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Self-consistent force scheme in the spectral multiple-relaxation-time lattice Boltzmann model
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In the present work, the force term is first derived in the spectral multiple-relaxation-time high-order lattice
Boltzmann model. The force term in the Boltzmann equation is expanded in the Hermite temperature rescaled
central moment space (RCM), instead of the Hermite raw moment space (RM). The contribution of nonequi-
librium RCM moments beyond second order are neglected. For the collision operator in the RCM space, each
order of the force term can be incorporated directly. Through the transformation between the RCM space and
the RM space, the force term for practical numerical implementation in the RM space can be derived. It can be
demonstrated that the present force scheme is self-consistent for the isothermal flow and compressible thermal
flow with adjustable Prandtl number via the numerical experiments.
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I. INTRODUCTION

Since the early development of the lattice Boltzmann
method (LBM), implementation of the body force term has
been generating continued interest [1]. This is especially true
in recent years as more complex collision models are adopted
in place of the Bhatnagar-Gross-Krook (BGK) [2] model and
LBM applied to multiphase flows where the interaction is
modeled by a Vlasov body force [3,4]. Both trends call for
more accurate treatment of the body force term. Literally
a dozen force schemes have been proposed and extensive
numerical evaluations conducted [5,6]. Nevertheless, a con-
clusion has not been reached on how the force term should be
implemented independent of the details of the collision model
and underlying lattice.

One of the earliest force schemes is the intuitive velocity-
shift method used in the modeling of intermolecular interac-
tions [3]. This method shifts the velocity in the equilibrium
distribution by g�t , where g is the acceleration and �t the
time step. A more refined scheme [7] eliminated the discrete
lattice effect by introducing unknown coefficients in the force
term and determining them by matching the recovered macro-
scopic equation with Navier-Stokes equations. Benchmarks in
the context of nonideal gas showed that, with the velocity-
shift scheme, the equilibrium densities have an unphysical
dependence on the relaxation time, whereas with the scheme
developed by Yu et al. [8] this abnormality is completely
eliminated. Li et al. [9] analyzed the exact difference method
(EDM) [10] and found that its great stability in the Shan-Chen
(SC) model [3] is attributed to the extra error introduced to
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the pressure tensor. Furthermore, Li et al. [9] proposed an
improved force scheme to deal with the high-density ratio in
the SC model. Several force schemes for the central-moment
multiple-relaxation-time collision models with standard lat-
tice have also been developed [11–13].

It is worth noting that, in terms of the hydrodynamic mo-
ments, the leading effect of all the models are unanimously the
same, namely, when considered as an addition to the normal
collision term, the zeroth moment of the body force term
vanishes to ensure mass conservation and the first moment
equals to g�t . The subtle differences are only in the second
and higher moments representing the additional momentum
and energy fluxes caused by the body force. This effect man-
ifests in cases such as multiphase flow modeling where the
additional stress plays a significant role [8].

The complexity and controversy are partially due to the fact
that the development of the force schemes mostly followed the
same a posteriori approach of the LB development. The LB
equation is constructed as a kinetic model fully discretized
in both the velocity and configuration spaces with a dis-
cretized time. The errors caused by all discretizations are then
optimized to achieve the correct macroscopic Navier-Stokes
equation. Besides being disconnected from the Boltzmann
equation which includes the effect of the body force, the
multiple expansion approach quickly becomes unmanageable
for more complex collision models.

In the kinetic theoretical formulation of LB [14,15], the
LB equation is obtained by first discretizing the continuum
Boltzmann-BGK equation in the velocity space, resulting in
a set of partial differential equations for the discretized distri-
bution functions in the velocity space. Without any ambiguity,
the body force is given by the finite Hermite expansion of the
body force term [15,16]. However, to further discretize it in
the temporal and physical space, multiple schemes exist.

The LBE can be obtained by discretizing the discrete-
velocity Boltzmann equation in space and time. In presence
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of a body force, the discrete lattice effect can be eliminated
[7] a posteriori. Actually the same correction can be obtained
a priori for the BGK model by integrating the discretized
Boltzmann equation along the characteristic line together with
a trapezoidal rule to handle the collision and body-force terms
[17]. The similar approach can be applied to the recently
suggested SMRT collision model [18–20] to incorporate the
body force.

With the BGK collision model, the description of the
collision as a uniform relaxation process of the distribution
function towards its equilibrium is in many cases simplistic.
In a previous series of papers [20–22], the SMRT collision
model was developed where the irreducible components of
the Hermite coefficients are relaxed separately in the refer-
ence frame moving with the fluid. These components are the
minimum tensor components that can be separately relaxed
without violating rotation symmetry.

The rest of the paper is organized as follows. The theoreti-
cal derivation is presented in Sec. II with the discrete-velocity
force scheme presented in Sec. II A, the derivation of the
force scheme for the BGK model in Sec. II B, and the force
scheme for the SMRT collision model in Sec. II C. Some
numerical verification is given in Sec. III and the conclusion
and discussions are given in Sec. IV.

II. BOLTZMANN-BGK EQUATION

A. Background

In kinetic theory [23], the evolution of the single-particle
distribution, f (x, ξ, t ), under an external or self-generated
body force with acceleration g is described by the Boltzmann
equation:

∂ f

∂t
+ ξ · ∇ f + g · ∇ξ f = �( f ), (1)

where x and ξ are coordinates in physical and velocity spaces,
respectively, t the time, and �( f ) the collision term describing
the effect of interparticle collision. Due to its extreme com-
plexity, the collision term is often simplified by models, of
which the most widely used is the BGK model:

�BGK( f ) = − 1

τ

[
f − f (eq)

]
, (2)

where τ is a relaxation time and f (eq) the Maxwell-Boltzmann
distribution. Choosing the characteristic speed

√
kBT0/m0

with kB the Boltzmann constant and T0 and m0 the reference
temperature and molecule mass, f (eq) has the dimensionless
form

f (eq)(x, ξ, t ) = ρ

(2πθ )D/2
exp

[
− (ξ − u)2

2θ

]
, (3)

where ρ is the density, u the fluid velocity, and θ ≡ T/T0 the
temperature, all dimensionless.

The lattice Boltzmann equation was formulated as a special
velocity-space discretization of the Boltzmann equation based
on two observations [15]. First, in Chapman-Enskog calcula-
tion [24], the macroscopic hydrodynamics only depends on
the leading moments of the distribution function rather than
its entirety. The distribution function can therefore be approx-
imated by its low-order Hermite expansion without altering

the hydrodynamics [25,26]. This truncation is equivalent to
projecting Eq. (1) into a low-order Hilbert space spanned by
the Hermite polynomials. We denote the N th order Hermite
series by

fN (x, ξ, t ) = ω(ξ)
N∑

n=0

1

n!
a(n) : H (n)(ξ), (4)

where H (n)(ξ) is the nth Hermite polynomial and

ω(ξ) ≡ (2π )−D/2 exp(−ξ 2/2) (5)

is the weight function with respect to which the Hermite
polynomials are orthogonal. The expansion coefficients,

a(n)(x, t ) =
∫

fN (x, ξ, t )H (n)(ξ)dξ, (6)

are velocity moments of the distribution function with the
leading few being the familiar hydrodynamic variables, ρ, u,
and θ .

Second, any finite Hermite series is completely determined
by its values on a finite set of ξi. Let {(wi, ξi ), i = 1, . . . , d} be
the weights and abscissas of a Qth degree Hermite quadrature
such that for any Qth degree polynomial, p(ξ), we have∫

ω(ξ)p(ξ)dξ =
d∑

i=0

wi p(ξi ). (7)

The Mth moment of fN is then∫
fN (ξ)ξMdξ =

∫
ω(ξ)

[
fN (ξ)ξM

ω(ξ)

]
dξ

=
d∑

i=0

wi fN (ξi )ξ
M
i

ω(ξi )
, (8)

provided that Q � M + N , as the integrand in the brackets
is a polynomial of degree M + N . Hence all expansion co-
efficients are completely determined by fN (ξi ) as long as {ξi}
forms the abscissas of a quadrature rule of a degree Q � 2N .
If we further define the convenience variable

fi ≡ wi fN (x, ξi, t )

ω(ξi )
, (9)

the integral velocity moment has the discrete form∫
fN (ξ)ξMdξ =

d∑
i=0

fiξ
M
i , (10)

provided that the quadrature conditions are met. Noting by
Eq. (6) that the expansion coefficients are also velocity mo-
ments, a(n) and fi can be transformed through the following
general discrete Fourier transform:

a(n) =
d∑

i=0

fiH
(n)(ξi ), (11a)

fi = wi

N∑
n=0

1

n!
a(n) : H (n)(ξi ). (11b)

The dynamic equations of fi are taken as the direct evaluation
of the projected Eq. (1) at ξi. This amounts to expanding
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all terms in terms of Hermite polynomials and truncating to
a finite order. The expansion of ∇ξ fN can be obtained by
taking the velocity-space derivative of Eq. (4) and using the
following Rodrigues formula

H (n)(ξ) = (−1)n

ω(ξ)
∇n

ξ ω(ξ) (12)

to write

∇ξ fN =
N∑

n=0

1

n!
a(n) : ∇ξ[ω(ξ)H (n)(ξ)]

= −ω(ξ)
N∑

n=0

1

n!
a(n) : H (n+1)(ξ)

= −ω(ξ)
N+1∑
n=1

1

n!
[na(n−1)] : H (n)(ξ). (13)

The body-force term, denoted by F (ξ) ≡ −g · ∇ξ fN , has thus
the following expansion:

F (ξ) = ω(ξ)
N+1∑
n=1

1

n!
[nga(n−1)] : H (n)(ξ). (14)

Denoting the Hermite coefficients of F (ξ) by a(n)
F , we have

a(0)
F = 0, a(n)

F = nga(n−1), n � 1, (15)

where ga(n−1) is to be understood as the symmetric
product between g and a(n−1); e.g., in component form,
ga(2) = (gαaβγ + gβaγα + gγ aαβ )/3.

The explicit expressions for the first several orders of a(n)
0

can be found in the literature [15]. Thus we have the expanded
force term up to the fourth order:

F ≈ ω(ξ)ρ

{
g · ξ︸︷︷︸

1st

+ (g · ξ)(ξ · u) − g · u︸ ︷︷ ︸
2nd

+ 1

6ρ
3g

[
ρ[u2 + (θ − 1)δ] + a(2)

1

]
: H (3)(ξ)︸ ︷︷ ︸

3rd

+ 1

24ρ
4g

(
a(3)

0 + a(3)
1

)
: H (4)(ξ)︸ ︷︷ ︸

4th

}
, (16)

where the subscripts 0 and 1 denote the zeroth-order
(equilibrium) and first-order Chapman-Enskog approxima-
tion.

If the expansion of the force term is truncated to second
order, the familiar force term can be obtained:

F (ξ) = ρω(ξ)[g · (ξ − u) + (g · ξ)(u · ξ)]. (17)

Similar to Eq. (9), defining

Fi ≡ wiF (ξi )

ω(ξi )
, (18)

the discrete-velocity Boltzmann equation with body force is

∂ fi

∂t
+ ξi · ∇ fi = �i + Fi, i = 1, . . . , d. (19)

The above equation was previously given by Martys et al.
[16] and its relations to the previous models were also an-
alyzed. Naturally the body force term is independent of the
collision term and, other than the truncation order, there is no
ambiguity.

B. Force in LBGK collision model

The discrete-velocity BGK model can be written as

�i = − 1

τ

[
fi − f (eq)

i

]
, (20)

where

f (eq)
i = ρwi

{
1 + u · ξ + 1

2 [(u · ξ)2 − u2] · · · } (21)

is the truncated Hermite expansion of the Maxwellian eval-
uated at ξi [15]. The LBE can be obtained by integrating
Eq. (19) along the characteristic line and the trapezoidal rule
applied to the collision term and force term on the right-hand
side as [17,27,28]

fi(x + ξ, t + 1) − fi(x, t )

= 1
2 [�i(x + ξ, t + 1) + �i(x, t )]

+ 1
2 [Fi(x + ξ, t + 1) + Fi(x, t )], (22)

in which the time step �t = 1 is applied for brevity.
We define a new distribution function

f̄i = fi − 1
2�i − 1

2 Fi. (23)

Applying the new defined distribution function, the implicit
evolution equation (22) can be reconstructed as an explicit
evolution equation:

f̄i(x + ξ, t + 1) = f̄i(x, t ) + �i(x, t ) + Fi(x, t ). (24)

Substituting the BGK collision term, Eq. (20), into the above
equation and replacing f by f̄ , f (eq)and Fi with Eq. (23), the
above evolution equation can be rewritten as the following
complete explicit form:

f̄i(x + ξi, t + 1) = f̄i(x, t ) − 1

τ̂

[
f̄i(x, t ) − f (eq)

i (x, t )
]

+
(

1 − 1

2τ̂

)
Fi(x, t ), (25)

with τ̂ = τ + 1
2 . It should be noted that the equilibrium and

force term in the above equation are the original forms and f̄i

is the actual distribution function in the numerical implemen-
tation.

The zero-order, first-order, and second-order moments of
the new defined distribution function can be evaluated ac-
cording to the original one [28]. The zero-order moment is
as follows:∑

f̄i =
∑(

fi + 1

2τ
f (1)
i − 1

2
Fi

)
=

∑
fi, (26)

in which the zero-order moments of the nonequilibrium and
force term are null. Thus we have

ρ̄ = ρ. (27)
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The first-order moment of the new distribution function is
as follows:∑

f̄iξi,α =
∑ (

fi + 1

2τ
f (1)
i − 1

2
Fi

)
ξi,α

=
∑ (

fi − 1

2
Fi

)
ξi,α, (28)

in which the first-order moment of the nonequilibrium is null.
Thus we have

ρū = ρu − ρg
2

. (29)

Then the physical velocity can be written as

u = ū + g
2
. (30)

The second-order central moment of the new defined distribu-
tion function is as follows:

1

2

∑
f̄ici,αci,β = 1

2

∑ (
fi + 1

2τ
f (1)
i − 1

2
Fi

)
ci,αci,β

= 1

2

∑ (
fi + 1

2τ
f (1)
i

)
ci,αci,β , (31)

in which the second-order raw moment of the force term∑
Fiξi,αξi,β = Fαuβ + Fβuα is used.
For the monatomic ideal gas or the polyatomic gas without

activated internal freedom in D-dimensional space, the tem-
perature θ is related to the internal energy density ρε as

Dρθ

2
= ρε = 1

2

∑
fici,αci,α. (32)

Thus taking the trace of the second-order tensors in Eq. (31),
we can obtain the following relation as

Dρθ̄

2
= Dρθ

2
. (33)

In the above derivation, the trace of the second term on the
right-hand side of Eq. (31) is null. This indicates that the phys-
ical temperature is equal to the contraction of the second-order
central moment of the new distribution function

θ = θ̄ . (34)

It is worth noting that the macroscopic variables used in
the equilibrium and force term in Eq. (25) are the physical
variables ρ, u, θ , instead of ρ̄, ū, θ̄ . If thermohydrodynamic
level is not considered and the force term is only expanded to
second order, it is reduced to the force scheme derived by He
et al. [17].

C. Force in SMRT collision model

The force scheme in the raw-moment Hermite MRT col-
lision model is organized in the Appendix for the interested
readers. We now apply the same technique to derive the
space-time discretization for the central-moment based SMRT
collision model [18–20]. Briefly, the expansion of Eq. (4) is
made in the reference frame moving with fluid. Namely the
Hermite polynomials are with respect to v ≡ (ξ − u)/

√
θ as

fN (x, v, t ) = ω(v)
N∑

n=0

1

n!
d (n) : H (n)(v), (35)

with d (n)(x, t ) being the expansion coefficients given by

d (n)(x, t ) =
∫

fN (x, v, t )H (n)(v)dv. (36)

Note that this is precisely the Hermite polynomials used by
Grad [26]. The Maxwell-Boltzmann equilibrium distribution
is related to the weight function by

f (0)(v) = ρθ−D/2ω(v). (37)

Its Hermite expansion coefficients, denoted by d (n)
0 , are hence

d (n)
0 =

{
ρθ−D/2, n = 0,

0, n > 0.
(38)

Owing to the conservation of mass and momentum, we have
d (0) = d (0)

0 and d (1) = d (1)
0 = 0. Similar to Eq. (14), the ex-

pansion of the body-force term in the Hermite rescaled central
moment (Hermite RCM) space is as follows:

F = ω(v)√
θ

N∑
n=1

1

n!

[
ng

(
d (n−1)

0 + d (n−1)
1

)]
: H (n)(v), (39)

in which the relation ∇ξ = 1√
θ
∇v is applied and d (n)

1 denotes
the nonequilibrium Hermite RCM. The detailed expansion
form for the first several orders is as follows:

F ≈ 1√
θ
ω(v)ρ

{
θ−D/2g · v︸ ︷︷ ︸

1st

+ 1

2ρ
θ−(D+1)/22

(
g
−F

2

)
:H (2)(ξ)︸ ︷︷ ︸

2nd

+ 1

6ρ
θ−(D+2)/23g(a(2)

1 + uF ) : H (3)(v)︸ ︷︷ ︸
3rd

+ 1

24ρ
θ−(D+3)/24g

(
a(3)

1 − 3ua(2)
1 − 3

2
u1F

)
:H (4)(v)︸ ︷︷ ︸

4th

}
,

(40)

in which u1 = u2 − (θ − 1)δ.
For the purpose of convenience, we define the Hermite

coefficients of the force term as

d (n)
F = 1√

θ
ngd (n−1), n � 1. (41)

In particular, we have θ (D+1)/2d (1)
F = ρg. Furthermore, if the

contributions from the nonequilibrium beyond second order
are neglected, we have θ (D+2)/2d (2)

F = −Fg, θ (D+3)/2d (3)
F =

3guF, and θ (D+4)/2d (4)
F = −6gu1F.

To allow maximum flexibility while preserving rotational
symmetry [20–22], each H (n)(v) is further decomposed into
its traceless components, S (n,k)(v). Let the distribution func-
tion have the following expansions:

f (v) = ω(v)
N∑

n=0

1

n!

∑
k

d (n,k) : S (n,k)(v) (42)

and d (n,k)
� the coefficients of the similar expansion of the col-

lision operator which is defined as the independent relaxation
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of each traceless component, i.e.,

d (n,k)
� = − 1

τnk

(
d (n,k) − d (n,k)

0

)
= − 1

τnk
d (n,k), n = 1, . . . , N, (43)

where τnk are relaxation times.
In the face of this complicated collision operator, the

technique of the previous section can still be applied.
Equation (11a) indicates the transform from the phase space
to the Hermite raw moment (Hermite RM) space. Similarly,
we denote the transform from the phase space to the Hermite
RCM space, i.e., fi to d (n,k), as

Mnk ( fi ) = d (n,k). (44)

By Eq. (43), we have

Mnk (�i ) = − 1

τnk
d (n,k). (45)

The discrete-velocity Boltzmann equation (19) is independent
of lattice, collision model, and force term. For any of them, we
can get the same evolution equation as Eq. (24), in which the
right-hand side stores the information of the present location
and time while the left-hand side stores information after the
streaming process. The transform of the right-hand side of

Eq. (24) to the Hermite RCM space is

d̄
(n,k)
p = d̄

(n,k) − 1

τnk
d (n,k) + d (n,k)

F , n � 1, (46)

in which the subscript p denotes the postcollision state and
d̄

(n,k)
is the mapping of Eq. (23) in Hermite RCM space

d̄
(n,k) = d (n,k) + 1

2τnk
d (n,k) − 1

2
d (n,k)

F , n � 1. (47)

Specifically, d̄
(1,k) = − 1

2 d (1,k)
F .

Thus Eq. (46) can be written as the following explicit form:

d̄
(n,k)
p =

(
1 − 1

τ̂nk

)
d̄

(n,k)
1 +

(
1 − 1

2τ̂nk

)
d (n,k)

F , n � 1,

(48)

in which τ̂nk = τnk + 1
2 and d̄

(n,k)
1 = d̄

(n,k) − d (n,k)
0 . For n = 1,

we have d̄
(1)
p = 1

2 d (1)
F .

To avoid the interpolation operation in the stream process,
the postcollision Hermite RCMs need to be transferred to
the Hermite RM space and then reconstruct the postcollision
distribution function. Similar to the relations between the
Hermite RCMs and Hermite RMs of nonequilibrium as
[19,28], the transformation for the first several orders are as
follows:

ā(0)
p = 0, (49a)

ā(1)
p = θ

D+1
2 d̄

(1)
p = ρg

2
, (49b)

ā(2)
p = θ

D+2
2

(
1 − 1

τ̂2

)
d̄

(2)
1 + 2uā(1)

p −
(

1 − 1

2τ̂2

)
(Fg)

=
(

1 − 1

τ̂2

)(
ā(2)

1 − 2uā(1)
1

) + 2uā(1)
p −

(
1 − 1

2τ̂2

)
(Fg), (49c)

ā(3)
p = θ

D+3
2

(
1 − 1

τ̂3

)
d̄

(3)
1 + 3uā(2)

p − 3u1ā(1)
p +

(
1 − 1

2τ̂3

)
(3guF )

=
(

1 − 1

τ̂3

)(
ā(3)

1 − 3uā(2)
1 + 3u1ā(1)

1

) + 3uā(2)
p − 3u1ā(1)

p +
(

1 − 1

2τ̂3

)
(3guF ), (49d)

ā(4)
p = θ

D+4
2

(
1 − 1

τ̂4

)
d̄

(4)
1 + 4uā(3)

p − 6u1ā(2)
p + 4(uu2)ā(1)

p +
(

1 − 1

2τ̂4

)
(−6gu1F )

=
(

1 − 1

τ̂4

)(
ā(4)

1 − 4uā(3)
1 + 6u1ā(2)

1 − 4uu2ā(1)
1

) + 4uā(3)
p − 6u1ā(2)

p + 4uu2ā(1)
p +

(
1 − 1

2τ̂4

)
(−6gu1F ), (49e)

in which ā(n)
p denotes the postcollision Hermite RMs except the equilibrium and u2 = u2 − 3(θ − 1)δ. Since the bulk viscosity

and the multiple relaxation rates of higher orders are not discussed in the present work, the simplified form of Eq. (48) with one
relaxation rate at each order is elaborated in the above equations. The fourth-order collision term (1 − 1

τ̂4
)d̄

(4)
1 will be trimmed

once τ̂4 = 1 as the regularization applied in the previous work [19]. The transformations are not limited to the first four orders,
but it is sufficient for the NSF hierarchy [19].
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If the recursive collision terms of lower orders in the collision terms of higher order are explicitly substituted, then the above
collision model can be organized to the following obvious forms with some simple algebraic operations:

ā(0)
p = 0, (50a)

ā(1)
p = ρg

2
= 1

2
a(1)

F , (50b)

ā(2)
p =

(
1 − 1

τ̂2

)
ā(2)

1 +
(

1 − 1

2τ̂2

)
a(2)

F , (50c)

ā(3)
p =

(
1 − 1

τ̂3

)(
ā(3)

1 − 3uā(2)
1 + 3u1ā(1)

1

) + 3uā(2)
p − 3u1ā(1)

p +
(

1 − 1

2τ̂3

)
(3guF )

=
(

1 − 1

τ̂3

)
ā(3)

1 +
(

1 − 1

2τ̂3

)
a(3)

F +
(

1

τ̂3
− 1

τ̂2

)
3uā(2)

1 +
(

1

2τ̂3
− 1

2τ̂2

)
3ua(2)

F︸ ︷︷ ︸, (50d)

ā(4)
p =

(
1 − 1

τ̂4

)(
ā(4)

1 − 4uā(3)
1 + 6u1ā(2)

1 − 4uu2ā(1)
1

) + 4uā(3)
p − 6u1ā(2)

p + 4(uu2)ā(1)
p +

(
1 − ω4

2

)
(−6gu1F )

=
(

1 − 1

τ̂4

)
ā(4)

1 +
(

1 − 1

2τ̂4

)
a(4)

F +
(

1

τ̂4
− 1

τ̂3

)
4uā(3)

1 +
(

1

2τ̂4
− 1

2τ̂3

)
4ua(3)

F︸ ︷︷ ︸
−

[(
1

τ̂2
+ 1

τ̂4
− 2

τ̂3

)
6uu +

(
1

τ̂2
− 1

τ̂4

)
6(θ − 1)δ

]
ā(2)

1︸ ︷︷ ︸ −
[(

1

2τ̂2
+ 1

2τ̂4
− 1

τ̂3

)
6uu +

(
1

2τ̂2
− 1

2τ̂4

)
6(θ − 1)δ

]
a(2)

F︸ ︷︷ ︸ .

(50e)

In the above collision equations, the underbrace part of the
third-order collision term will only vanish when τ̂3 = τ̂2, i.e.,
Pr = 1. The underbrace part of the fourth-order collision term
will vanish once τ̂2 = τ̂3 = τ̂4, which indicates that the col-
lision process in RM space is identical to those in the RCM
space if and only if one relaxation rate is applied. The solu-
tions of ā(n)

1 and a(n)
F can be found in the Appendix. In the

numerical implementations, both forms of collision models,
Eq. (49) and Eq. (50), can be applied actually.

The postcollision distribution function can be constructed
by the Hermite expansion as

f̄i,p = ωi

4∑
n=0

1

n!

(
a(n)

0 + ā(n)
p

)
: H (n)(ξi ). (51)

Then the stream can be conducted as

fi(x + ξi, t + 1) = f̄i,p(x, t ). (52)

III. NUMERICAL SIMULATION

In this section, three numerical benchmarks are tested to
verify the effectiveness and accuracy of the present force
scheme in the SMRT collision model. The lattice applied
in these benchmarks is the D2V37a lattice [18]. The first
benchmark is the Taylor-Green flow with given force field
but without boundary condition treatment, which is performed
to verify the convergence order of the present scheme. The
second one is the isothermal Womersley flow with boundary
condition, which aims to test the accuracy of the present
scheme with unsteady force field. The third numerical exam-
ple is the compressible Poiseuille flow, which is applied to test

the accuracy of the present force scheme for the compressible
thermal flow with arbitrary Prandtl number.

A. Taylor-Green flow

For the two-dimensional Taylor-Green flow within the pe-
riodic domain [L, L], the analytical unsteady force is exerted
on the flow field

F(x, y) = −ρu2
0

2

[
k1 sin (2k1x),

k2
1

k2
sin (2k2y)

]
et∗

, (53)

in which k1 = 2π/L, k2 = 2π/L, and ν is the kinematic
viscosity; u0 = 0.002 is the reference velocity. The flow field
has the analytical solution

ua = −u0

[
cos(k1x) sin(k2y),−k1

k2
sin(k1x) cos(k2y)

]
et∗

,

(54)

in which t∗ = −2(k2
1 + k2

2 )νt . The flow is characterized by
the Reynolds number, Re = u0L/ν. In the simulation, the
computational domain is resolved by a series of grid nodes,
L = [16, 32, 64, 128, 256, 384], with Re = 50. In Fig. 1, the
horizontal velocity profile along the vertical center line and
the vertical velocity profile along the horizontal center line are
depicted. It can be found that the numerical simulation results
agree well with the analytical solution at different specific
times. Figure 2 depicts the global error with different resolu-
tions in contrast with the analytical solutions. The global error
is defined in Eq. (55):

E2 =
√∑

(u − ua)2∑
u2

a

. (55)
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FIG. 1. Numerical (symbols; resolution: 64 × 64) and analytical
(solid line) results of 2D Taylor-Green flow at different times t = nT
with n = 1, 2, 4 and T = ln2/(2νk2

1 ).

B. Womersley flow

The second numerical benchmark is the Womersley flow.
In this numerical case, the flow is bounded by two parallel
plates and a periodic pressure gradient or a periodic force is
exerted on the flow, which results in an unsteady flow. The
periodic force is Fx(t ) = −Ap cos(ωt ), where Ap is the am-
plitude and ω = 2π/T is the frequency. Obviously, Fx(t ) is
spatially uniform but temporally unsteady. The analytical so-
lution of the velocity field for the Womersley flow is given by

U (y, t ) = Re

(
i

Ap

ρ0ω

{
1 − cosh

[
(1 + i)y

√
ω
2ν

]
cosh

[
(1 + i)L

√
ω
2ν

]
}

eiωt

)
, (56)

FIG. 2. Convergence test: six resolutions are tested (16 ×
16, 32 × 32, 64 × 64, 128 × 128, 256 × 256, and 384 × 384),
the solid dot line is of slope 2, and the convergence order of the
present numerical results is between first and second order.

FIG. 3. Numerical (symbols) and analytical (solid line) results of
Womersley flow at different times t = nT/16 with (a) n = 4, 6, 8, 10
and (b) n = 0, 2, 12, 14.

where y ∈ [−L, L], with 2L being the channel width, ν is
the kinematic viscosity, and Re denotes the real part of the
complex number.

The simulations are carried out in a computational domain
with Nx × Ny = 50 × 200. In the x direction, the periodic
boundary condition is applied. The diffuse reflection bound-
ary condition [29] is imposed on the two plates. The period T
is set as 1200, the kinematic viscosity is chosen as ν = 0.1,
and the amplitude Ap is set as 0.0001. The initial density
is chosen as ρ = ρ0 = 1. The initial flow field is static. The
numerical results are obtained after running 20 periods. In
Fig. 3, the velocity profile across two plates at specific times
are drawn in contrast with the analytical solutions. It can be
found that numerical results agree with the analytical solu-
tions very well with the unsteady force field.

C. Compressible thermal Poiseuille flow

The third numerical benchmark is the compressible ther-
mal Poiseuille flow. In this numerical case, the flow is
bounded by two parallel plates, of which the temperature of
the bottom plate is θb = 1.0 and the top is θt = θb + δθ . The
normalized temperature in the flow field is defined as θ ′ =
(θ − θb)/δθ . ρ0 is the reference density; H is the height of the
channel. The flow is driven by the constant force field (gx, gy)

015301-7
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FIG. 4. In the Pr = 0.2 case, the effects of different terms in the
third-order relaxation, Eq. (50d), are investigated. “RM collision”
denotes only the relaxation of the nonequilibrium RM is retained;
“RM collision + collision correction” denotes that the Galilean
invariance is considered with the collision correction term; “RM
collision + collision correction + 3rd-order force” denotes the third-
order force is considered; “RCM collision” denotes the complete
collision form with the force correction term.

with the x axis parallel to the plates. The Mach number is
defined as Ma = ρ0gxH2

8μ
. The Reynolds number is defined as

Re = ρ0MaH
μ

. The Eckert number is defined as Ec = Ma2

δθcp
with

FIG. 5. In the Pr = 2 case, the effects of different terms in the
third-order relaxation, Eq. (50d), are investigated. “RM collision”
denotes only the relaxation of the nonequilibrium RM is retained;
“RM collision + collision correction” denotes that the Galilean
invariance is considered with the collision correction term; “RM
collision + collision correction + 3rd-order force” denotes the third-
order force is considered; “RCM collision” denotes the complete
collision form with the force correction term.

cp = D+2
2 the specific heat ratio at constant pressure. Thus,

once the Mach number and the ratio of gx and gy are given, the
force field (gx, gy) can be obtained. Once the Eckert number
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FIG. 6. In the Pr = 1 case, the effects of different terms in the
third-order relaxation, Eq. (50d), are investigated. “RM collision”
denotes only the relaxation of the nonequilibrium RM is retained;
“RM collision + collision correction” denotes that the Galilean
invariance is considered with the collision correction term; “RM
collision + collision correction + 3rd-order force” denotes the third-
order force is considered; “RCM collision” denotes the complete
collision form with the force correction term.

is given, the temperature difference between the bottom and
top plates will be obtained. The dynamic viscosity μ and τ̂2

can be determined by the Reynolds number. The thermal con-
ductivity κ and τ̂3 can be determined by the Prandtl number
Pr = μcp

κ
= τ̂2−0.5

τ̂3−0.5 . In the present numerical benchmark, the
parameters are set as Ma = 0.7, Re = 140, Ec = 5, gx/gy =
−50, Pr = 0.2, 1.0, 2.0, and H = 100 lattice. The numerical
results with 1000 meshes across the channel simulated by the
high-order finite difference method is regarded as the refer-
ence results.

To investigate the self-consistence of the present force
scheme in the SMRT model, four cases are tested for the third-
order relaxation: (1) case 1: the collision form is (1 − 1

τ̂3
)ā(3)

1 ,
which is denoted as “RM collision”; (2) case 2: the collision
form is (1 − 1

τ̂3
)ā(3)

1 + ( 1
τ̂3

− 1
τ̂2

)3uā(2)
1 , which is denoted as

“RM collision + collision correction”; (3) case 3: the col-
lision form is (1 − 1

τ̂3
)ā(3)

1 + ( 1
τ̂3

− 1
τ̂2

)3uā(2)
1 + (1 − 1

2τ̂3
)a(3)

F ,
which is denoted as “RM collision + collision correction +
3rd-order force”; (4) case 4: the collision form is the full
expression of Eq. (50d), including the force correction term,
which is denoted as “RCM collision.”

From Fig. 4 and Fig. 5, it can be found that the results of
the proposed “RCM collision” agree well with the reference,
while the normalized temperature of other cases, especially
the “RM collision” case, deviate the reference remarkably.
Each term of the third-order collision correction term, third-
order force term, and force correction term plays a significant
role in accurate simulation of the density, velocity, and tem-
perature field for the flows of the nonunit Prandtl number.
From Fig. 6, it can be found that the results of the proposed
“RCM collision” also agree well with the reference data. Due
to the unit Prandtl number, the collision forms of case (1) and
case (2) are identical for the vanishing collision correction
term, while the collision forms of case (3) and case (4) are
identical for the vanishing force correction term. In general, it
can be found that the numerical simulation results match the
theoretical formulas very well.

IV. CONCLUSIONS AND DISCUSSIONS

In the present work, the force scheme for the lattice
Boltzmann method based on kinetic theoretical formulation is
proposed for the SMRT collision model. The proposed SMRT
collision model with force term is identical to the collision
model with force term in the RM space if and only if all
the relaxation rates are equal to each other. The cross-talk
effect between the force terms in the collisions of third order
and higher are completely removed in the present model.
The proposed force scheme for the SMRT collision model is
numerically verified for isothermal flow and thermal flow with
arbitrary Prandtl number. It should be stressed that the present
force scheme is the first strict and complete one for the single
particle distribution function lattice Boltzmann model which
is capable of Navier-Stokes-Fourier equations. This generic
approach of incorporating the force scheme actually can be
applied to a wide range of collision models.
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APPENDIX: MRT FORCE SCHEME IN HERMITE
RAW-MOMENT SPACE

In the Hermite raw-moment MRT model, the Galilean
invariance and rotational invariance are not considered. For
the convenient reading of this manuscript, the derivation of
the force scheme of the Hermite raw-moment MRT model is
stated here. Similarly, starting from Eq. (19), we can get the
same evolution equation as Eq. (24) for the MRT model in the
Hermite raw-moment space. The transform of the right-hand
side of Eq. (24) to the Hermite RM space is

ā(n)
p = ā(n) − 1

τn

(
a(n) − a(n)

0

) + a(n)
F , (A1)

in which the subscript p denotes the postcollision state and
ā(n) is the mapping of Eq. (23) in Hermite RM space

ā(n) = a(n) + 1

2τn

(
a(n) − a(n)

0

) − 1

2
a(n)

F . (A2)

Using the above equation, Eq. (A1) can be written
as the following explicit and simple moment collision

equation:

ā(n)
p = a(n)

0 +
(

1 − 1

τ̂n

)
ā(n)

1 +
(

1 − 1

2τ̂n

)
a(n)

F , n � 1,

(A3)

in which τ̂n = τn + 1
2 , ā(n)

1 = ā(n) − a(n)
0 , and ā(0)

p = a(0)
0 .

In the numerical implementation, a(n)
F = nga(n−1). If

the nonequilibrium contributions beyond second order are
ignored, we have

a(1)
F = ρg, (A4a)

a(2)
F = 2ρg

(
u − g

2

)
, (A4b)

a(3)
F = 3ρg[uu + (θ − 1)δ], (A4c)

a(4)
F = 4ρg[uuu + 3(θ − 1)uδ]. (A4d)

In the Hermite RM collision operator, ā(1)
1 = −0.5ρg, which

is indicated by Eq. (29). ā(n)
1 (n = 2, 3) is obtained by the

projection method. The fourth order term can be obtained
by the projection method or the recursive approach as ā(4)

1 =
4uā(3)

1 − 6u1ā(2)
1 + 4(uu2)ā(1)

1 . Thus the postcollision particle
distribution function can be evaluated as

f̄i,p = ωi

4∑
n=0

1

n!
ā(n)

p : H (n)(ξi ). (A5)

Then the stream can be conducted as

fi(x + ξi, t + 1) = f̄i,p(x, t ). (A6)
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