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Understanding magnetic field growth in astrophysical objects is a persistent challenge. In stars and galaxies,
turbulent flows with net kinetic helicity are believed to be responsible for driving large-scale magnetic fields.
However, numerical simulations have demonstrated that such helical dynamos in closed volumes saturate at
lower magnetic field strengths when increasing the magnetic Reynolds number Rm. This would imply that
helical large-scale dynamos cannot be efficient in astrophysical bodies without the help of helicity outflows such
as stellar winds. But do these implications actually apply for very large Rm? Here we tackle the long-standing
question of how much helical large-scale dynamo growth occurs independent of Rm in a closed volume. We
analyze data from numerical simulations with a new method that tracks resistive versus nonresistive drivers of
helical field growth. We identify a presaturation regime when the large-scale field grows at a rate independent of
Rm, but to an Rm-dependent magnitude. The latter Rm dependence is due to a dominant resistive contribution,
but whose fractional contribution to the large-scale magnetic energy decreases with increasing Rm. We argue that
the resistive contribution would become negligible at large Rm and an Rm-independent dynamical contribution
would dominate if the current helicity spectrum in the inertial range is steeper than k0. As such helicity spectra
are plausible, this renews optimism for the relevance of closed dynamos. Our work pinpoints how modest Rm
simulations can cause misapprehension of the Rm → ∞ behavior.
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I. INTRODUCTION

Large-scale magnetic fields are observed in planets, stars,
and galaxies and play dynamically important roles in various
astrophysical processes and phenomena including stellar evo-
lution, galaxy formation, accretion and jet formation, and the
engines of short gamma-ray bursts and kilonovae [1–4]. Such
large-scale magnetic fields typically require an in situ dynamo
mechanism to sustain against macroscopic and microscopic
diffusion. Helical motion of turbulent eddies is a common
driver of large-scale helical magnetic fields [5–9], known as
the α effect. For closed-volume systems, both theory and
simulations reveal that the late-time saturation of large-scale
dynamo (LSD) is constrained by resistive effects, and hence
is achieved on resistively long time scales [10–14].

While these results represent progress in understanding
the time evolution of dynamo saturation in simple idealized

*hongzhe.zhou@sjtu.edu.cn
†blackman@pas.rochester.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

computational boxes, the dynamical times of real physical
systems such as stars, galaxies, and accretion engines are
much shorter than the resistive time scale given their very
large magnetic Reynolds numbers Rm. It has thus remained an
important and long-debated question as to whether significant
large-scale fields can be generated by helical dynamo action
for real astrophysical rotators. [15–22].

Astrophysical dynamo models have included helicity
fluxes, e.g., Refs. [23–28], and anisotropic forcing [29] to
alleviate the resistive constraint. (See Ref. [30] for a compre-
hensive review, and Refs. [31–34].) But a different solution
without boundary fluxes would be an Rm-independent regime
during the dynamical time scale of the dynamo before the
resistive effects become dominant [11,35,36]. Whether this
regime exists for high-Rm closed systems has been con-
troversial, because in the numerical simulations of helical
dynamos at accessible values of Rm, field strengths decrease
with increasing Rm before the resistive phase. This would
seem to challenge the dynamical quenching (DQ) formalism
[11,23,37–40], where a significant large-scale field is expected
before the resistive regime. In short, the modest values of Rm
accessible in simulations have left previous analyses unable
to separate dynamical and resistive dynamo phases, leaving
ambiguity as to whether the measured field strengths and
growth rates are dominated by the dynamical or resistive
effects.
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In this work, we tackle the problem in a new way. In
particular, we track phases of the helical dynamo using nor-
malized small-scale current helicity, rather than the bare time.
We demonstrate that such a formulation facilitates identi-
fying terms in the large-scale dynamo growth rate that are
Rm independent and measurable in simulations, and reveals
a prequenched (PQ) regime during which the growth rate
is Rm independent at asymptotically large Rm. Interest-
ingly, whether an Rm-independent saturation magnitude of
large-scale fields at the end of the PQ regime exists for closed-
volume helical dynamos depends crucially on the spectral
slope of the underlying turbulent current helicity. In addition
to the implications for astrophysical dynamos, this work also
highlights the necessity of care required to avoid pitfalls when
comparing the physical implications of large-scale dynamo
and magnetohydrodynamical turbulence theories with simu-
lations of limited magnetic Reynolds numbers.

The rest of this work is organized as follows. In Sec. II we
introduce the numerical setup of helical dynamo simulations.
In Sec. III we interpret simulation data with new analysis tools
and in Sec. IV we seek for implications of its Rm dependence.
Discussions and conclusions are in Sec. V.

II. NUMERICAL SETUP AND
NONDIMENSIONALIZATION

We perform compressible magnetohydrodynamics simula-
tions with an isothermal equation of state using the PENCIL

CODE [41].
The equations to be solved are

∂tρ + ∇ · (ρU ) =0, (1)

∂tU + U · ∇U = 1

ρ
[J × B + ∇ · (2ρνS)]

− c2
s ∇ ln ρ + f , (2)

∂t A =U × B + η∇2A, (3)

where ρ, U and A are the density, the velocity, and the vec-
tor potential fields, respectively; B = ∇ × A is the magnetic
field, J = ∇ × B/μ0 is the current density with μ0 being
the vacuum permeability, and the units are chosen such that
μ0 = 1; cs is the constant and uniform sound speed; Si j =
(∂iUj + ∂ jUi )/2 − δi j∇ · U/3 is the rate-of-strain tensor; ν

and η are the viscosity and resistivity, respectively; and finally
f is a fully helical forcing of the form of plane waves, with a
fixed wave number kf and random phase and direction at each
time step. The simulation domain is a Cartesian box, with
length of 2π and periodic boundary conditions in all three
directions, and consequently the magnetic helicity becomes
gauge invariant. For all runs, we use kf = 4 and Mach num-
bers Ma = urms/cs � 0.1, where urms is the root-mean-square
(rms) velocity. The Reynolds numbers Re = urms/νkf are kept
roughly constant � 5, and the magnetic Prandtl number Pm =
ν/η is varied from 1 for run A1 to 80 for run A6. This isolates
the Rm dependence from that of Re.

Without any mean flow, a helical dynamo generates fully
helical large-scale fields. It is therefore most convenient to
delineate the dynamo process using the magnetic helicity
spectrum HM, which is gauge invariant given our periodic

boundary condition. We normalize energy and helicity spectra
such that integration over all wave numbers yields the average
energy or helicity density. We then decompose the large-scale
magnetic helicity density into a mean handedness s1, a mean
wave number k1, and the associated energy

∫ kf

k0

HM
1 dk = s1k−1

1

∫ kf

k0

k
∣∣HM

1

∣∣ dk, (4)

where the subscripts 1 refer to large-scale modes, k0 is the
lowest wave number in the simulations,

s1 =
∫ kf

k0
HM

1 dk∫ kf

k0

∣∣HM
1

∣∣ dk
(5)

is the mean handedness and

k1 =
∫ kf

k0
k
∣∣HM

1

∣∣ dk∫ kf

k0

∣∣HM
1

∣∣ dk
(6)

is the mean wave number of the large-scale modes. Similarly,
we decompose the small-scale (denoted by subscripts 2) mag-
netic helicity density as∫ ∞

kf

HM
2 dk = s2k−1

2

∫ ∞

kf

k
∣∣HM

2

∣∣ dk, (7)

s2 =
∫ ∞

kf
HM

2 dk∫ ∞
kf

∣∣HM
2

∣∣ dk
, (8)

k2 =
∫ ∞

kf
k
∣∣HM

2

∣∣ dk∫ ∞
kf

∣∣HM
2

∣∣ dk
. (9)

Note that si ∈ [−1, 1] and ki > 0 for i = 1, 2. The nondimen-
sional energy density of the large-scale helical field is

ẼL = 1

ρu2
rms

∫ kf

k0
k|HM

1 | dk. (10)

We define the dimensionless time as

t̃ (t ) =
∫ t

0
urms(t

′)kf dt ′, (11)

and the dimensionless exponential growth rate

γ̃ = dln ẼL

dt̃
. (12)

III. RESULTS AND ANALYSIS

The LSD can be understood with the mean-field formalism,
described by the mean-field induction equation. By taking the
curl of Eq. (3) and averaging we obtain

∂t 〈B〉 = ∇ × (〈U〉 × 〈B〉 + E ) + η∇2〈B〉, (13)

where 〈·〉 is an average over a scale assumed to be much
larger than the turbulent forcing scale. We then use lower
case b to indicate the contribution to B with zero mean,
and similar constructions for the magnetic vector potential
A and velocity U . The turbulent electromotive force (EMF)
is E = 〈u × b〉. For statistically isotropic and homogeneous
turbulence, 〈U〉 = 0 and the turbulent EMF takes the form
E = α〈B〉 − β∇ × 〈B〉, where the turbulent diffusivity is β =
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FIG. 1. Evolution of nondimensional quantities. (a) Normalized large-scale magnetic energy versus dimensionless time. (b) Dynamical
quenching factor versus dimensionless time. (c) Ratio between the mean and fluctuating field strengths versus dynamical quenching factor.
(d) Normalized large-scale magnetic energy versus dynamical quenching factor; the inset is a zoom-in plot. The horizontal line in panel (b) and
the vertical lines in panels (c) and (d) denote the starting point of the LSD at χ = 0.1.

τu2
rms/3, and τ = 1/urmskf. The α coefficient is α = αk + αm

given by the DQ formalism [11,37,38], where

αk = −1

3

〈∫ t

0
u(t ) · ∇ × u(t ′) dt ′

〉
� −1

3
εurms (14)

is the the kinetic contribution, and

αm = 1

3

〈∫ t

0
b(t ) · ∇ × b(t ′) dt ′

〉
� 1

3
bhel

� 1

3

(∫ ∞

kf

kHM
2 dk

)1/2

(15)

is the magnetic contribution. The latter is related to the small-
scale current helicity density multiplied by a correlation time,
and hence has the dimension of velocity in Alfvén units. bhel

is the helical part of the small-scale magnetic field and can be
written in terms of the magnetic helcity spectrum HM as in
Eq. (15). In Eq. (14), we have assumed the velocity field to
be fully helical, which is consistent with our simulations. A
factor ε is introduced to capture the possible deviation of the
correlation time between u and its curl, from the eddy turnover
time 1/urmskf. Measuring ε can be method dependent and so
we treat it as a free parameter. We shall see that ε = 0.8 is
sufficient to explain simulations, and more crucially, it has no
influence on the implications on the Rm dependence of helical
LSDs.

In the DQ formalism, αm grows in time, offsets αk, and
eventually quenches the dynamo. We thus define

χ ≡ −ε
αm

αk
= u−1

rms

(∫ ∞

kf

kHM
2 dk

)1/2

(16)

as the DQ factor, which is roughly the normalized current
helicity, contains no free parameter, and is calculable from
simulations. The measured values of χ fluctuate but grow
nearly monotonically in time from ∼0 to a value � 1 at the
end of the LSD as expected from theory. In what follows,
any quantity taken at χ = χ ′ is meant to be its average over
the interval χ ∈ [χ ′ − δ, χ ′ + δ] with δ = min {0.2χ ′, 0.05},
unless otherwise specified.

In Fig. 1(a) we show the evolution of ẼL tracked with
the dimensionless time t̃ measured in units of 1/urmskf as
in previous work. For sufficiently large Rm, a small-scale
dynamo (SSD) is excited at early times and the growth of
the large-scale modes is dominated by nonlinear intermode
interactions rather than the interaction with the velocity field
through the α effect. Figure 1(a) shows growth rates during
the initial exponential stages (e.g., 0 � t̃ � 300 for run A1,
0 � t̃ � 150 for run A6, etc.) increases with increasing Rm,
which is a signature SSD feature. Unambiguously pinpointing
the end of the SSD phase is difficult on this plot but we next
argue that using χ to track dynamo evolution alleviates this
problem.

The SSD and LSD phases can be separated by considering
their contributions to the small-scale current helicity. SSDs
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FIG. 2. (a) Normalized LSD growth rate γ̃ and (b) LSD efficiency σ versus the dynamical quenching factor χ . In both panels, the vertical
dashed line at χ = 0.1 indicates the start of the LSD phase. In panel (b), the two black dashed lines indicate the theoretical expectation
σ th = ε − χ with different ratios of the time scales of αk and β: ε = 1 (upper) and ε = 0.8 (lower).

efficiently amplify small-scale fields but with a low fractional
magnetic helicity. This is supported by Fig. 1(b) which shows
the evolution of χ (essentially the normalized small-scale
current helicity) tracked by t̃ . By comparing Figs. 1(a) and
(b), we see that regardless of the Rm across different runs, the
initial Rm-dependent exponential growth always corresponds
to the χ � 0.1 regime.

Figure 1(c) provides further support of using χ = 0.1 to
separate SSD and LSD phases, where we plot the ratio be-
tween the mean and the fluctuating field strengths tracked
using χ . In the χ < 0.1 region, this ratio remains roughly
constant for all runs, suggesting that at this stage all the mean
field growth is dominated by the low-wave number tail of a
SSD growth, not a growing LSD. We therefore regard χ = 0.1
as the onset of the LSD phases in what follows.

Finally, in Fig. 1(d) we show the evolution of ẼL tracked
by χ . Having identified the starting χ of the LSD, we must
now identify its ending point after which resistive effects
dominate, and quantify the Rm dependence of LSD growth
and saturation. This requires detailed theoretical analysis, as
explained in the following subsections.

A. LSD growth rate versus Rm

For a helical LSD without a mean flow (i.e., an α2 dy-
namo), the energy growth rate of the mode at wave number
k1 is γ = 2|α|k1 − 2(β + η)k2

1 [30]. Using Eqs. (14) and (15),
the α coefficient can be written as α = αk + αm = −urms(ε −
χ )/3. Using the eddy turnover rate urmskf for normalization,
we have the theoretical expectation

γ̃th = γ

urmskf
= 2k1

3kf
(ε − χ ) −

(
2

3
+ 2

Rm

)(
k1

kf

)2

, (17)

where Rm = urms/ηkf is the instantaneous magnetic Reynolds
number. The LSD initially operates kinematically when χ �
1, but is then dynamically quenched by χ due to the growing
small-scale current helicity. The maximal value χ can obtain
is analytically determined by γ̃ = 0 to be ε − k1/kf when
Rm → ∞. This gives ε − k0/kf as the upper bound of χ at
which LSD terminates.

The dimensionless growth rate γ̃ versus χ in simulations
[defined in Eq. (12)] is plotted in Fig. 2(a). In principle, it
should be compared with γ̃th in Eq. (17) to validate the DQ

formalism, based on which γ̃th is derived. However, the exact
value of ε is yet unknown. Rather than fitting the data to find
the most probable ε, we isolate the Rm-independent part in
Eq. (17) by defining

σ = 3kf

2k1
γ̃ +

(
1 + 3

Rm

)
k1

kf
. (18)

Since the right-hand-side terms of Eq. (18) are all measurable,
the values of σ from simulation data should collapse to set
of Rm-independent straight lines determined by ε − χ when
Rm  1 according to Eq. (17), assuming that ε is asymptoti-
cally Rm independent.

The right side of Eq. (18) is measured and plotted in
Fig. 2(b) for different runs. Overall, the measured values of σ

after the SSD phases at χ � 0.1 can be well described by the
theoretical expectation (ε − χ ), with ε ∈ [0.8, 1], as indicated
by the two black dashed lines. This implies a modest 20%
deficit in the correlation time between u and its curl (which
enters αk) than that between u and itself (which enters β), and
might explain the submaximal LSD efficiency of Ref. [36].
Since the LSD phase should be bounded by ε − k0/kf, we
determine that

0.1 � χ � 0.55 (19)

quantitatively demarks the PQ regime whose Rm dependence
we will assess.

The agreement between measured values and theoretical
expectation of σ validates Eq. (17), and thus justifies that
(i) the DQ formalism correctly describes the α2 dynamo, and
(ii) the LSD growth rate is asymptotically independent of Rm
when Rm  1. To see the latter point, notice that on the
right of Eq. (17) the only two Rm-dependent quantities are
Rm itself and k1. The k1 is initially the value ∼kf/2 which
maximizes γ̃ . Later, k1 decreases to the lowest wave number
available in the system, and this evolution may depend on Rm.
But overall, k1 always changes by a factor of kfL/4π if L is the
length scale of the system, which is Rm independent. Hence
the Rm dependence of γ̃ introduced by k1 is quite weak and
γ̃ will not decrease to some resistively small value.

Finally, we note that resistive diffusion of magnetic helicity
reduces the growth rate of χ and thus slows the magnetic back
reaction on the LSD, but does not directly show up in the
LSD growth rate, Eq. (17). Hence at any given χ during the
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FIG. 3. Rm-dependent field strength in helical LSDs. (a) Fractional contributions to ẼL from the dynamical term TD/ẼL from different
runs. Hence TR/ẼL = 1 − TD/ẼL decreases with increasing Rm but still dominates when Rm � 400, leading to Rm-dependent field strengths
in simulations. The vertical line at χ = 0.1 indicates the start of the LSD phase. (b) The fractional contribution from the dynamical term
increases with increasing Rm with a power index 0.23. This implies TD/ẼL reaches 0.95 at Rm = 3.5 × 105 if the relation can be extrapolated.

LSD phase, the LSD growth rate can become Rm independent
at lower Rm than the value at which the mean-field strength
becomes Rm independent. In the next subsection we explore
the resistive effects on the LSD saturation.

B. Rm-dependent field strengths in simulations

The simulated values of ẼL decrease with increasing Rm at
fixed χ , as evident from Fig. 1. To quantify this, we define an
exponent p(χ ) by fitting the power-law ẼL(χ, Rm) ∝ Rmp(χ ).
We find that p � −0.5 for all χ ∈ [0.01, 0.55], indicating that
during the SSD phase and at all stages of the LSD, the mean-
field energy decreases with increasing Rm. We now explain
this dependence.

ẼL can be inferred from the total magnetic helicity with-
out integrating the growth equation. Consider the case where
the volume-averaged magnetic helicity is zero initially, but
later gains �H = HM

1 + HM
2 due to resistive diffusion, where

HM
1,2 are the average magnetic helicity of the large- and

small-scale fields, respectively. Using Eq. (4) we have HM
1 =

s1k−1
1 ẼLρu2

rms, and therefore

ẼL(χ, Rm) = −k1

s1

HM
2

ρu2
rms

+ k1�H

s1ρu2
rms

. (20)

We denote the terms on the right of Eq. (20) by TD and TR,
respectively, so that ẼL = TD + TR. Note that TR is from the
resistive loss of magnetic helicity but TD is purely dynamic.
The resistive term does not amplify the large-scale field di-
rectly, but slows the growth of χ , thereby weakening the
back reaction and allowing more large-scale growth. The ratio
TD/ẼL determines whether resistive effects dominate and this
is to be assessed below.

For all runs at all times, the magnetic fields at the resistive
scale have positive magnetic helicity, whilst those at the low-
est wave numbers have negative helicity. Hence �H < 0 and
s1 < 0 always. As we discuss in detail in Appendix, HM

2 < 0
during the SSD phase, and hence TD/ẼL < 0 initially. In what
follows we focus on the LSD phase when HM

2 > 0, the period
during which TD and TR are both positive.

The evolution of TD/ẼL is shown in Fig. 3(a). The LSD
starts to dominate the field growth at k1 at χ � 0.1, and its
back reaction on the small scales grows TD. By the time χ =

0.55 which is close to the end of the LSD regime, Eq. (20)
determines how much the LSD has benefited from resistive
contributions. That TD < TR implies that the LSD quenching
is still weakened substantially by the resistive dissipation
of small-scale current helicity, and therefore the PQ regime
depends strongly on Rm. This is why ẼL decreases with in-
creasing Rm at fixed χ .

IV. IMPLICATIONS FOR HIGHER Rm

In Fig. 3(b) we show the fractional contribution TD/ẼL at
χ = 0.55 versus Rm. A power-law relation ∝ Rm0.23 is found,
but also notice that the trend flattens at large Rm. We now
describe why this apparent saturation may not apply for much
larger Rm, and why TD might actually dominate at χ = 0.55
as Rm → ∞ and become Rm independent.

Since TR ∝ �H and is negligible during the LSD phase
in the Rm → ∞ limit, the necessary condition for an
Rm-independent PQ regime is dTD/dRm → 0 as Rm →
∞(while its fractional contribution TD/ẼL → 1 since TR →
0). In the LSD phase, the small-scale magnetic helicity spec-
trum HM

2 is of one sign, so we write TD = −s2k1χ
2/s1k2.

Since |s1,2| � 1 and k1 is bounded from below, an Rm-
independent PQ regime requires k2 to depend at most weakly
on Rm at fixed χ , which is determined by the magnetic helic-
ity spectrum as explained below.

Consider a magnetic helicity spectrum HM
2 (k) ∝ k−q in the

inertial range. This is appropriate for Pm < 1 flows. Using
Eq. (9) for k2, we then have that k2/kf = F (q − 1)/F (q),
where F (x) = ∫ r

1 x−q dx, and r is the ratio between the dis-
sipative scale of the helical fields and kf. When Rm → ∞,
we have r  1, so that k2/kf = (q − 1)/(q − 2) when q > 2,
but diverges for q � 2. Hence an Rm-independent PQ regime
arises if q > 2.

For Pm > 1 flows whose magnetic energy and helicity
spectra may have broken power laws at k � kf, the conditions
for an Rm-independent PQ regime become (i) a q > 2 range
exists, and (ii) the wave number above which q > 2 does not
increase with increasing Rm. Such evidence is indeed ob-
served from our Pm � 1 simulations. For the two highest-Rm
runs (at Rm � 250 and 400), we find that the wave numbers at
which q − 2 changes sign are both � 2kf and do not scale with
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Rm. This is consistent with previous indications that the peak
wave number of the magnetic energy spectrum for large-Pm
SSDs remains Rm independent for large Rm from both theory
[42] and simulation [43]. Hence, our simulations imply an
Rm-independent PQ regime for Pm � 1 flows.

We note that Re = 5 throughout our simulations, so the
flow in the simulations is stochastic but not fully turbulent.
At larger Re, the slope of the magnetic helicity spectrum will
be affected by the more extended inertial range of the velocity
field. The spectrum may also evolve from shallower than the
aforementioned threshold at early times to steeper at later
times. Then the influence of Rm on the saturated state could
still be small, as is crudely suggested in a four-scale approach
[39]. Future high-resolution simulations for both Pm > 1 and
Pm < 1 are needed to concretely confirm the spectral slope
of the magnetic helicity at large Re and Rm and its temporal
evolution.

To summarize, for a magnetic helicity spectrum that sat-
isfies the conditions mentioned three paragraphs above, the
Rm-independent value that ẼL can obtain at any χ is

lim
Rm→∞

ẼL(χ, Rm) = lim
Rm→∞

TD

= − s2

s1

k1

kpeak

q − 2

q − 1
χ2, (21)

where kpeak is the Rm-independent peak of the magnetic he-
licity spectrum and q > 2 is the slope at k � kpeak.

Equation (21) is the lower bound for any case with finite
Rm, to which the positive TR term will additionally contribute.
One caveat is that achieving this lower bound within a finite
time is not guaranteed if the time to reach any given value
of χ increases with Rm. In this case, TD may not obtain any
significant value as Rm → ∞, even though TD/ẼL � 1. This
could happen if the SSD were to somehow suppress helicity
generation at small scales, and in turn, slow large-scale dy-
namo growth through helicity conservation. However, at the
Rm values explored in this work, we do not observe such evi-
dence that SSD would suppress the growth of χ [see Fig. 1(b),
which shows the opposite trend], but future higher-resolution
simulations could help to further asses this.

For all of our simulation runs, we observe ẼL is more
than 12.5 times the lower bound Eq. (21) by taking s1/s2 =
−1, kpeak = 2kf, and q = 8/3, again highlighting the dom-
inance of the resistive contribution. Furthermore, assuming
s1/s2 = −1, kpeak = 2kf, q = 8/3, kf/k1 = 5, and χ2 = 1 −
k1/kf, we find this lower bound to be ẼL � 〈B〉2/〈b2〉 = 0.032,
comparable to some observed galactic magnetic fields [44]
which have benefited from the Rm-independent � effect
and possible helicity fluxes. Hence, the DQ formalism pre-
dicts a substantial lower bound for the large-scale magnetic
energy.

V. CONCLUSIONS

For astrophysical flows with Rm  1, the saturation time
of helical dynamos is resistively long, and fully saturated
states are constrained by the resistive helicity loss [12,14] if
there is no helicity flux. In this work, we use the normalized
small-scale current helicity χ to track dynamo evolution in
simulations and identify their LSD phases. We show that

(i) the onset of the LSD is marked by χ � 0.1, indepen-
dent of Rm; (ii) the LSD growth rate agrees well with the
prediction of the DQ formalism in becoming Rm indepen-
dent as Rm → ∞; (iii) the LSD saturation at numerically
accessible Rm values is still dominated by resistive contri-
butions, but whether it becomes Rm independent as Rm →
∞ depends on the slope of the magnetic current helicity
spectrum.

Our results clarify that the decreasing saturation level of
helical dynamos associated with increasing Rm in closed
boxes is due to the decreasing resistive contribution, but this
does not preclude convergence to a resistivity independent
value for large Rm. For high-Rm α2 or α2-� dynamos of
stars and galaxies, our results imply that when the current
helicity spectrum falls off with any positive power of k, ef-
ficient LSD growth is possible. This applies even without
boundary helicity fluxes, including systems requiring Rm-
independent cycle periods, although helicity fluxes may play
a prominent role in the actual operation of dynamos in real
systems. For shallower spectra, helicity fluxes or some non-
helically driven LSD, e.g., Ref. [45], would be needed to
explain the observed field strengths, let alone fast-cycle pe-
riods. For planetary dynamos whose resistive time scales can
be comparable to LSD dynamical times, α quenching is sig-
nificantly weakened by resistive diffusion and so the LSD
is much less constrained by the slope of the current helicity
spectrum.

The results also highlight the broader importance of feed-
back between mean-field dynamo growth and MHD turbulent
spectra as the the latter itself may evolve due to the increasing
large-scale magnetic field. The mutual evolution of turbu-
lence, LSD, and outflows in spinning-down stars or accretion
flows from LSD-mediated magnetic winds exemplifies that
the implications of such feedback have direct observational
consequences.

Data and post-processing programs for this article are
available on Ref. [46].
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FIG. 4. Evolution of the magnetic helicity spectrum for runs (a) A5 at Rm � 250 and (b) A6 at Rm � 400, whose velocity fields are fully
positively helical. Solid and dashed parts indicate positively and negatively helical modes, respectively. During the SSD phase (χ � 0.1), the
negatively helical magnetic field resides beyond the forcing wave number (kf = 4 as indicated by the black vertical lines), in fact up to the
viscous wave number (kν = Re3/4kf as indicated by the red vertical lines).

APPENDIX: HELICAL FIELDS DURING THE SSD PHASE

The evolution of TD/ẼL is shown in Fig. 3(a) in the main
text. For the three runs with the highest Rm, we see TD/ẼL <

0 and therefore TR/ẼL = 1 − TD/ẼL > 1 during the SSD
phase. Together with s1 < 0, this implies a negative average
handedness of the small-scale field s2 < 0 [see Eqs. (8) and
(20) in the main text]. This is because at that time, negative
helicity resides on a wide range of k, particularly at both
k < kf and a finite range at k � kf; see Fig. 4. This implies
that, since the field at k1 is already fully helical, k1�H/s1

alone would overestimate the large-scale contribution, i.e.,
TR/ẼL > 1.

In fact, the initial dividing wave number kdiv between the
positively and negatively helical parts is not kf, but roughly
the viscous wave number kν (Fig. 4). The SSD initially op-
erates most efficiently on the viscous scale, and generates
positively helical fields at k > kν . Conservation of magnetic
helicity requires that negatively signed magnetic helicity must
compensate at k < kν at a generation rate comparable to that

of the efficient SSD at kν . Thus, the net sign of helicity at
k < kν is initially negative. As the SSD at kν approaches
saturation, its back reaction that produces negative helicity
on larger scales eventually becomes slower than the SSD rate
below kν , and so positive helicity starts to build up there and
we see kdiv decreasing, until eventually it reaches kdiv = kf.
Hence, s2 < 0 during the kinematic SSD phase but becomes
positive when the SSD saturates.

Although ẼL decreases with increasing Rm at fixed χ in
the simulation runs it is for different reasons in the SSD
and LSD phases. In the SSD phase at χ � 0.01, the scaling
ẼL ∝ Rm−0.5 for our Pm � 1 cases is similar to the result of
Refs. [47,48] that 〈B〉/brms ∝ Rm−3/4 for Pm = 0.1 cases. In
fact, we find that the ratio 〈B〉/brms is a constant at χ � 0.1
for each run [see Fig. 1(c); roughly 300 eddy turnover times],
but is ∝ Rm−1/2. That 〈B〉 and brms grow at the same rate is a
signature of the SSD phase (or, in the language of Ref. [48],
a feature of the kinematic dynamo phase), although the origin
of −1/2 is not yet fully understood [47].
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