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Three-dimensional modeling of a plasma in a strong azimuthal magnetic field
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Three-dimensional magnetohydrodynamic simulations are able to model the generation of disk-shaped
plasma, driven by laser ablation from a current-carrying rod in a pulsed-power machine producing azimuthal
magnetic fields of 2 − 3 MG. The plasma at such extreme conditions is unique in that the parameter space for
the plasma β and Hall parameter χ transition from below unity to greater than unity at different stages of the
plasma generation. In simulations, the formation of the plasma disk in the azimuthal direction is driven by heat
flux from the laser spot and depends on the set of transport coefficients used in simulations. The most recent set
of transport coefficients leads to the formation of plasma ejecta at the back end of the rod, which qualitatively
matches experiments. Specifically, the cross-gradient Nernst effect, which twists the magnetic field, is shown
to have a large effect on the shape of the back-end ejecta. In the direction along the axis of the rod, there is
propagation of perturbations from the disk as observed in experiments. In simulations, the period of temperature
perturbations is in good agreement with experimental results. An instability due to coupling of heat flux and the
magnetic field advection provides a possible explanation for perturbation growth along the axis of the rod, and
the instability growth rate is consistent with experimental results.
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I. INTRODUCTION

Several approaches to inertial confinement fusion (ICF) use
lasers coupled to magnetized plasmas. The most well-known
approach is magnetized liner inertial fusion at Sandia Na-
tional Laboratory (MagLIF) where the Z machine generates
�j × �B (where �j is the current density and �B is the mag-
netic field) force to drive the implosion [1,2]. Currently, there
are many platforms in development, three platforms that are
based on cylindrical geometry: –MagLIF, –mini-MagLIF on
OMEGA laser system at the Laboratory for Laser Energetics,
and –magnetized hohlraums at Lawrence Livermore National
Laboratory have incorporated external magnetic fields and
implosions that are modified by thermal effects from lasers
acting as either a driver or a heater or both [2–4]. The
combination of megagauss magnetic fields and high-energy
lasers enables access to an interesting parameter space where
the magnetic pressure is comparable to the plasma thermal
pressure with the parameter β = ptherm/pmag = nT/(B2/8π )
close to unity, where n is the total number density and T is
the temperature. For effective confinement of alpha particles
due to the magnetic field, the compressed magnetic field in
an implosion would need to be strong enough that thermal
pressure and magnetic pressure become comparable [5].

Experiments at the University Nevada, Reno have been in-
vestigating the parameter space where high-energy lasers are
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coupled with megagauss magnetic fields [6–8] exploring ther-
mal and field transport in highly magnetized thermal plasma.
Experiments observed the generation of plasma structures
that were a consequence of the interplay between thermal
and magnetic-field transport in a plasma. In the experiments
we are modeling, the Leopard laser with a single beam at
wavelength λ = 1.06 µm, a laser pulse duration of 0.8 ns
and intensity of 3 × 1015 W/cm2, focused to a spot-size of
30 µm was used to ablate plasma from the surface of a
current-carrying rod. The current was driven by the Zebra
pulsed-power machine and reached up to 1 MA, with as-
sociated magnetic fields of 2 − 3 MG measured at the rod
surface. Shadowgrams taken in the direction perpendicular to
the cylinder axis showed a collimated plasma jet on the front
end where the laser was focused, as well as a corresponding jet
on the other side of the rod (the back end). Two-dimensional
simulations were able to describe the collimation and structure
of the ablated plasma that transitions from β > 1 to β � 1
[9]. In the plasma, there are regions where the Hall parameter
(χ = ωeτei, where ωe is the electron Larmor frequency and
τei = λe/vth is the electron collision time, vth is the thermal
velocity, and λe is the electron mean-free path) was close
to or slightly below unity. Modeling the plasma dynamics
in the azimuthal direction is key to understanding the gen-
eration of plasma on the back end of the rod. Even with a
strong magnetic field in the plasma, transport in the direc-
tion parallel to the field lines is usually treated similar to an
unmagnetized plasma. When electron mean-free paths λe are
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long in the laser-generated plasma, the local approximation
for heat transport is no longer valid. As kinetic modeling is
computationally expensive, more tractable three-dimensional
hydrodynamic modeling is applied to provide an explanation
of the plasma structure.

II. THEORY AND SIMULATION SETUP

The arbitrary Lagrangian Eulerian radiation-hydrodynamic
code HYDRA with its MHD package has been used exten-
sively to model MHD effects relevant to ICF [10,11]. HYDRA
is a multiphysics code with the capability to include extended
Ohm’s law and anisotropic heat conduction for both electrons
and ions with transport coefficients calculated from Braginskii
formalism [12]. Ohm’s law for the plasma corresponds to
neglecting electron inertia in the electron momentum equa-
tion. After substituting the electric field from Ohm’s law into
Faraday’s law, advection of the magnetic field is described by
the following equation:

∂ �B
∂t

= − c∇ ×
[
− 1

c
�V × �B + 1

(cene)
�j × �B − 1

ene
∇ · ←→pe

+ (←→η · �j − ←→
β · ∇Te)

]
. (1)

Here ←→pe is the electron pressure tensor, �V is the bulk plasma
velocity, e is the electron charge, and c is the speed of light.
←→η and

←→
β are Braginskii transport tensors, and any arbitrary

tensor
←→
ψ acts on an arbitrary vector �s in the following way:←→

ψ · �s = ψ‖B̂(B̂ · �s) + ψ⊥B̂ × (�s × B̂) ± ψ∧B̂ × �s (where +
is for

←→
β ,←→κ , and – is for ←→η ). The elements of the transport

tensors are calculated using ratios of polynomial fits that are
functions of the Hall parameter χ . The polynomial fits are
obtained from the linearization of the Fokker-Planck equa-
tion for the distribution function and calculating first-order
correction to the distribution function [12]. The advection of
field along the temperature gradient is governed by the Nernst
effect associated with the β∧ component [13,14]. The cross-
gradient advection of magnetic fields (cross-gradient Nernst
effect) is associated with the (β‖ − β⊥) component and can
twist the magnetic field in the direction perpendicular to both
the temperature gradient and the magnetic field.

The transport tensors define the electron heat flux:

�qe = −←→κ · ∇Te − ←→
βq · �j, (2)

where the tensor
←→
βq = Te

←→
β . Here the tensor elements βq are

associated with the Ettinghausen effect, where coefficients of
the elements are the same coefficients from the generalized
Ohm’s law—the square brackets of Eq. (1). We add the sub-
script just to denote when they are in the heat equation. The
advection of strong magnetic fields can have a dramatic effect
on heat conduction terms related to the presence of a magnetic
field, such as the Righi-Leduc term. The Righi-Leduc term,
which is associated with the coefficient κ∧, drives the heat
flux in the direction perpendicular to both the temperature
gradient and field direction. In the experiments, magnetic-field
advection can cause the initial azimuthal magnetic field to
generate other field components. Another mechanism for the

self-generation of magnetic fields is the Biermann battery ef-
fect [caused by the term ∇←→pe /ene from Eq. (1)] that can also
drive radial or axial magnetic fields. Modeling the interplay
between the magnetic field and heat flux depends on the form
of the transport coefficients.

Some transport coefficients initially obtained by Braginskii
had inaccuracies of up to 65%. Corrected coefficients were
calculated by Epperlein and Haines [15], and these coeffi-
cients represented the standard used in numerical codes for
many years. Further calculations of the transport coefficients
reduced the deviations for fits of transport coefficients to less
than 1% of convergent of solutions as a function of Z , where a
geometric method allowed the separation of equations for clo-
sure and equations where closure was used [16]. Recently, two
groups found that further corrections to transport coefficients
were needed to accurately model the magnetic field advection
due to the cross-gradient Nernst effect [17,18]. One can write
the transport coefficients as

δ⊥ = α∧
χ

, γ⊥ = β∧
χ

, (3)

δ∧ = α⊥ − α‖
χ

, γ∧ = β⊥ − β‖
χ

, (4)

where αa = ηa

ene
, a =⊥ − ‖, and ∧. The new Davies-Wen [18]

and Sadler-Walsh [17] coefficients were shown to be in good
agreement with each other [19], where the Sadler-Waslh co-
efficients used the usual Chapman-Enskog method and the
Davies-Wen coefficients are formulated in the same method
as Ji and Held. The complete model of plasma evolution also
includes the continuity and momentum equations. In plasmas
where the plasma parameter β is close to unity, variation in
heat flux and magnetic-field advection can change the behav-
ior of the bulk plasma motion via the momentum equation. If
the magnetic pressure is acting against the thermal pressure,
any decrease in field strength or increase in thermal pressure
would influence the plasma expansion. Three-dimensional
HYDRA simulations were carried out in cylindrical geometry
with 100 axial zones, 150 radial zones, and 180 azimuthal
zones. Of the 150 radial zones, 20 radial zones in the vacuum
region of hydrogen where the density is set to the density
floor of 1 × 1017 cm−3, 50 radial zones are placed in the
20-micron-thick region of the Al rod surface, then the final
40 zones that increase in size toward the center so 40 axial
zones begin within the laser spot size. The rod diameter is
1 mm, and in simulations the axial size is taken at 2 mm.
The axial zones are centered at the laser spot so 30 zones are
within the laser spot. The azimuthal zones are spaced equally
around the rod. An azimuthal magnetic field is imposed on
the boundary of the simulation domain such that an axial
current is generated on the rod surface and azimuthal field at
the surface is 3 MG. The radial simulation domain extends to
8 mm. After the magnetic field is imposed, a density gradient
is generated by the driven current at the surface of the rod.
After the magnetic field at the surface is stable, laser ablation
is modeled using laser ray-trace deposition with a pulse of
0.8 ns—same as experiments. All terms in Ohm’s law are
included except for the Hall term 1

ene
�j × �B [from Eq. (1)],

which at the time of producing these simulations was not nu-
merically stable. As such, this study is focused on the effects
of extended-MHD effects of heat flux and Nernst effect in
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FIG. 1. Isovolume plot of electron temperature at different times showing formation of disk plasma.

generating the localized plasma structure. In neglecting the
Hall term, the low-density Al plasma produced by the axial
current and its interaction with the vacuum region before laser
ablation is not fully captured [20].

III. RESULTS OF HYDRA SIMULATIONS

In simulations, the laser generated a hot spot on the surface
of the rod. Heat flux is limited in the axial direction by the
azimuthal magnetic field. The heat flow in the azimuthal direc-
tion is unaffected by the field. The asymmetry in heat conduc-
tion generates temperature gradients in the radial direction lo-
calized axially. The temperature gradient can advect magnetic
field radially (depending on the transport coefficients used,
which will be discussed in detail in the following sections).
This process leads to thermal pressure in the plasma being
strong enough to drive plasma radially outward from the rod.

The magnetic field generates magnetic pressure against
the expanding plasma and leads to a pinching effect where
the field flattens the ablation plasma. This effect produces a
plasma feature that is axially confined by the magnetic field,
where the shape is dependent on the field lines that surround it.

Figure 1 shows the evolution of the plasma disk using the
isovolume plot of electron temperature. Similarly to the two-
dimensional simulations, the plasma undergoes a pinching
phase (from the midpulse to end-of-pulse phase in Fig. 1)
when the azimuthal magnetic fields pinch the ablated plasma
[9]. In three-dimensional simulations, the ablated plasma
flows around the rod from the laser side (from 1 ns after the
pulse to 4 ns after the pulse in Fig. 1) but does not fully expand
to surround the rod at times up to 14 ns, which is the time
range captured by experimental diagnostics. The plasma at
the back end of the rod is not the result of the expansion of
plasma from the front end, but rather comes from the ejecta at
the back end.

Results of the simulations shown in Fig. 1 used updated
transport coefficients from Ref. [17]. Figure 2 illustrates how
the shape of the plasma in simulations depends on different
transport coefficients. In simulations using Braginskii coeffi-
cients, the heat flux around the rod is essentially damped and

the structures at the back end of the rod do not exist. Heat flux
is dominated by terms with β∧,q and κ∧, which are known
to have inaccuracies in the Braginskii model. In simulations
with the more recent transport coefficients (Epperlein-Haines
and Sadler-Walsh), the heat flux from the laser spot side prop-
agates along the surface of the rod in the azimuthal direction.
The heat flux from the hot spot generates enough thermal

(b) Epperlein–Haines

Skewed ejecta

(a) Braginskii

No ejecta

(c) Sadler–Walsh

Ejecta

2 × 1017 7 × 1018 2 × 1020 7 × 1021 2 × 1023

ne (cm–3)

FIG. 2. Isovolume plot of electron density at 6 ns after the laser
pulse in simulations using three different sets of coefficients
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FIG. 3. Schematic of magnetic-field advection by Nernst effect
β∧ (blue arrows) and cross-gradient Nernst effect β‖ − β⊥ (white
arrows).

pressure to push plasma out radially along the surface of the
rod, forming the back-end ejecta.

The choice of transport coefficients can determine the cur-
vature of the back-end ejecta. Figure 3 shows a schematic of
field advection in a skewed temperature gradient. In the mag-
netic field B0 perpendicular to the plane of Fig. 3, the Nernst
effect is illustrated by blue arrows and the cross-gradient
Nernst effect is illustrated by white arrows. The Nernst effect
advects the magnetic field to the edge of the plasma and
the cross-gradient Nernst effect twists the magnetic field in
a skewed temperature gradient. The curvature of the magnetic
field plays an important role in shaping the expanding plasma,
including the back-end ejecta. In Fig. 4, a comparison of den-
sity plots from simulations with Sadler-Walsh coefficients and
Epperlein-Haines coefficients shows that the Sadler-Walsh
corrections to cross-gradient terms change the direction of
the field advection due to heat flux from the laser spot. In
the case of Epperlein-Haines coefficients, the back-end ejecta
is skewed, thus limiting the radial expansion. In the case
of Sadler-Walsh transport coefficients, the back-end ejecta
is captured more accurately and a more complete disk is
formed. Heat flux from the laser spot drives the formation
of a disk, and axial magnetic fields generated by Biermann
battery may restrict heat flux and change the direction of the
Righi-Leduc heat flux. Recent studies have shown possible
suppression of Biermann battery fields and of the Nernst effect
[21], which was attributed to the nonlocality of the heat flux
characterized by the ratio of electron mean-free path λe to the
temperature-scale length lt [22]. For the simulations presented
here, the Biermann generated fields are mostly in the region

404 2
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FIG. 4. Two-dimensional cross section of electron density at 6 ns
after the laser pulse in simulations using (a) Epperlein-Haines and
(b) Sadler-Walsh coefficients. The ejecta in the back-end structure
is straighter and extends farther in simulations using Sadler-Walsh
coefficients.
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FIG. 5. Electron temperature near the disk back end at 3 ns
after the laser pulse in simulation with classical Nernst coefficient
(a) and Nernst coefficient reduced to 0.2 of classical value (b). In the
simulations with reduced Nernst coefficient, the back-end cavitation
is observed instead of the back-end ejecta in (a).

where heat flux is local. To evaluate the importance of the
Nernst effect, a simulation with the Nernst coefficent reduced
to 0.2 of its classical value was performed. The comparison
of simulation results with the classical Nernst coefficient and
reduced Nernst coefficient is shown in Fig. 5. Figure 5 shows
that with reduced Nernst coefficient, the generation of the
back-end ejecta is suppressed and a cavity occurs instead.

A. Comparing synthetic shadowgrams to experiments

In experiments, the plasma was imaged using shadow-
grams for laser-probing wavelengths of 532 nm and 266 nm
for 0.2 ns exposure times. To compare simulations to ex-
periments, synthetic shadowgrams from HYDRA simulations
were generated. A ray-trace algorithm was developed in
Python to postprocess HYDRA simulations and to generate
simulated shadowgrams (Appendix). The density gradients
are calculated in simulations and the rays are propagated
through the simulation volume. The rays either are deflected
by the density gradient and collisionally absorbed or transmit
through the plasma and are recorded on a 500 x 500 pixel
plane.

In Fig. 6, the synthetic shadowgrams from simulations
using different transport coefficients are compared to exper-
imental shadowgrams. The plasma collimation on the laser
side in synthetic shadowgrams matches the general struc-
ture seen in experiments. In simulations using Sadler-Walsh
coefficients, the formed back-end ejecta is less skewed and
expands further radially compared to the simulation using
Epperlein-Haines coefficients. Experimental shadowgrams
using probing lasers wavelengths of 532 nm and 266 nm
both clearly show the back-end plasma. In simulations, the
back-end structure is smaller. The disk is more clearly seen
in both 532 nm and 266 nm shadowgrams from simulations
using Sadler-Walsh coefficients compared to simulations us-
ing Epperlein-Haines coefficients. Still, simulations have a
smaller ejecta compared to experiments and a less dense
structure. Simulations have smaller width and size of the disk
than in experiments. The synthetic shadowgrams are produced
from snapshots in time and do not fully account for dynamic
plasma evolution, which may explain some of the discrep-
ancies between simulations and experiments. However, the
exposure time is at 0.2 ns, so while this may affect some
cosmetic features, while not exact we should be qualitatively
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1 mm
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E–H

Exp.

1 mm 532 nm

266 nm

FIG. 6. Shadowgrams at 6 ns after the laser pulse for probing laser wavelengths of 532 and 266 nm from experiments [(a) and (b),
respectively] from simulations using Sadler-Walsh coefficients [(c) and (d), respectively] and using Epperlein-Haines coefficients [(e) and (f),
respectively].

similar. Another possible source of discrepancies is that the
initial conditions of the low-density plasma surrounding the
wire before the laser pulse starts are difficult to accurately
capture in hydrocodes and are not fully characterized in ex-
periments.

B. Kinetic considerations

In our simulations, we are neglecting nonlocal effects. A
measure of kinetic effects can be the ratio of the ion mean-free
path and ion temperature scale length λi/LTi , which is below
0.01 in most of the Al plasma coming from the rod after
the driving pulse as shown in Figs. 7(a) and 7(b). However,

this ratio does grow in low-density edges as the plasma drops
closer to the hydro vacuum density. The vacuum has been a
known issue for hydro simulations and is outside the scope
of this paper [20]. It should also be noted that in directions
perpendicular to the magnetic field, the ion Larmor radius can
be significantly smaller than the mean-free path that would
mediate transport. In Figs. 7(c) and 7(d), the ratio of ion
Larmor radius ri to temperature scale length has values much
lower than 0.01. We focus our study on the denser plasma
ablating off the rod surface and pushing against the magnetic
field that is initialized to be like that seen in experiments.
During the laser pulse, the ion kinetic effects may be im-
portant and a kinetic modeling study may be required. The

FIG. 7. Two-dimensional cross sections immediately after the laser pulse ends for the ratio of ion mean-free path to ion temperature scale
length at x = 0 (a) and z = 0 (b) and for the ratio of ion Larmor radius to ion temperature scale length at x = 0 (c) and z = 0 (d). The red
(light) contour denotes electron densities above 5 × 1018cm−3 and the black (dark) contour denotes Al plasma.
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FIG. 8. Isovolume plot of electron temperature at electron den-
sities larger than critical density nc at 6 ns after the laser pulse. In
the axial direction, temperature perturbations expand away from the
laser spot.

disk is formed at times about four times greater that the pulse
length. There may be an influence of kinetic effects during and
immediately after the laser pulse but it is unlikely to change
the qualitative picture of disk formation.

IV. INSTABILITY IN AXIAL DIRECTION

A feature seen in experimental shadowgrams and in simu-
lations is the formation of perturbations in the axial direction
on the surface of the rod. In simulations, these temperature
perturbations are generated during the laser pulse. Figure 8
shows an isovolume plot of electron temperature, with per-
turbations forming during laser ablation, where we plot the
volume above the critical density nc. The critical density for
a given laser wavelength is the density beyond which light

FIG. 9. Shadowgram from experiments with probing laser wave-
length of 532 nm at 14 ns after the laser pulse showing perturbations
along the rod.
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FIG. 10. Line outs of electron density, temperature, and magnetic
field in the axial direction along the rod surface starting from the
axial bottom of the disk at 4 ns after laser pulse. The period of
perturbations is smaller closer to the disk.

cannot propagate (for a wavelength of 1.06 µm, this is at
1.1 × 1021 cm−3). These perturbations expand away from the
laser spot and have a smaller period closer to the disk. For
comparison, Fig. 9 shows perturbations along the surface of
the rod in experiments at 14 ns after the end of the laser
pulse. The angle at which the shadowgram is taken is slightly
tilted for a better view. Figure 10 shows axial line outs of
electron density, temperature, and magnetic field along the rod
surface, starting at the bottom edge of the disk and extending
down. The wavelength of these perturbations is close to 20
µm near the disk and increases away from the disk. We can
treat these perturbations as generated near the disk region, and
use linear theory to describe their formation. We focus on the
temperature perturbations and note that any perturbation in
temperature would lead to density perturbations on the rod
surface. To describe these perturbations, a model for field-
compressing magnetothermal instability is suggested. The
model uses two coupled equations: heat flux equation and
Faraday’s law, with the electric field given by Ohm’s law
collisional terms:

3

2
ne

∂T

∂t
= −∇ · (−←→κ · ∇T − ←→

β · (∇ × �B)), (5)

∂ �B
∂t

= −∇ × (←→η · (∇ × �B) − ←→
β · ∇T ). (6)

A similar instability was described earlier in the case of an
axial magnetic field [23]. The dominant terms driving the in-
stability in Ref. [23] were the Nernst and Righi-Leduc terms.

Further studies have focused on the magnetothermal in-
stability from laser-generated magnetic fields in a uniform
medium [24,25]. Recent work focused on a nonuniform
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medium to study whether the instability growth is convective
or absolute [26].

Here we show that instability growth driven by the terms
with β∧ coefficients, i.e., the Nernst term in Eq. (5) and the Et-
tingshausen term in Eq. (6), is a possible candidate to explain
experimental results when using Davies-Wen coefficients for
β and η and Ji-Held transport coefficients for κ [16,18] and
maintaining derivatives of all transport coefficients. We re-
fer to it as current-driven magnetothermal instability since
the Ettingshausen term depends on the current. We consider
wavelike perturbations in temperature and magnetic field,

T = T0(r, z, t ) + T1 exp i(kzz + krr − ωt ), (7)

B = (B0(r, z, t ) + B1θ exp i(kzz + krr − ωt ))θ̂ , (8)

where T0 and B0 are the unperturbed values and T1 and B1

are wavelike perturbations with wave vectors in axial and
radial directions kz and kr and frequency ω. In our case,
the magnetic-field perturbations are considered only in the
azimuthal direction θ̂ . After substituting Eqs. (7) and (8) into
(5) and (6), the dispersion relation can be obtained using
linear perturbation theory, and the instability growth rate is the
positive imaginary part of frequency in the dispersion relation.
The dispersion relation can be written in terms of various
transport coefficients

Cl = χ

(
1

lb
+ 3

2lt

)
(9)

Cκ = − 2

3ne

[
−κ⊥

(
− ikr

r
+ k2

r + k2
z

)
+ κ∧

ikz

r
+ Cl

(
∂κ⊥
∂χ

(ikr + ikz ) + ∂κ∧
∂χ

(ikz − ikr )

)]
, (10)

Cβ,q = 2

3ne

[
−β∧,q

(
k2

r + k2
z − 2

ikr

r

)
+ Cl

(
∂β∧,q

∂χ

(
1

r
+ ikr + ikz

)
− ∂β⊥,q

∂χ

(
ikz − ikr − 1

r

))]
, (11)

Cβ,b = −
[
β∧k2

z + β∧k2
r − Cl

(
∂β⊥
∂χ

(ikr − ikz ) + ∂β∧
∂χ

(ikz + ikr )

)]
, (12)

Cη =
[
η⊥
r2

+ η⊥k2
z − η∧

ikz

r
− η⊥

ikr

r
− η⊥k2

r − Cl

(
∂η⊥
∂χ

(
ikr + ikz + 1

r

)
+ ∂η∧

∂χ

(
ikr + 1

r
− ikz

))]
, (13)

where each relation is dependent on the transport coefficients
from anisotropic heat conduction κ , the electrothermal terms
with βq from the heat equation, the diffusive terms with η,
and the electrothermal terms with β from Ohm’s law. The
subscripts q and b correspond to coefficients originating from
the heat equation Eq. (2) (q) and the field advection equa-
tion Eq. (1) (b). Here lb and lt are the scale lengths for the
magnetic field and electron temperature. The dispersion rela-
tion can then be written as

0 = CηCκ − Cβ,bCβ,q − i(Cη + Cκ )ω − ω2. (14)

Using the transport coefficients from Refs. [16,18], the in-
stability growth rate is obtained by solving Eq. (12). When
solving Eq. (12), terms with 1/r are negligible since the radius
curvature is much larger than the scale lengths of importance.
We can solve Eq. (14) using three sets of transport coefficients
Epperlein-Haines [15], Sadler-Walsh [17], and Davies-Wen
[18]. Even though Davies-Wen coefficients, as mentioned
earlier, have been found to be in good agreement with Saddler-
Walsh coefficients [19], we see a difference in the growth rates
for the instability. In Fig. 11, the solutions that have positive
imaginary parts are plotted for all coefficients. In all cases,
instability growth is possible. The growth rates for the insta-
bility are increased by about a factor of 2 in the solutions using
the Davies-Wen coefficients compared to Epperlein-Haines
coefficients, and a factor of 4 when compared to the Sadler-
Walsh coefficients. This implies that the functional form of the
transport coefficients is of great importance for the transport
coefficients in calculating the growth rate. The spatial scales
for the kz > 0.5 (1/µm) and timescales of instability growth
at 1 − 2 ns agree with the experimental results. In Fig. 12, we
show the growth rate for different density values over electron

temperature. At quarter critical density, the growth rate peak is
at 120 eV with a value of 1.2 GHz. For densities near critical
density, the peak is at 230 eV and the growth rate is 0.78 GHz.

V. CONCLUSIONS

In this paper, we have examined the major aspects of
the plasma disk formation that can be modeled by extended
magnetohydrodynamics including three-dimensional effects.
The simulations reproduce the collimated ablation plasma on
the laser side of the rod as well as the back-end ejecta. The
shape of the plasma formed is dependent on magnetic-field
curvature. The back-end ejecta is not the product of simple
hydrodynamic expansion around the rod but is generated via
heat transport around the rod. Simulations using Braginskii
transport coefficients do not fully model heat flux from the
laser spot around the surface of the rod and do not produce the
back-end ejecta. Simulations using Epperlein-Haines trans-
port coefficients lead to skewing of the plasma ejecta at the
back end. Simulations using the recent Sadler-Walsh trans-
port coefficients show the best agreement with experiments
because the cross-gradient Nernst advection of the magnetic
fields is not exaggerated and, consequently, the ejecta direc-
tion is not skewed by the magnetic fields. Artificially lowering
Nernst coefficients leads to the damping of the ejecta ex-
pansion. The structure of the plasma is largely described by
our simulations, but kinetic effects and the inclusion of the
Hall term could further improve agreement between simula-
tions and experiments. In simulations, perturbations propagate
in the axial direction on the surface of the rod, as seen in
experiments. A possible instability in the axial direction is
described with growth rates consistent with timescales of
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FIG. 11. Solutions for real and imaginary parts of frequency ω (GHz) using Davies-Wen coefficients (a) and (b), Epperlein-Haines
coefficients (c) and (d), and Sadler-Walsh coefficients (e) and (f). The parameters used are Te = 150 eV, ne = nc = 1.1 × 1021cm−3, B = 200 T ,
and lb = lt = 100 µm.

experiments. This current-driven magnetothermal instability
may be important for cylindrical plasmas where temperature
perturbations can be generated via another coupling mecha-
nism. The functional form of the coefficients vary between
their different calculations. The coefficients calculated by

0.0
0
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1.0

0.5

500 1000
Te (eV)

γ
(G

H
z)

1500 2000 2500

0.1 nc E–H
0.25 nc E–H
nc E–H
2 nc E–H
10 nc E–H

0.1 nc D–W
0.25 nc D–W
nc D–W
2 nc D–W
10 nc D–W

FIG. 12. The growth rate as a function of electron temperature
at various electron densities calculated with either Epperlein-Haines
or Davies-Wen Coefficients. Parameters: kr = .05 (1/µm), kr =
0.01 (1/µm), lb = lt = 100, µm, and B = 200 T .

Davies-Wen give the fastest growth rate compared to Sadler-
Walsh or Epperlein-Haines coefficients.
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APPENDIX: SHADOWGRAPHY METHODOLOGY

The synthetic shadowgraphy routine is a Python postpro-
cessing code used to generated synthetic shadowgrams from
three-dimensional simulations. HYDRA simulation output is
regridded onto Cartesian space with grid size 500 x 500 x 500.
A plasma object is generated with attributes for electron den-
sity, electron temperature, ion temperature, electron density
gradients in each direction, and atomic number. Rays are also
treated as objects with attributes for �k, velocity �v, and intensity
normalized. Using the relation for the refractive index,

n2 = 1 − ne

nc
, (A1)

the group velocity for each ray can be approximated as

∂ �vg

∂t
= −c2

2

∇ne

nc
. (A2)

As the rays pass through the gradient of the plasma, they
are deflected from their initial trajectory chosen by the user.

The code updates iteratively with dt = (xmax)Cc f l/c, where
xmax is the grid size and Cc f l is a courant number.After
a ray is deflected outside the simulation grid, the ray is
ended and not tracked through the system. Rays are also
treated as collisionally absorbed via the calculated fraction of
absorption [27],

fa = 1 − exp

(
−

∫ 0

−∞
2im(k(x))dx

)
, (A3)

where we take the imaginary part of the solution to the disper-
sion relation k [28]. The fraction of the laser energy still in the
ray fl is

fl = exp

(
−

∫ 0

−∞
2im(k(x))dx

)
. (A4)

Considering infinitesimal moments of time and taking the
group velocity as vg = dx/dt , we have the fraction of the laser
not absorbed at time dt,

dfl = exp(−2im(k)vgdt ), (A5)

dfl = exp

(
−2

υcen2
e

cn2
c

dt

)
, (A6)

where we have substituted the dispersion relation Im(k) as

Im(k) = υce

c

n2
e/n2

c√
1 − ne/nc

(A7)

υce is the collision frequency of electrons at the critical den-
sity. The script makes use of the multiprocessing tool in
Python so each core of an associated node tracks one ray
and immediately starts another ray independently of what the
other cores are doing.
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