kBT/k but includes a correction term vanishing only in
the limit �t → 0. The CC term is then readily calculated from
Eq. (13) since after averaging over the thermal noise, only
contributions from the initial condition and diagonal terms of
the noise survive. We find〈

�xred
n �xn

〉 = 〈
x2

0

〉
(1 − rn)2 + 2D�t

∑
k=1

(rn−k − 1)rn−k,

(17)

where �xn = xn − x0 and �xred
n = �xn − �xf

n = xred
n since

at time zero the positions of the free and interacting par-
ticle coincide. From the derived distribution, we find that
〈x2

0〉 = 2D�t/(1 − r2) and expression Eq. (17) simplifies to

〈
�xred

n �xn
〉 = 2D�t (1 − rn)

1 + r

= D�t(1 − e−t/τ ) + O(�t2), (18)

where in the second line we anticipate the continuum limit
�t → 0, n → ∞ with t = n�t fixed. Reinstating continuous
time, we find that the CC term

〈�xred(t )�x(t )〉 = 0 (19)

vanishes for the harmonic relaxator and Eq. (18) reveals that
convergence is linear in the time step �t . For reference, we
also provide the expressions for the MSDs for the discretized
form

〈�x(t )2〉 = 4D�t (1 − rn)

1 − r2

= 2Dτ (1 − et/τ ) + O(�t ), (20a)
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FIG. 2. Analytical results in lines and simulation results in sym-
bols for each term in Eq. (3) for the harmonic relaxator. (a) Reduced
MSD 〈�xred(t )2〉 and standard MSD 〈�x(t )2〉 for �t/τ = 0.01. The
dashed gray line represents the free diffusion and serves as a guide
for the eye. (b) CC term 〈�xred (t )�x(t )〉 for different simulation time
steps �t .

〈�xred(t )2〉 = 2D�t

(
n − 2r(1 − rn)

1 − r2

)

= 2Dt − 2Dτ (1 − et/τ ) + O(�t ). (20b)

We compare Brownian dynamics simulations to analytical
results using the discretized overdamped Langevin equation,
Eq. (12). To save simulation time and memory, we use the
order-n algorithm described in Frenkel and Smit [39] to cal-
culate the MSD on a logarithmic scale for all simulations
performed in this paper. As expected, the CC term decreases
as the simulation time step �t is decreased [see Fig. 2(b)]. The
simulated data are in very good agreement with the analytical
solution found in Eqs. (18) and (20). The CC term increases
linearly in time for short times t � τ and reaches a constant
value, depending on the simulation time step �t for t 
 τ .
The CC term in Eq. (3) is negligible, as it is orders of mag-
nitude smaller than the other terms of the equation, which are
the difference between the free particle and the reduced MSD.

Besides the analysis of the CC term we investigated the
performance of the NC algorithm applied to the harmonic

FIG. 3. Comparison of the standard error of the mean �(t ) of
the reduced MSD computed using the NC algorithm and the stan-
dard (STD) MSD for different simulation time steps for a harmonic
relaxator.

relaxator. We compare the error of the reduced MSD obtained
using the NC algorithm with the error of the MSD obtained
using the standard algorithm. To quantify the error, we use the
standard error of the mean (SEM), which is extracted from
n independent simulations. The SEM � of the MSD is then
computed as

� =
√

σ 2

n
, (21a)

σ 2 = 1

n − 1

n∑
i=1

[〈�x(t )2〉i − 〈�x(t )2〉]2, (21b)

where σ 2 is the sample variance and 〈�x(t )2〉 is the sample
mean. We find that the SEM of the MSD is, for long times,
larger when using the NC algorithm compared to standard
simulations (see Fig. 3) for both simulation time steps. At
these times, the MSD displays a plateau due to the con-
fining potential, while both the reduced MSD and the CC
term increase linearly [see Fig. 2(b)]. We will further discuss
the efficiency of the algorithm when applied to (temporarily)
trapped particles in the next sections.

V. BROWNIAN PARTICLE IN A PERIODIC
BARRIER POTENTIAL

The objective of this section is to determine how well the
NC algorithm performs for different potential barriers. The
performance is determined by comparing the precision of
the reduced MSD from the NC algorithm to the MSD of the
standard method. We apply the algorithm to a periodic barrier
model, vary the potential height, and determine the ranges in
which the algorithm’s performance is favorable. Analyzing
the underlying factors contributing to these findings, we can
draw conclusions that may be generalizable to other systems
and indicate important applications of the method.

The system of choice is a single Brownian particle in a one-
dimensional periodic potential with period a. The potential
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consists of constant regions only and is defined by

U (x) =
{
�U for − a/2 < x � 0,

0 for 0 < x � a/2,
(22)

with potential height �U and continued periodically

U (x) = U (x + a). (23)

Since �U > 0, there are jumps in the potential at x = ma
and x = (m + 1/2)a for integer m ∈ Z. Then, the period of
the potential a sets the unit of length, while τ := a2/D is the
natural time scale of the problem. There is a single dimension-
less control parameter corresponding to the reduced potential
step �U/kBT . Here D is the (bare) diffusion constant of the
Brownian particle and kBT is the thermal energy.

We perform Monte Carlo simulations using the
Metropolis algorithm to simulate the Brownian particle
[40–42]. Therefore, we extend the NC algorithm in the
following for the case of Monte Carlo simulations. We
use discrete time steps �t and denote our approximant for
x(n�t ) by xn. At each time, a Gaussian random number with
vanishing mean 〈ηn〉 and variance 〈η2

n〉 = 2D�t is used. The
trial move for the trajectory of the problem is x∗

n+1 = xn + ηn.
Then, we sample a binary random variable Xn such that the
probability for Xn = 1 (accept move) is

Prob(Xn = 1) = min
(
e−[U (x∗

n+1 )−U (xn )]/kBT , 1
)
, (24)

and Prob(Xn = 0) = 1 − Prob(Xn = 1) (reject move). The
new positions for the motion of the problem and the free
motion are then

xn+1 = xn + Xnηn, (25a)

xf
n+1 = xf

n + ηn. (25b)

Note that for the free motion the trial move is always
accepted. For the reduced motion we find the more compact
expression

xn+1 = xn + Xnηn, (26a)

xred
n+1 = xred

n + (Xn − 1)ηn. (26b)

The last relation highlights that the reduced motion
changes only if the trial move of the original trajectory is
rejected, Xn = 0. This can only happen if the particle at-
tempts to climb the potential, which in this case of a stepwise
potential can occur only at jumps. We apply the NC algo-
rithm to the model for different barrier heights �U/kBT . At
short times t � τ , the MSD corresponds to free diffusion
〈�xf(t )2〉 = 2Dt [see Fig. 4(a)]. For longer times, a plateau
emerges for sufficiently high barriers at time scales where
the particle is temporarily trapped between the barriers (t �
τ ). The particle will not remain trapped indefinitely because
there is a nonzero probability that it will overcome the bar-
rier. Therefore, for a sufficiently long observation time t 

τ , each MSD grows linearly in time again with a long-
time diffusion coefficient that decreases as the barrier height
increases.

In Eq. (3) the standard MSD is decomposed into the re-
duced MSD 〈�xred(t )2〉, the CC term 〈�xred(t )�x(t )〉, and
the MSD of a free particle 〈�xf(t )2〉. In the following, these
terms and their variances are analyzed. The CC term assumes
positive and negative values. For better visualization, we show

FIG. 4. Simulation results for each term in Eq. (3) for a Brownian
particle in a periodic barrier potential for different potential heights
�U . (a) Standard MSD 〈�x(t )2〉. (b) Reduced MSD 〈�xred (t )2〉 and
the absolute value of the CC term |〈�x(t )�xred(t )〉|.

the absolute value of the CC term [see Fig. 4(b)]. For the given
potential heights, the absolute value of the CC term is several
orders of magnitude smaller than the MSD of the free particle
minus the reduced MSD and is thus negligible.

In general, similar to the standard MSD, the reduced MSD
increases linearly with time for longer times. Yet, unlike the
standard MSD displaying a plateau for high potential barriers
at intermediate times t � τ , the reduced MSD is not bounded
for all times, because it always contains contributions from
the unbounded motion of the free particle.

To analyze the performance of the NC algorithm we com-
pare it to standard computer simulations, which correspond in
this case to Monte Carlo simulations of the Brownian particle
in a periodic barrier potential. More precisely, we compare the
SEM, Eq. (21), of the reduced MSD obtained using the NC
algorithm to the SEM of the MSD obtained using the standard
algorithm. We find that the NC algorithm reduces the SEM
of the MSD by approximately one order of magnitude for
barrier heights in the range of �U � kBT (see Fig. 5). For
a barrier height of �U = 0.1kBT , the SEM is reduced by two
orders of magnitude compared to the standard method. This
can be intuitively understood because the dynamics in systems
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FIG. 5. Comparison of the standard error of the mean �(t ) of the
reduced MSD computed using the NC algorithm and standard MSD
for different barrier heights for a Brownian particle in a periodic
barrier potential.

with small barriers is dominated by free diffusion, which is
suppressed in the NC algorithm.

Consistent with the analysis of the harmonic relaxator,
we find that the performance of the NC algorithm is
poor for times t � τ when considering barrier heights of
�U � 10 kBT , for which the SEM for the reduced MSD
exceeds that of the standard MSD. We rationalize this obser-
vation using the amplitude of the standard and the reduced
MSD. For sufficiently high barriers, the standard MSD ex-
hibits a plateau at intermediate times and is therefore smaller
in amplitude than the reduced MSD, which grows at least
linearly. The smaller amplitude also leads to smaller vari-
ances as visible in Fig. 5. Consequently, the effect of the
plateau in the MSD, which reduces the variance, is stronger
than the error reduction achieved by the NC algorithm. Only
for short times t � τ , the performance is good because
the reduced trajectory is free of the dominant Brownian
noise, resulting in higher precision compared to the standard
trajectory.

Finally, we also calculate the VACF from the MSD using
Eq. (5) for �U = 1.0kBT . The error of the VACF is computed
with error propagation from the SEM of the MSD. The VACF
is not following an exponential for short times but exhibits a
power-law decay of t−1/2 (see Fig. 6). This is due to the pres-
ence of barriers and reflection of the hard walls [21,22,35].
The VACF of the algorithm coincides with the standard one;
however, the error is reduced by the algorithm. The algo-
rithm excels in potentials where the diffusion is minimally
suppressed, as indicated by 〈�xred(t )2〉 � 〈�x(t )2〉. In these
cases the correction of the MSD to free diffusion is small.
Nonetheless, this minor correction is important for computing
the VACF, and the performance gain of the NC algorithm
is significant.

VI. BROWNIAN PARTICLE IN A COSINE POTENTIAL

We apply the same algorithm and analysis tools to a single
Brownian particle in a periodic cosine potential and compare

FIG. 6. VACF for the periodic barrier potential computed using
the two different algorithms, standard and NC on double-logarithmic
scales for U = 1.0kBT . The dashed line serves as a guide for the eye.

the results with the noncontinuous periodic barrier potential
discussed in the previous Sec. V. The purpose of this analysis
is to investigate the dependence of our conclusions on the
details of the potential.

We again analyze all terms of Eq. (3) for different system
parameters and analyze the performance of the algorithm by
comparing the SEM, Eq. (21), of the reduced MSD obtained
from the NC algorithm to the MSD obtained with the standard
method. The system consists of a single Brownian particle in
a one-dimensional cosine potential:

U (x) = �U

2
cos(2πx/a). (27)

We choose the period a and the peak-to-peak amplitude �U
of the cosine potential to be the same as for the periodic
barrier potential. In contrast to the periodic barrier potential,
the cosine potential is smooth and continuous with localized
minima.

We apply the algorithm to a range of different peak-to-
peak amplitudes �U . We find that the qualitative behavior
of the particle in the cosine potential is similar to that of the
particle in the periodic barrier potential. For �U � kBT , the
particle undergoes almost pure diffusion, whereas for higher
�U � kBT a plateau emerges in the MSD for intermediate
times [see Fig. 7(a)].

Similar as described in Sec. V we observe that the absolute
value of the CC term is again several orders of magnitude
smaller than the MSD of a free particle minus the reduced
MSD and can therefore be neglected [see Fig. 7(b)]. Con-
sistent with the previous results, we infer that the algorithm
works better for systems with lower barriers as shown in
Fig. 8. In fact, the improvement is even in quantitative agree-
ment with our results of Sec. V, as for the potential height
of �U = 1.0kBT we observe an improvement of one order
of magnitude, and for �U = 0.1 kBT the improvement is
already two orders of magnitude. This is a crucial finding: it
shows that the details of the interactions are not relevant for
the analysis and performance of the NC algorithm. Therefore,
we can expect that the analysis performed and the conclusions
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FIG. 7. Simulation results for each term in Eq. (3) for a Brownian
particle in a cosine potential for different peak-to-peak amplitudes
�U . (a) Standard MSD 〈�x(t )2〉. (b) Reduced MSD 〈�xred(t )2〉 and
the absolute value of the CC term |〈�xred(t )�x(t )〉|.

FIG. 8. Comparison of the standard error of the mean �(t ) of the
reduced MSD computed using the NC algorithm and standard MSD
for different peak-to-peak amplitudes �U for a Brownian particle in
a cosine potential.

FIG. 9. VACF Z (t ) for the cosine potential computed using
the two different algorithms on double-logarithmic scales for
�U = 0.1kBT . Z (t ) from the standard (STD) method is shown in
dots and ZNC(t ) from the NC algorithm is shown in triangles.

drawn in the present paper are relevant for very general soft-
matter systems and could therefore be used as a guide to which
systems the NC algorithm should be applied to.

Finally, we use the algorithm to compute the VACF and vi-
sualize the results in Fig. 9 for the system with �U = 0.1kBT .

The figure reveals that for weakly interacting systems the
algorithm indeed becomes increasingly efficient and enables
us to extract transport quantities which would otherwise be in-
accessible. While the diffusion coefficient exhibits a minimal
suppression for lower amplitudes and only minor changes in
the MSD emerge, this effect becomes significant in the VACF
computation, highlighting the efficiency of the NC algorithm.

VII. SUMMARY AND CONCLUSION

In this paper we have analyzed the NC algorithm for single
Brownian particles in three different external potentials to un-
derstand for which systems it can be applied most efficiently.
Detailed suggestions for the implementation in Brownian dy-
namics simulations and especially in Monte Carlo simulations
were described, while we highlighted that the implementa-
tion is computationally efficient and straightforward. We have
demonstrated that the cross-correlation term is negligible in
all cases, which significantly simplifies the algorithm. If not,
the performance is additionally dependent on the noise orig-
inating from the cross-correlation term. Solving the discrete
Langevin equation analytically for the harmonic potential
model showed that the CC term converges to zero and also that
the variance of displacements is not Boltzmann distributed for
nonzero simulation time steps but includes a correction term.

We analyzed the performance of the NC algorithm for
different systems with varying interaction strengths and found
that the performance increases strongly as the interaction
becomes weaker. In contrast, we have highlighted and ratio-
nalized that in the case of bounded particles the NC algorithm
becomes less efficient than standard simulations. Therefore,
the algorithm should be applied to weakly interacting sys-
tems, which are notoriously difficult to handle using standard

015303-7



RUSCH, FRANOSCH, AND JUNG PHYSICAL REVIEW E 109, 015303 (2024)

computer simulations. “Weakly interacting” can relate to the
motion of Brownian particles in weak external potentials,
weakly interacting Brownian particles, or dilute suspensions
of Brownian particles. In these systems, the correction of
the mean-square displacement from free diffusion is minor,
whereas this correction is significant for computing the VACF,
thus the impact of the NC algorithm is substantial.

This conclusion appears to be independent of details in the
interaction potentials and can be applied to both continuous
and discontinuous potentials. For simplicity, we have focused
in this paper on one-dimensional models of single Brownian
particles, but the algorithm is easily extendable to two or more
dimensions and to interacting Brownian particles, for which it
has originally been developed [19]. Importantly, the algorithm
is also not restricted to translational Brownian noise. For
example, it should be applicable to reveal complex transport
in systems with aspherical particles with rotational diffusion,
including the paradigmatic active Brownian particle model
[43]. The applicability is not restricted to Brownian noise but

can also suppress noise from Monte Carlo simulations. The
only requirement is that one can separate the dynamics into an
analytically solvable “free” motion and complex interactions,
which includes for example active Ornstein-Uhlenbeck parti-
cles [44] in similar potentials as analyzed in this paper which
can induce nonequilibrium transport [45]. Thus, the algorithm
works only for computer experiments where the pseudoran-
dom noise is known and not for laboratory experiments. We
therefore expect this algorithm to find various applications in
statistical physics to compare with analytical results in weakly
interacting systems and in soft matter of passive and active
particles to study complex transport.
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