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Higher-order nonequilibrium term: Effective power density quantifying evolution towards or away
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A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare
power densities of the various possible energy conversion mechanisms. A leading research area is quantifying
energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a
number of fluid and plasma systems. Here we introduce the “higher-order nonequilibrium term” (HORNET)
effective power density, which quantifies the rate of change of departure of a phase space density from LTE. It
has dimensions of power density, which allows for quantitative comparisons with standard power densities.
We employ particle-in-cell simulations to calculate HORNET during two processes, magnetic reconnection
and decaying kinetic turbulence in collisionless magnetized plasmas, that inherently produce non-LTE effects.
We investigate the spatial variation of HORNET and the time evolution of its spatial average. By comparing
HORNET with power densities describing changes to the internal energy (pressure dilatation, Pi − D, and
divergence of the vector heat flux density), we find that HORNET can be a significant fraction of these other
measures (8% and 35% for electrons and ions, respectively, for reconnection; up to 67% for both electrons and
ions for turbulence), meaning evolution of the system towards or away from LTE can be dynamically important.
Applications to numerous plasma phenomena are discussed.
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I. INTRODUCTION

The classical laws of thermodynamics quantify the con-
version of energy for processes occurring in systems in local
thermodynamic equilibrium (LTE). However, many systems
of interest are not in LTE. The approaches by Chapman
and Enskog [1], Onsager [2], and Grad [3] and its exten-
sions [4] and the gyrokinetic approach [5,6] have revealed
many important insights about energy conversion for sys-
tems not in LTE, but the models assume the departures
from LTE are small. Many systems are routinely far from
LTE, such as plasmas in space and astrophysical settings
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where densities are low and temperatures are high, lead-
ing to low collisionality. This indicates there is a necessity
for a nonperturbative approach to quantify non-LTE energy
conversion.

One nonperturbative approach is to use the non-LTE in-
ternal (thermal) energy density evolution equation [7], which
follows directly from the Boltzmann transport equation. As
will be reviewed in the next section, four physical mech-
anisms can cause the internal energy density to change
in the comoving (Lagrangian) reference frame. They are
(1) pressure dilatation, which describes compressible heat-
ing, (2) incompressible heating, including deformation and
shear, captured by the term called Pi − D [8–14], (3) the
divergence of the vector heat flux density [15–17], and (4)
interspecies collisions. In LTE, Pi − D, vector heat flux den-
sity, and the collision operator vanish, so these terms describe
non-LTE energy conversion. They have been extensively
used to study energy conversion in space and astrophysi-
cal plasmas, especially during magnetic reconnection and
turbulence [8,10–22].

2470-0045/2024/109(1)/015205(16) 015205-1 Published by the American Physical Society

https://orcid.org/0000-0001-6330-1650
https://orcid.org/0000-0002-5938-1050
https://orcid.org/0000-0003-2160-7066
https://orcid.org/0000-0001-6315-1613
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.015205&domain=pdf&date_stamp=2024-01-16
https://doi.org/10.1103/PhysRevE.109.015205
https://creativecommons.org/licenses/by/4.0/


M. HASAN BARBHUIYA et al. PHYSICAL REVIEW E 109, 015205 (2024)

Another recent approach that allows for the identification
of different non-LTE energy conversion mechanisms in a
wide variety of plasma systems is the so-called “field-particle
correlation” approach [23]. It directly identifies the energy
conversion between electromagnetic fields and charged par-
ticles in a plasma as a function of the phase space density. It
has been applied to many plasma systems in simulations and
observations [24–31].

In instances where a system deviates significantly from
LTE, each of the infinite number of moments of the phase
space density can evolve and become dynamically signifi-
cant. As internal energy is related to only a single moment
of the phase space density, a description of the evolution of
the other moments can become pertinent. However, a closed
set of evolution equations for each of the infinite moments
is unattainable due to the closure problem. One potential
strategy to describing every moment is to employ the Boltz-
mann (or Vlasov) transport equation for the phase space
density itself, but this is challenging since the phase space
density is a six-dimensional (plus time) field. Notably, recent
research [32] has demonstrated that the evolution of all mo-
ments associated with a non-LTE system can be described
by the relative entropy (that is a three-dimensional plus time
field). It is a first-principle derivation from the Boltzmann
equation using an entropic approach [33].

Mechanisms that can change the internal energy (pressure
dilatation, Pi − D, and divergence of vector heat flux density)
are typically quantified as power densities, i.e., rates at which
the energy density changes. In addition, Jσ · E describes the
rate of conversion of energy density between electric fields
and charged particles of species σ , where Jσ is the current
density of particle species σ and E is the electric field. Pre-
vious studies [10,20] have demonstrated that Jσ · E does not
directly result in a change in internal energy and can change
only the bulk kinetic energy. While questions persist regard-
ing the precise mechanism through which electric fields can
induce changes in internal energy, we provide only a cursory
treatment of this energy conversion channel because it does
not directly go to internal energy and has been compared to
other internal energy measures previously.

Here we use the result of Ref. [32] to define a quantity
Pσ,HORNET describing the rate of change of the departure of a
phase space density from LTE that has dimensions of power
density, where HORNET stands for “higher-order nonequi-
librium term.” We call it an effective power density because
it is not a power density in the sense that it does not de-
scribe a rate of change of energy density. In this study, we
calculate Pσ,HORNET in particle-in-cell (PIC) simulations of
magnetic reconnection and decaying plasma turbulence. By
locally comparing Pσ,HORNET to other power densities, we can
ascertain the relative prevalence of the evolution of a phase
space density towards or away from LTE compared to the
energy conversion taking place. We discover that the spatially
averaged HORNET power density can be a substantial per-
centage of the net power density changing the internal energy
at the times of interest; for a simulation of reconnection, we
find that this percentage in the electron diffusion region is 8%
and 35% for electrons and ions, respectively; in a simulation
of turbulence, this percentage for the entire domain is 67% for
both electrons and ions. We expect Pσ,HORNET will be useful

for many non-LTE processes in plasma physics and other
fields of science.

The layout of this paper is as follows. Section II contains a
review of the relevant results from Ref. [32] and introduces
Pσ,HORNET. Section III describes the numerical simulation
setup. Sections IV and V give the simulation results for a
simulation of magnetic reconnection and decaying plasma
turbulence, respectively. Section VI summarizes the results
and discusses applications and implications.

II. THEORY

A. Review

The nonrelativistic Boltzmann transport equation [34] for
species σ is given by

∂ fσ
∂t

+ v · ∇ fσ + Fσ

mσ

· ∇v fσ = C[ f ], (1)

where fσ is the phase space density, Fσ is the net body
force, mσ is the mass of the constituents, r, v, and t are
the position space, velocity space, and time coordinates of
phase space, respectively, ∇ and ∇v are the position- and
velocity-space gradient operators, respectively, and C[ f ] is
a collision operator that may be a sum of intraspecies and
interspecies collision operators given by C[ f ] = Cσ [ fσ ] +∑

σ ′ �=σ Cσσ ′[ fσ , fσ ′ ]. Multiplying Eq. (1) by (1/2)mσv′2
σ and

integrating over all velocity space, where v′
σ = v − uσ is the

random velocity, uσ = (1/nσ )
∫

fσ v d3v is the bulk flow ve-
locity and nσ = ∫

fσ d3v is the number density, one obtains
the time evolution equation of internal energy density Ēσ,int =∫

(1/2)mσv′2
σ fσ d3v given by [7]

∂ Ēσ,int

∂t
+ ∇ · (Ēσ,intuσ )

= −(Pσ · ∇) · uσ − ∇ · qσ + nσ Q̇σ,coll,inter, (2)

where Pσ = nσ kBTσ is the pressure tensor, Tσ is the tempera-
ture tensor with elements Tσ, jk = mσ /(nσ kB)

∫
v′

σ jv
′
σk fσ d3v,

kB is Boltzmann’s constant, qσ = ∫
(1/2)mσ v′2

σ v′
σ fσ d3v

is the vector heat flux density, and Q̇σ,coll,inter =
(1/nσ )

∫
(1/2)mσ v′2

σ

∑
σ ′ �=σ Cσσ ′[ fσ , fσ ′] d3v is the

volumetric heating rate per particle due to interspecies
collisions. The pressure-strain interaction is defined
as −(Pσ · ∇) · uσ [8–12]. Note that Ēσ,int = 3Pσ /2 =
(3/2)nσ kBTσ , where we call Pσ = tr(Pσ )/3 the effective
pressure and Tσ = tr(Tσ )/3 the effective temperature, and tr
is the trace. The lack of the Jσ · E term in this equation is
used as evidence that the term does not directly change the
internal energy density.

It is advantageous to write Eq. (2) in the comoving (La-
grangian) reference frame using the convective derivative
d/dt = ∂/∂t + uσ · ∇, which gives [7]

dEσ,int

dt
= −Pσ (∇ · uσ ) − �σ, jkDσ, jk − ∇ · qσ

nσ

+ Q̇σ,coll,inter, (3)

where Eσ,int = (3/2)kBTσ (without the overbar) is the inter-
nal energy per particle. In writing Eq. (3), we decompose
the pressure-strain interaction into a sum of pressure dilata-
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tion −Pσ (∇ · uσ ) and Pi − Dσ = −�σ, jkDσ, jk that describe
compressible and incompressible energy conversion between
bulk kinetic energy and internal energy, respectively, and we
use the Einstein summation convention for repeated dummy
indices. Here, �σ, jk = Pσ, jk − Pσ δ jk is the jk element of
the deviatoric pressure tensor, Dσ, jk = (1/2)(∂uσ j/∂rk +
∂uσk/∂r j ) − (1/3)δ jk (∇ · uσ ) is the jk element of the trace-
less symmetric strain rate tensor, and δ jk is the Kronecker
delta [10].

In Ref. [32], it was shown using an entropic approach that
for systems not in LTE with a fixed total number of particles
Nσ of each species, the so-called first law of kinetic theory is
given by

dWσ

dt
+ dEσ,gen

dt
= dQσ,gen

dt
+ Q̇σ,coll, (4)

where dEσ,gen and dQσ,gen are increments in the so-called gen-
eralized energy per particle and generalized heat per particle,
respectively, and

dWσ

dt
= Pσ

d (1/nσ )

dt
, (5a)

dEσ,gen

dt
= dEσ,int

dt
+ dEσ,rel

dt
, (5b)

dQσ,gen

dt
= dQσ

dt
+ dQσ,rel

dt
, (5c)

Q̇σ,coll = −kBTσ

nσ

∫
C[ f ] ln

(
fσ�3rσ�3vσ

Nσ

)
d3v. (5d)

Equation (5a) describes the rate of change of compres-
sional work per particle dWσ /dt done by the system. The two
terms in Eq. (5b) describe the rate of change of internal energy
per particle dEσ,int/dt and the rate of change of effective
energy per particle (the relative energy per particle) describing
the local evolution towards or away from LTE dEσ,rel/dt ,
respectively. The two terms in Eq. (5c) describe the heating
rate per particle associated with changes to the internal energy
dQσ /dt = (−∇ · qσ − �σ, jkDσ, jk )/nσ [see Eq. (3)] and an
effective rate of heat per particle associated with the local
phase space density not being in LTE dQσ,rel/dt , respectively.
Equation (5d) describes the rate of energy change per particle
associated with collisions. In Eq. (5d), �3rσ�3vσ is the six-
dimensional phase space volume element [33,35,36].

Quantitatively, the two relative terms associated with the
departure of the phase space density from LTE are given by

dEσ,rel

dt
= Tσ

d (sσv,rel/nσ )

dt
, (6a)

dQσ,rel

dt
= −Tσ

(∇ · J σ,th )rel

nσ

, (6b)

where the relative entropy per particle [37] and the thermal
relative entropy density flux divergence per particle [32] are
defined as

sσv,rel

nσ

= − kB

nσ

∫
fσ ln

(
fσ

fσM

)
d3v, (7a)

(∇ · J σ,th )rel

nσ

= − kB

nσ

∫
[∇ · (v′

σ fσ )] ln

(
fσ

fσM

)
d3v. (7b)

Here, fσM is the “Maxwellianized” phase space density
associated with fσ given by [37]

fσM = nσ

(
mσ

2πkBTσ

)3/2

e−mσ (v−uσ )2/2kBTσ , (8)

with nσ , uσ , and Tσ obtained from fσ .
Because sσv,rel/nσ identically vanishes if fσ = fσM [37],

so relative entropy per particle contains information about
the non-Maxwellianity of a local phase space density, and its
Lagrangian time derivative describes how the Maxwellianity
locally changes in time.

B. The higher-order nonequilibrium term
power density Pσ,HORNET

Here, we construct a quantity describing the evolution of
a phase space density towards or away from LTE with di-
mensions of power density to be on the same footing as the
pressure-strain interaction and the divergence of the vector
heat flux density. We note from Eq. (3) that these quantities
give the time rate of change in the Lagrangian frame of the
internal energy per particle scaled by the number density nσ .
We, therefore, argue the analogous effective power density for
describing the evolution of a phase space density towards or
away from LTE is −nσ dEσ,rel/dt . We call this the HORNET
effective power density Pσ,HORNET:

Pσ,HORNET = −nσ

dEσ,rel

dt
= −nσTσ

d

dt

(
sσv,rel

nσ

)
. (9)

Since a Maxwellian phase space density is the maximum
entropy state for a fixed number of particles and internal
energy [34], a positive Pσ,HORNET indicates that the phase
space density is evolving away from Maxwellianity in the
next instant of time in the Lagrangian reference frame, and
a negative Pσ,HORNET indicates that the phase space density is
evolving towards Maxwellianity in the next instant of time,
i.e., it thermalizes. The magnitude quantifies the rate that
the shape of the phase space density changes scaled by the
effective pressure Pσ .

To isolate the portion of Eq. (4) associated with the de-
parture of the phase space density from LTE, we derive an
equation for the time evolution of dEσ,rel (see also Ref. [38]).
Substituting Eqs. (5a)–(5c) into Eq. (4) and using Eq. (3) gives

dEσ,rel

dt
= dQσ,rel

dt
+ Q̇σ,coll − Q̇σ,coll,inter. (10)

Assuming collisions conserve particle number and are elas-
tic, the collision operator satisfies the relations

∫
Cσ d3v =∫

Cσσ ′ d3v = 0 from conservation of particle number,∫
mσ vCσ d3v = 0 from conservation of momentum for in-

traspecies collisions, and
∫

(1/2)mσ v2Cσ d3v = 0 from con-
servation of energy for intraspecies collisions. A brief
derivation reveals that Q̇σ,coll,inter is equivalent to

Q̇σ,coll,inter = −kBTσ

nσ

∫
C[ f ] ln

(
fσM�3rσ�3vσ

Nσ

)
d3v,

(11)
where fσM is defined in Eq. (8). Then Eq. (10) becomes

dEσ,rel

dt
= dQσ,rel

dt
+ Q̇σ,coll,rel, (12)
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where

Q̇σ,coll,rel = −kBTσ

nσ

∫
C[ f ] ln

(
fσ

fσM

)
d3v. (13)

Equation (12) is a special case of Eq. (3.13) from Ref. [38].
It may seem as though Eq. (12) implies that the relative terms
are decoupled from the terms related to the internal energy
[see Eq. (3)], but this is not the case [32] because the ther-
modynamic heat dQσ /dt terms depend on non-Maxwellian
features of the phase space density, namely, �σ and qσ , and
their evolution is included in dEσ,rel/dt . Thus, Eq. (12) shows
that the HORNET effective power density describes evolution
towards or away from LTE that occurs as a result of relative
heat (non-LTE features that change the shape of the phase
space density) and/or collisions.

To better show that the relative entropy is associated with
changes in shape of the phase space density, we rewrite
sσv,rel/nσ from Eq. (7a) as

sσv,rel

nσ

= −kB

∫
f ′
σ ln

(
f ′
σ

f ′
σM

)
d3v, (14)

where we define the distribution function as f ′
σ = fσ /nσ .

Here, f ′
σ is normalized to 1, while fσ is normalized to nσ .

By definition, f ′
σ and f ′

σM are independent of nσ , i.e., they are
both unchanged if fσ changes in such a way that its shape does
not change even if the density does change. Thus, sσv,rel/nσ

is independent of changes solely in nσ . Since the HORNET
effective power density is proportional to d (sσv,rel/nσ )/dt , it
is zero for any process that changes only the density.

III. NUMERICAL SIMULATIONS

Numerical simulations are performed using p3d [39],
a massively parallel PIC code. All simulations are three-
dimensional in velocity space, and 2.5-dimensional in position
space; i.e., vectors have three components and there is one in-
variant spatial dimension. Macroparticles are stepped forward
using a relativistic Boris particle stepper [40] and electro-
magnetic fields are stepped using the trapezoidal leapfrog
method [41]. To enforce Poisson’s equation, p3d utilizes the
multigrid method [42] to clean the electric field. We employ
periodic boundary conditions in both spatial directions for all
simulations.

Simulated quantities are presented in normalized units.
Lengths are normalized to the ion inertial scale di0 = c/ωpi0,
where c is the speed of light, ωpi0 = (4πn0q2

i /mi )1/2 is the
ion plasma frequency based on a reference number density
n0, and qi and mi are the ion charge and mass, respectively.
Magnetic fields are normalized to a reference magnetic field
B0. Velocities are normalized to the Alfvén speed cA0 =
B0/(4πmin0)1/2. Times are normalized to the inverse ion
cyclotron frequency 	−1

ci0 = (qiB0/mic)−1. Temperatures are
normalized to mic2

A0/kB, vector heat flux densities are in
units of (B2

0/4π )cA0, and power densities are in units of
(B2

0/4π )	ci0.
Unrealistic values of the speed of light c = 15 and

electron-to-ion mass ratio me/mi = 0.04 are employed for
numerical expedience, but we expect these values do not
qualitatively change the results presented here. To calculate
kinetic entropy, we employ the implementation from Ref. [36]

and optimize the velocity-space grid scale by checking the
agreement between the simulated kinetic entropy density sσ

for various �vσ (where σ = e or i for electrons or ions) and
the theoretical value at t = 0 [43].

To reduce the effect of PIC noise in the two-dimensional
plots that follow, we implement a recursive smoothing pro-
cedure on the raw simulation data. We smooth over a width
of four cells four times, followed by taking spatial or tem-
poral derivatives, and then recursively smooth over four cells
four times again. We determine the appropriateness of this
smoothing procedure by testing various smoothing widths
and iterations. Our selection is based on evaluating how
spatial variations change with different smoothing parame-
ters, ensuring that clearer, sharper structures are observed in
two-dimensional plots and one-dimensional cuts through the
domain without the occurrence of oversmoothing (not shown).
We ascertain that using six or more iterations results in over-
smoothing for the simulations in the present study, particularly
in the vicinity of the X-line at y = y0 in the reconnection
simulation.

A. Magnetic reconnection simulations

The reconnection simulation system size is Lx × Ly =
12.8 × 6.4 with 1024 × 512 grid cells that are initialized with
6400 weighted particles per grid (PPG). The use of weighted
particles improves load imbalance by making regions of high
density have a similar number of particles for the processors to
advance in time as in low-density regions. Our choice of the
simulation system size ensures that boundary effects do not
interfere with the physics near the electron diffusion region
(EDR) where we focus our interest.

We initialize the simulation using the standard double
tanh magnetic field profile Bx(y) = tanh [(y − Ly/4)/w0] −
tanh [(y − 3Ly/4)/w0] − 1, with no initial out-of-plane
(guide) magnetic field, where w0 = 0.5 is the initial half-
thickness of the current sheet. Therefore, the reference
magnetic field B0 is the initial asymptotic magnetic field
strength. At initialization, the electron and ion density
profiles are n(y) = {1/[2(Te + Ti )]}{sech2[(y − Ly/4)/w0] +
sech2[(y − 3Ly/4)/w0]} + nup, where the initial asymptotic
upstream plasma density nup has the value of 0.2, and the
difference between the peak current sheet number density
and the upstream number density is the reference density
n0. The electron temperature Te and ion temperature Ti are
uniform and Te = 1/12, Ti = 5Te at initialization, which is
inspired by the temperature ratio in Earth’s magnetotail.
Both species are loaded as drifting Maxwellian velocity dis-
tribution functions with electron and ion out-of-plane drift
speeds satisfying ue,z/Te = −ui,z/Ti initially. We seed an X-
and O-line pair in each of the two current sheets to ini-
tiate reconnection using a magnetic field perturbation of
the form δBx = −Bpert sin(2πx/Lx ) sin(4πy/Ly ) and δBy =
Bpert[Ly/(2Lx )] cos(2πx/Lx )[1 − cos(4πy/Ly)] with Bpert =
0.05. The rationale behind selecting this perturbation ampli-
tude is that it reduces the computational cost of the simulation
by quickening the transition of the reconnecting system into
the nonlinear growth phase which is when substantial devia-
tions from Maxwellian behavior are expected to occur. This
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initial perturbation amplitude is not expected to modify the
nonlinear phase of reconnection.

The electric field is cleaned every 10 particle time steps
to ensure Poisson’s equation is satisfied and improve energy
conservation. The smallest length scale of the system is the
electron Debye length λDe = 0.0176; we choose a grid length
� = 0.0125. The smallest timescale of the system is the
inverse of electron plasma frequency ω−1

pe = 0.012, and we
choose the particle time step �t = 0.001, with the field time
step of half of this. These choices result in excellent total
energy conservation, which we need due to the small signals
of energy conversion as we discuss in Sec. IV; we see an in-
crease in total energy by only 0.032% by t = 16. The plots we
show are from the lower current sheet at time t = 13, during
nonlinear growth when the rate of reconnection is increasing
most rapidly in time.

For the calculation of entropies, the range of the velocity
space in each direction is restricted to [−vlim,σ , vlim,σ ] [33],
where vlim,σ is chosen to be less than c but contains all the
particles. We use vlim,e = 14.2 and vlim,i = 7.8. Each velocity
space direction is discretized using nbin,σ bins, where nbin,e =
26, and nbin,i = 34. This gives the optimal velocity space grid
scales �vσ , which are �ve = 1.092 and �vi = 0.459 using
the procedure described in Refs. [33,35,36,43]. The agree-
ment with the theoretical values at t = 0 is within ±0.7%
and ±1.5% in the far upstream region for electrons and ions,
respectively, and within ±2% and ±3% at the center of the
current sheet for electrons and ions, respectively. By t = 16,
the total entropy is conserved to 2.08% and 2.29% for elec-
trons and ions, respectively.

In Appendixes A and B, we plot electron reduced phase
space densities (with one velocity dimension integrated out).
The data are from a different simulation with the same param-
eters used in this study, except for PPG = 25 600 instead of
6400 [32]. We use a spatial domain of size 0.0625 × 0.0625
centered around the location for which phase space densities
are plotted and bin the particles with a velocity space bin of
size 0.1 in all three velocity directions. Reduced phase space
densities are in units of n0/c2

A0.

B. Turbulence simulations

The turbulence simulation uses a periodic domain of size
Lx × Ly = 37.3912 × 37.3912 with 1024 × 1024 grid cells
initialized with 6400 unweighted PPG. Using weighted par-
ticles is unnecessary for this simulation because the density
is initially uniform. There is an initial uniform magnetic field
that has a strength given by the reference value B0 = 1 and
points along ẑ. The velocity and magnetic field fluctuations are
Alfvènic with random phase and are excited in a band of wave
numbers k ∈ [2, 4] × 2π/Lx with a flat spectrum. The initial
root mean square fluctuation amplitude for both velocity and
magnetic field are set to 0.25. The initial cross helicity is very
small. These initial conditions are analogous to those in a
larger domain in Ref. [44].

The initial number density is uniform with a value given by
the reference density n0 = 1. The electron temperature Te and
ion temperature Ti are initially uniform and equal to 0.3. Both
electrons and ions are initially drifting Maxwellian velocity
distribution functions at the initial temperature and drifting

with the local bulk flow speed. The electric field is cleaned
every 40 particle time steps. The cadence of electric field
cleaning is determined by performing four simulations with
the cadence set to 20, 40, 50, and 100 particle time steps,
respectively, and selecting the value that produced the best
energy conservation. The smallest length scale of the system
is the electron Debye length λDe � 0.03651, and we choose
a grid length � = λDe. The smallest timescale of the system
is the inverse of electron plasma frequency ω−1

pe � 0.0133;
we choose the particle time step to be �t = 0.005 with the
field time step �t/3. This results in excellent total energy
conservation of 0.013% by the final time of t = 50. The non-
linear time, the timescale over which nonlinear interactions
between different wave modes become significant is τnl =
Lx/[2π (δb2

rms + δv2
rms)1/2] � 17.

For calculating entropies, we obtain an optimal electron
velocity space grid scale of �ve = 2.028 using vlim,e = 14.2,
and nbin,e = 14. At t = 0, the choice for �ve gives agreement
with the theoretical values within ±0.16% on average along
horizontal and vertical cuts through the center of the simula-
tion domain. For ions, using vlim,i = 5.7, and nbin,i = 50, we
obtain �vi = 0.228, which gives agreement within ±0.12%
of theoretical values on average along the same cuts at t = 0.
By the final time of t = 50, the total electron and ion entropies
are conserved to 0.28% and 0.55%, respectively.

C. Relative entropy implementation

In a previous study [32], the calculation of
(d/dt )(sσv,rel/nσ ) was carried out by postprocessing output
data of sσ and other fluid moments that had been rounded.
For the present study, we implement the quantities natively
within p3d to reduce rounding errors. We find the overall
two-dimensional structures in (d/dt )(sσv,rel/nσ ) are similar
when calculated in the two different ways (not shown).

To assess the importance of numerical error, we note that
fσ at t = 0 in both the reconnection and turbulence sim-
ulations are loaded as drifting Maxwellians. Theoretically,
from Eq. (7a), we would expect sσv,rel/nσ to vanish initially
everywhere in the simulation domain. However, these initial
Maxwellians have PIC noise due to a finite number of particles
per grid, so sσv,rel/nσ is nonzero. We confirm that the error
of nonzero sσv,rel/nσ values in our reconnection simulation
is due to finite PPG by comparing electron data in simula-
tions with different PPG. For the reconnection simulation with
PPG = 6400 used in this paper, the average value of sev,rel/ne

over the whole domain at t = 0 is � 0.013. In a test simulation
with PPG = 400, we find the average value of sev,rel/ne at t =
0 is � 0.08. Noise in PIC simulations scales with 1/

√
PPG,

so we expect this decrease in PPG by a factor of 16 should
increase the noise by a factor of 4. This is close to the factor
by which we observe the decrease, suggesting that the values
of relative entropy per particle calculated within our code is
a result of using finite PPG. This provides evidence that our
entropy implementation is valid at t = 0. This lays out an
approach for future studies of relative entropy with PIC codes
by measuring the desired quantity with a particular value of
PPG and then increasing PPG to reduce the noise according
to 1/

√
PPG until the signal is higher than the noise.
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FIG. 1. Particle-in-cell simulation results of power densities for electrons and ions during the nonlinear growth phase of reconnection
(t = 13). (a, e) Higher-order nonequilibrium terms effective power density Pe,HORNET and Pi,HORNET, (b, f) pressure dilatation −Pe(∇ · ue) and
−Pi(∇ · ui ), (c, g) Pi − De and Pi − Di, and (d, h) vector heat flux density divergence −∇ · qe and −∇ · qi.

IV. RESULTS: MAGNETIC RECONNECTION

A. Spatial distribution and amplitude of HORNET

Simulation results of Pσ,HORNET at t = 13 are shown in
Fig. 1, with electrons in Fig. 1(a) and ions in Fig. 1(e). Repre-
sentative magnetic field line projections are in black, and we
shift the coordinate system to be relative to the X-line location
at (x0, y0) = (9.59375, 1.59375). The EDR is approximately
located at |x − x0| � 2, |y − y0| � 0.4.

We begin with a discussion of the spatial structure of
Pσ,HORNET. For the electrons, we note that Ref. [32] included a
plot in their Fig. 3(e) of dEe,rel/dt for a reconnection simula-
tion that differed from the present simulation only by its PPG.
Since Pσ,HORNET = −nσ dEe,rel/dt from Eq. (9), the structure
of Pe,HORNET is largely similar to −dEe,rel/dt from Ref. [32].
Consequently, we provide only an abbreviated analysis of the
electrons here.

Upstream of the EDR, electrons become trapped in the
bent magnetic field lines, leading to phase space densities
that are elongated in velocity space in the direction parallel
to the local magnetic field [45]. This implies the shape of
the phase space density is becoming less Maxwellian in the
Lagrangian reference frame, which is associated with posi-
tive Pe,HORNET � 0.003. Near the X-line, triangular striated
phase space densities develop due to electron Speiser or-
bits [46–48], a further evolution away from Maxwellianity,
therefore associated with positive Pe,HORNET � 0.007. Inter-
estingly, sandwiched between these two regions, there is a
slim boundary extending from the two inflow regions (0.2 <

|y − y0| < 0.3) to the two outflow regions (0.7 < |x − x0| <

1.2) inside the EDR in which Pe,HORNET � −0.0015 is weakly

negative. Physically, this happens because the upstream phase
space densities are elongated in the parallel direction [45], and
positions close enough to the X-line have another population
due to the Speiser orbits associated with motion perpendicular
to the magnetic field. The resultant phase space density in
the (vx, vy) plane is closer to being a Maxwellian. Therefore,
an electron fluid element entering the EDR has a negative
Pe,HORNET. Phase space densities in relevant regions are plot-
ted in Appendix A. Thermalization of the outflowing electron
jets downstream of the X-line [49–52] is observed at the EDR
outflow edge (1.6 < |x − x0| < 2.0), associated with negative
Pe,HORNET � −0.002.

For the ions, the ion diffusion region (IDR) is expected to
have a vertical extent of |y − y0| < 2.24, but the simulation
domain is too small to allow full ion coupling to the reconnec-
tion process; the simulation domain would have to be � 40 ×
2.24 � 90 for the ions to fully couple [53]. Upstream of the
EDR, Fig. 1(e) demonstrates that Pi,HORNET is weakly positive
and gradually increases approaching the X-line, where it has a
maximum value of � 0.013. This indicates that ions become
more non-Maxwellian (in the Lagrangian frame) approaching
the X-line. This is consistent with expectations since ions
demagnetize when their gyroradii exceed the distance from
their guiding center to the magnetic field reversal, so only the
most energetic ions are demagnetized farther from the X-line,
and more ions are demagnetized closer to the X-line.

The ions in the exhaust just downstream of the EDR have
positive Pi,HORNET with characteristic value 0.006, indicat-
ing an evolution away from Maxwellianity in these regions.
This is likely from demagnetizing ions crossing the separatrix
rather than crossing through the EDR. We expect for a larger
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system and at later times that ions would thermalize farther
downstream from the EDR, which would be associated with
Pi,HORNET < 0, but we do not observe it in our simulation since
the system is not in the steady state and the simulation domain
is small. Interestingly, starting at approximately |x − x0| �
1.6 along the separatrices outside of the EDR, Pi,HORNET is
weakly negative with a value of � −0.001. This implies the
ion phase space density becomes more Maxwellian (in the
Lagrangian frame) there.

B. Comparison to other power densities

We first perform a comparison of Pσ,HORNET with the power
densities describing changes to the internal energy per parti-
cle described in Eq. (3) at t = 13 in order to determine the
relative importance of each as a function of position during
the nonlinear growth phase. For electrons, the pressure dilata-
tion −Pσ (∇ · uσ ) is shown in Fig. 1(b), Pi − Dσ is shown
in Fig. 1(c), and Fig. 1(d) exhibits the negative divergence
of the vector heat flux density −∇ · qσ . These quantities are
repeated in Figs. 1(f)–1(h) for ions.

We first discuss electrons. In a recent study with a sim-
ulation with the same initial conditions except with PPG =
25 600 instead of 6400 [14], −Pe(∇ · ue) and Pi − De were
extensively discussed, but the vector heat flux density diver-
gence was not analyzed. Near the X-line, we find −∇ · qe

is positive (the vector heat flux is converging) with a value
near 0.04 [Fig. 1(d)], which by itself would increase the
electron internal energy. The pressure dilatation is negative
with a value near −0.015 at the X-line [Fig. 1(b)], which by
itself would decrease the electron internal energy. Pi − De is
weakly positive at 0.005 near the X-line [Fig. 1(c)]. The net
change to the internal energy is positive at this time, and the
sum of the pressure dilatation, Pi − De, and negative vector
heat flux divergence is approximately 0.03. Concomitantly,
Fig. 1(a) reveals that Pe,HORNET is positive at the X-line with
a value near 0.007. Thus, the electron phase space densi-
ties are becoming more non-Maxwellian with an effective
power density approximately 23% of that going to changing
the electron internal energy. In contrast, near the outflow
edges of the EDR (|x − x0| � 1.7), −Pe(∇ · ue) � 0.04 and
Pi − De � 0.02, whereas −∇ · qe � −0.01 with Pe,HORNET �
0.002. This indicates that the electron internal energy is
increasing, while the electron phase space densities are be-
coming more Maxwellian at this location.

Looking at ions in the vicinity of the X-line, we observe a
strongly negative pressure dilatation [Fig. 1(f)], reaching val-
ues of approximately −0.06, which by itself would decrease
the ion internal energy through expansion near the X-line. In
contrast, Pi − Di is positive throughout the EDR and most of
its surroundings, with a characteristic value near 0.02. Near
the X-line, we find −∇ · qi is positive (the vector heat flux
density is converging) [54] with a value � 0.06 [Fig. 1(h)],
which by itself would increase the ion internal energy. Fig-
ure 1(e) shows that Pi,HORNET is positive in the vicinity of
the X-line with a value of approximately 0.013. These results
imply that, like the electrons, there is a local net increase
near the X-line of the ion internal energy, and the sum of the
three terms gives a net power of approximately 0.02, and the
ion phase space density evolves away from Maxwellianity.

For ions, the effective power going into changing the shape
of the phase space density is approximately 65% of the net
power due to pressure dilatation, Pi − Di, and vector heat
flux divergence near the X-line. Near the downstream edge
of the EDR, pressure dilatation is instead positive with value
near 0.05, whereas Pi − Di is negligible. We also see that
−∇ · qi � −0.06, with Pi,HORNET � 0.006. Thus, contrary to
what is observed for electrons, there is a local decrease in
the ion internal energy, and the ion phase space density is
becoming more non-Maxwellian.

We note that −Pi(∇ · ui ) and Pi − Di were plotted in a
previous simulation study [21] using a different code and sys-
tem parameters (see their Fig. 1 for comparison). Their data
were taken during the steady-state phase while ours are during
the nonlinear growth phase. We observe some differences:
(1) in our simulation, −Pi(∇ · ui ) is notably more localized
around the X-line in the x̂ direction [see Fig. 1(f)], presumably
because our system size is smaller (theirs is 25 ×25), and (2)
Pi − Di has a single positive peak signature at the X-line in our
simulation, while it has a double-peaked structure in Ref. [21],
presumably because theirs is in the steady state.

We also note the spatial distribution of −∇ · qσ for elec-
trons and ions reveal structural similarities, except the ion
structures are on larger scales. This is consistent with previous
work that shows −∇ · qσ can be nonzero and dynamically
significant locally [16,17], even though it vanishes when in-
tegrated over the whole periodic computational domain [11].
Physically, a local nonzero vector heat flux density emerges
from velocity-space asymmetries of phase space densities. We
provide an explanation of the vector heat flux density structure
and its divergence in Appendix B.

We now quantitatively compare the signed spatial averages
of each of the previously discussed power densities, for elec-
trons and ions separately, in order to compare their importance
over a more extended region and to see how they evolve as
a function of time in the simulation. We fix a box centered
at the X-line of size 4 di0 in length and 0.8 di0 in width
(representing the EDR size at t = 13), and then calculate the
signed spatial average (denoted by 〈〉) of each power density
in this region as a function of time. The result is shown
in Figs. 2(a) and 2(b) for electrons and ions, respectively.
In each, solid green denotes 〈Pσ,HORNET〉, dotted orange de-
notes 〈−Pσ (∇ · uσ )〉, dashed purple denotes 〈Pi − Dσ 〉, and
〈−∇ · qσ 〉 is represented by dash-dotted magenta.

At early time in both panels (t � 3), there is an initial
positive spike of pressure dilatation, followed by an overshoot
where it goes negative. This occurs because the initial condi-
tions of the simulation contain a single drifting Maxwellian
population, instead of two populations as is needed for the
Harris sheet which is an exact kinetic equilibrium. The system
self-consistently adjusts as the simulation is evolved. After
this, most of the power densities are small until t � 12 when
the reconnection rate begins to increase rapidly in time. Con-
sequently, we focus mostly on these later times.

For the electrons, Fig. 2(a) reveals that 〈Pi − De〉 and
〈−Pi(∇ · ue)〉 are the two largest terms, nearly equal early in
the nonlinear growth phase with 〈Pi − De〉 becoming larger
in the late nonlinear growth phase. 〈Pe,HORNET〉 remains rela-
tively small throughout the evolution. We know from Fig. 1(a)
that Pe,HORNET is nonzero locally, so this result suggests that
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FIG. 2. Instantaneous spatially averaged power densities in the
reconnection electron diffusion region as a function of time for
(a) electrons and (b) ions. 〈Pσ,HORNET〉 are the solid green lines,
〈−Pσ (∇ · uσ )〉 are the dotted orange lines, 〈Pi − Dσ 〉 are the dashed
purple lines, and 〈−∇ · qσ 〉 are dash-dotted magenta lines.

the net positive and negative effective power density contri-
butions within the EDR associated with evolution towards
or away from LTE mostly cancels out. Focusing on the net
power densities at t = 13 for electrons, we find 〈Pi − De〉 �
0.008, 〈−Pe(∇ · ue)〉 � 0.006, and 〈−∇ · qe〉 � −0.002, giv-
ing a net power density to change the electron internal energy
of 0.012. Since 〈Pe,HORNET〉 � 0.001, we find 〈Pe,HORNET〉 �
0.13 〈Pi − De〉 � 0.17 〈−Pe(∇ · ue)〉. Because of the small-
ness of the average values and potential uncertainties in the
measurements of Pσ,HORNET, these fractions could have signif-
icant uncertainties. The raw values indicate that 〈Pe,HORNET〉
represents a small but non-negligible percentage of about 8%
of the rate of change of energy density going into changing
the electron internal energy.

Interestingly, Fig. 2 shows that 〈Pe,HORNET〉 becomes neg-
ative at t = 15, suggesting that the net effect in the EDR is
for the electron phase space density to evolve to be more
Maxwellian at this time, in contrast to t = 13 where it be-
comes less Maxwellian. While this could be impacted by the
level of uncertainty in the measurements of Pe,HORNET, there
is a physical reason to believe this could be valid. As seen
in Fig. 1(a), the strongest negative Pe,HORNET regions are at
the downstream edges of the EDR where electrons thermalize.
The electrons start to thermalize over a larger area as recon-
nection proceeds through its nonlinear growth phase, so these
patches of Pe,HORNET < 0 grow with time (not shown), leading
to the overall change in sign of 〈Pe,HORNET〉.

For the ions shown in Fig. 2(b) the dominant positive
energy conversion channel is 〈−∇ · qi〉, which is nearly bal-
anced by a negative 〈−Pi(∇ · ui )〉. There is a small net

positive 〈Pi − Di〉 late in the nonlinear growth phase (t � 12),
that leads to a very weak increase in ion internal energy. The
net effective energy conversion associated with the evolution
towards or away from LTE, i.e., 〈Pi,HORNET〉, though positive,
is small compared to the other ion terms. This is expected
from the two-dimensional plot of Pi,HORNET [see Fig. 1(e)]
that shows it is non-negative locally inside the EDR lead-
ing to a net evolution of ions towards LTE. These results
are very sensible physically, as the system size is not large
enough for the ions to fully couple to the reconnection pro-
cess in the simulation, so their net energy conversion is quite
weak. At t = 13, we find 〈−∇ · qi〉 � 0.015, 〈Pi − Di〉 �
0.01, and 〈−Pi(∇ · ui )〉 � −0.005, for a total of 0.02 go-
ing into ion internal energy. In comparison, 〈Pi,HORNET〉 �
0.007 � 70% 〈Pi − Di〉 � 50% 〈−∇ · qi〉. Thus, in contrast
to what we see for electrons, a larger percentage (35%) of the
energy going into ion internal energy goes to the evolution of
the ions towards LTE.

We briefly examine the comparison between Pσ,HORNET

and Jσ · E. At t = 13, we observe that the peak amplitude of
Jσ · E exceeds that of the largest energy conversion metric
(i.e., −∇ · qσ ) by more than a factor of two (not shown).
Moreover, it surpasses Pσ,HORNET by more than an order of
magnitude. This is expected because, in reconnection, a sig-
nificant portion of the electromagnetic energy is converted
into bulk kinetic energy of the particles, so the portion as-
sociated with internal energy and Pσ,HORNET are smaller. In
summary, the results of this section suggest Pσ,HORNET is a
useful tool for assessing the relative rates at which the phase
space density evolves towards or away from LTE and for
comparing the rate to standard power densities during the
reconnection process.

V. RESULTS: DECAYING TURBULENCE

A. Spatial distribution and amplitude of HORNET

We now discuss the structure of Pσ,HORNET in the decaying
turbulence simulation using two-dimensional position-space
plots of the various power densities in Fig. 3 at t = 30 ∼ 2 τnl ,
with representative in-plane magnetic field line projections
as dashed black lines. This time is chosen as it is after the
time at which mean square current density 〈J2〉 peaks (plot
not shown). The panels are of the same quantities and are in
the same order as those plotted in Fig. 1 for the reconnection
simulation.

We first consider electrons. In Fig. 3(a), we see that
Pe,HORNET has substantially nonzero signatures colocated
with intermittent structures (current sheets). The regions with
strongest Pe,HORNET, up to a magnitude of about 0.016, are
centered around (x, y) � (18, 36), (21, 2), (29, 5), (15, 18),
(15,4), and (30,22). Pe,HORNET can have either sign in
and around these structures. We observe one location at
(x, y) � (15, 7) around a current sheet where the structure
of Pe,HORNET somewhat resembles that of the reconnection
X-line shown in Fig. 1(a), with a weak positive value
surrounded by a negative value. We do not see this feature at
other current sheets in our turbulence simulation. The absence
is possibly due to the presence of asymmetries [55] or flow
shear arising at reconnection sites in the decaying turbulent
system or the presence of the mean (guide) field in the
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FIG. 3. Particle-in-cell simulation results comparing power densities for electrons and ions during decaying turbulence at t = 30. (a, e)
Higher-order nonequilibrium terms effective power density Pe,HORNET and Pi,HORNET, (b, f) pressure dilatation −Pe(∇ · ue) and −Pi(∇ · ui ), (c,
g) Pi − De and Pi − Di, and (d, h) vector heat flux density divergence −∇ · qe and −∇ · qi.

turbulence simulation but not in the reconnection simulation
that may modify the structure of Pe,HORNET. Interestingly, we
observe numerous bands with nonzero Pe,HORNET coinciding
with extended current sheets that are multiple ion scales in
length (∼10 di) and electron scale in thickness.

Figure 3(a) makes it appear that Pe,HORNET is small away
from the current sheets, but this is an artifact of the colorbar
because the largest values are significantly higher than values
in the rest of the domain. In Appendix C, we reproduce the
same plot but with the colorbar saturated at the maximum
value used for Pi,HORNET to better observe the structures in
Pe,HORNET away from the current sheets. This plot makes it
clear that there are regions with nonzero Pe,HORNET away from
the current sheets. There are noticeable features in Pe,HORNET

within ion-scale eddies of size 5–10 di. For example, in eddies
centered around (x, y) � (12, 12), (29, 16), and (15, 32), we
see that the edges exhibit a weak but nonzero signature of
Pe,HORNET, while the centers of eddies have nearly exclusively
negligible Pe,HORNET.

Turning to the ions, Fig. 3(e) shows that almost the whole
simulation domain has noticeable Pi,HORNET, implying the
phase space densities evolve towards or away from LTE in
regions away from the intermittent structures. Pi,HORNET is
found to be nonzero in the ion-scale eddies, e.g., at regions
centered around (x, y) � (12, 12), (30, 27), and (29, 16). This
makes sense physically, as ions are prone to get demagnetized
in ion-scale magnetic islands since their characteristic ion
gyroradius in the mean field is 0.77.
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The peak amplitude of Pe,HORNET is higher by a factor of
� 4 than Pi,HORNET at this time in the simulation, implying
the peak effective power density of evolution towards or away
from LTE is higher for electrons than ions. Since the density
and temperature for the ions and electrons are initially equal,
Eq. (9) suggests the electrons become more non-Maxwellian
than the ions.

B. Comparison to other power densities

We next compare Pσ,HORNET with power densities de-
scribing changes to internal energy. Pressure dilatation and
Pi − Dσ have been the subject of many recent 2D turbulence
simulation studies [9,10,20,21,56], with a greater emphasis
on Pi − Dσ . Here we discuss the overall 2D structures in
−Pσ (∇ · uσ ) and Pi − Dσ and compare their structures with
−∇ · qσ and Pσ,HORNET.

We first analyze electron power densities at t = 30, shown
in Fig. 3. We find that −Pe(∇ · ue) [Fig. 3(b)] has localized
regions of compression or expansion on the order of 1 di

(= 5 de) in size and up to an amplitude of 0.16, unlike the
structures seen in Pe,HORNET. This is presumably due to elec-
tron plasma waves propagating through the system. Looking
at Pi − De [Fig. 3(c)], we see only a few localized regions
with prominent amplitudes up to an amplitude of about 0.06
that are a few (∼5) di in length and electron scale in thickness,
which is similar to the structures seen in Pe,HORNET. Finally,
the two-dimensional structures seen in −∇ · qe [Fig. 3(d)]
show localized regions with significant amplitude up to 0.160
that are colocated with current sheets, many of which coin-
cide with regions of strong Pe,HORNET and Pi − De. However,
−∇ · qe is appreciably nonzero with positive and negative
values throughout the simulation domain, with structure sizes
on electron scales. Furthermore, at (x, y) � (15, 7), the struc-
ture in −∇ · qe is not coherent while it is in the reconnection
simulation, even though Pe,HORNET at the same location looks
similar in the two. Among the four electron power densities,
−Pe(∇ · ue) and −∇ · qe are the terms with the largest local
magnitudes, but there are more regions with the peak values
in −Pe(∇ · ue) than −∇ · qe as −∇ · qe is strongest where
reconnection is taking place, while −Pe(∇ · ue) is strongest
due to plasma waves pervasive in the domain.

We turn to ion power densities. The 2D structures seen
for −Pi(∇ · ui ) [Fig. 3(f)] and Pi − Di [Fig. 3(g)] are of the
order of a few di size, similar to what is seen in Pi,HORNET.
Both have their highest magnitude near intermittent struc-
tures (� 0.055 for pressure dilatation, � 0.009 for Pi − Di),
with smaller magnitudes elsewhere in the domain, and both
quantities have various regions with positive and negative
values. −∇ · qi [Fig. 3(h)] shows structures similar to the
other power densities, with an amplitude up to 0.064, with one
notable difference that the structures are slightly smaller in
size. Analogous to the electrons, the largest local magnitudes
in ion power density are in −∇ · qi and −Pi(∇ · ui ), with the
former having a slightly higher peak magnitude.

Next, we compare the signed spatial average of the power
densities considered here calculated over the whole simula-
tion domain as a function of time in Fig. 4, with the same
color scheme as in Fig. 2. Figure 4(a) is for electrons, and
Fig. 4(b) is for ions, with the inset in the latter focusing
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FIG. 4. Instantaneous spatially averaged power densities in the
turbulence simulation domain as a function of time for (a) electrons
and (b) ions. The inset in (b) is a plot from time t = 10 − 50. The
same color scheme as Fig. 2 is used. In this simulation, τnl � 17.

from t = 10–50. A similar analysis of 〈−Pσ (∇ · uσ )〉 and
〈Pi − Dσ 〉 was performed in Ref. [11] [see their Figs. 2(c)
and 2(d)], which utilized a similar simulation as used in the
present study, except their simulation employed a lower PPG
of 3200, had a bigger simulation domain of 1502 d2

i , and was
evolved for more than 300 	−1

ci . We note that 〈−∇ · qσ 〉 � 0
for both species, as it should, since we are calculating the
average over the entire computational domain.

We see in Fig. 4(b) that, up until about 1 τnl , there are
oscillations in 〈Pi − Di〉 and 〈Pi,HORNET〉 that dwarf all other
power densities. We attribute these oscillations to Alfvénic
exchange between different modes from the initiation of the
simulation, and therefore focus on times after t � 15 � τnl .

For both electrons and ions, 〈Pi − Dσ 〉 is the dominant
contribution to increasing the internal energy for this simula-
tion, and there are oscillations around zero for 〈−Pe(∇ · ue)〉,
consistent with Ref. [11]. The value for 〈Pi − Dσ 〉 is com-
parable for the two species, starting at � 0.0003 at t � 1 τnl

and slowly decreasing throughout the rest of the evolution
as the turbulence decays. We find 〈Pσ,HORNET〉 is � 0.0002
at t � τnl , which is � 67% of 〈Pi − Dσ 〉 at that time. While
acknowledging that the smallness of the averages increases
the potential impact of uncertainties, our turbulence simula-
tion suggests the effective power density associated with the
phase space density evolving towards or away from LTE is
a significant percentage of the overall energy budget at this
time.

We observe that 〈Pσ,HORNET〉 decays in time faster than
〈Pi − Dσ 〉. By t = 30 � 2 τnl , we find that 〈Pe,HORNET〉 �
31% 〈Pi − De〉 (down from 67% at t � 1 τnl ) and
〈Pi,HORNET〉 � 50% 〈Pi − Di〉 (down from 67% at t � 1 τnl ).
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Physically, this implies that the plasma thermalizes more
rapidly than it cools as the turbulence decays, whether through
physical or numerical effects.

Interestingly, we find that 〈Pe,HORNET〉 peaks at t = 14,
earlier than the mean square current density 〈J2〉 (dominated
by electrons), which peaks at t = 21 (plots not shown). At
t = 14, the domain has a single intermittent structure with
strongly positive Pe,HORNET, with its spatial distribution more
closely resembling that seen in reconnection simulation in
Fig. 1(a) than the example discussed at t = 30 in Fig. 3(a).
Consequently, the peak effective power density associated
with electrons evolving away from LTE occurs prior to current
sheets reaching their maximum current as eddies collide. We
attribute this to the fact that electron phase space densities start
to become non-Maxwellian before electrons demagnetize in
the current sheets due to electron trapping in mirror magnetic
fields present near the current sheets [45].

Finally, we briefly compare Pσ,HORNET and Jσ · E. in the
decaying turbulence simulation at t = 30. As with the pattern
seen in −Pe(∇ · ue) in Fig. 3, Je · E exhibits localized regions
of positive and negative amplitudes (not shown). We posit
that the structure may be attributed to propagating electron
plasma waves within the simulation domain. This hypothe-
sis is supported by the proximity of the peak amplitude of
Je · E (0.157) to that of −Pe(∇ · ue), which is an order of
magnitude higher than Pe,HORNET. For the ions, the structures
in Ji · E bear resemblance to those observed in −Pi(∇ · ui )
and Pi − Di, with peak amplitudes approximately two times
larger than the other channels of energy conversion illustrated
in Fig. 3 (not shown). This higher value of Jσ · E occurs
because it quantifies the rate of energy conversion from the
fields to the particles, while the power densities considered
here contain information about changes to internal energy but
not bulk kinetic energy.

VI. DISCUSSION AND CONCLUSION

In this work we define the “higher-order nonequilibrium
term” (HORNET) effective power density Pσ,HORNET [see
Eq. (9)]. It is local in space and time and quantifies the
rate at which a species evolves towards or away from local
thermodynamic equilibrium. Positive Pσ,HORNET implies the
phase space density is locally becoming less Maxwellian in
time, while negative Pσ,HORNET implies it is locally becoming
more Maxwellian (thermalizing). The motivation for defining
Pσ,HORNET is that it is an effective power density, on the same
footing as well-studied power densities, describing changes
to internal energy, namely, pressure dilatation −Pσ (∇ · uσ )
describing compression, Pi − Dσ describing incompressible
effects, and the divergence of the vector heat flux density
−∇ · qσ [see Eq. (3)], as well as Jσ · E. This allows the
terms to be compared to determine the relative importance of
HORNET compared to the power densities.

To exemplify the utility of Pσ,HORNET, we use numerical
simulations of plasmas that are not in LTE to study its spa-
tial and temporal variation for both electrons and ions. We
use fully kinetic PIC simulations of magnetic reconnection
at the time when the reconnection rate is most rapidly in-
creasing. We first look at the spatial variation of Pσ,HORNET

in and around the EDR. We find that Pσ,HORNET identifies

regions where particle phase space densities locally evolve
toward or away from Maxwellianity in the comoving (La-
grangian) reference frame. We also find that Pσ,HORNET is
locally significant at and near the X-line for both electrons
and ions in our simulation. When compared to power den-
sities describing changes to the internal energy, we find that
Pe,HORNET � 23% of the sum of −Pe(∇ · ue), Pi − De, and
−∇ · qe, and Pi,HORNET � 65% of the sum of −Pi(∇ · ui ),
Pi − Di, and −∇ · qi. We further examine the spatial average
of Pσ,HORNET inside the EDR and compare it with the other
power densities as a function of time. Though smaller in
magnitude than the other power densities, 〈Pσ,HORNET〉 rep-
resents the dynamical importance of the electrons departing
from LTE. During the nonlinear growth phase of reconnection
(at t = 13), 〈Pe,HORNET〉 � 8.3% of the sum of 〈−Pe(∇ · ue)〉,
〈Pi − De〉, and 〈−∇ · qe〉 and 〈Pi,HORNET〉 � 35% of the sum
of 〈−Pi(∇ · ui )〉, 〈Pi − Di〉, and 〈−∇ · qi〉.

We also study PIC simulations of decaying turbulence.
We investigate the two-dimensional spatial distribution of
Pσ,HORNET and compare it with other power density mea-
sures. Quantitatively, we find Pσ,HORNET is comparable to
other power densities. Similar to the reconnection simulation,
we look at the time evolution of the spatial average of these
energy conversion metrics, but averaged over the whole sim-
ulation domain. We find 〈Pσ,HORNET〉 is a substantial fraction
of the only other significant power density 〈Pi − Dσ 〉; at one
nonlinear time into the evolution of the system, it is 67% for
both electrons and for ions.

It is tempting to directly compare the prevalence of non-
LTE effects in the reconnection and decaying turbulence
simulations in this study. However, we carry out spatial av-
eraging for Pσ,HORNET in the reconnection simulation over a
localized domain, approximately the EDR, but for the whole
domain in the decaying turbulence simulation, so the results
for the percentage of Pσ,HORNET compared to the power densi-
ties are not describing the same physical quantity. Moreover,
we find that the signed average of Pσ,HORNET is lower in
the decaying turbulence simulation than in the reconnection
simulation. This difference can be attributed to the fact that the
regions undergoing reconnection, embedded within the turbu-
lence simulation, are relatively small compared to the overall
simulation domain. Furthermore, the turbulence simulation
contains regions with both positive and negative Pσ,HORNET,
and these oppose each other when averaged over the entire
domain. Thus, it is essential to exercise caution when compar-
ing quantities across systems.

We now address the implications of the present work. We
discuss how one might expect the magnitudes of electron and
ion HORNET effective power density to compare to each
other. Using Eq. (9), their ratio is

Pe,HORNET

Pi,HORNET
= neTe

d
dt (sev,rel/ne)

niTi
d
dt (siv,rel/ni )

. (15)

For a singly ionized two-component quasi-neutral plasma,
the densities cancel. Thus, the electron-to-ion HORNET ra-
tio is the electron-to-ion temperature ratio times the ratio
of the rate of change of the relative entropy per parti-
cle. Calculating this ratio provides information about which
phase space density is more rapidly changing its shape. For
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example, averaging over the EDR at t = 13 in the recon-
nection simulation, we find 〈Pe,HORNET〉/〈Pi,HORNET〉 � 0.14.
Since the initial temperature ratio Te/Ti = 0.2, we conclude
the two species are non-Maxwellianizing at a comparable
rate, with the ions being at a slightly faster rate. Similarly,
averaging over the whole domain at t = 30 in the turbulence
simulation, 〈Pe,HORNET〉/〈Pi,HORNET〉 � 1.1. Since the initial
temperature ratio is 1, we conclude the two species are non-
Maxwellianizing at a comparable rate, with the electrons
being slightly faster.

A second important implication applies for collisionless
or weakly collisional plasmas, such as some in space. If the
collisional terms in Eq. (10) are negligible, then Pσ,HORNET is
equivalent to

Pσ,HORNET = Tσ (∇ · Jσ,th )rel. (16)

This form could be useful because it is easier to calculate
in simulations, and potentially in spacecraft or laboratory
experiments, because it does not require taking a temporal
derivative.

We now discuss possible applications of this study. In
turbulent plasmas, energy injected at large scales cascades
down to smaller scales [57], leading to intermittent coherent
structures [58]. It has been argued [9,10,59] that all channels
of energy conversion are present in these structures, which
convert between bulk flow, thermal and electromagnetic ener-
gies. The present results provide an approach to quantify the
relative importance of non-LTE effects, which we have shown
can be a significant contribution. Magnetic reconnection in
thin current sheets, both within turbulent plasmas [55,60–66]
and in other solar, magnetospheric, planetary, astrophysical,
and laboratory settings [67], have long been investigated as lo-
cations of energy conversion. Understanding the contribution
of non-LTE physics near the diffusion region and beyond is
important to understand this conversion. Collisionless shocks,
such as Earth’s bow shock, convert bulk flow energy into
magnetic energy, and thermal and nonthermal energy at a
relatively sharp boundary layer [68]. Plasmas in and around
the boundary layer can be very strongly non-Maxwellian, so
quantifying the contribution is expected to be very useful.
Beyond plasma physics, we expect potential applications in
sciences where non-LTE systems are routinely studied such
as condensed matter physics [69], open quantum systems [70],
and molecular dynamics in chemistry and biology [71,72].

We expect Pσ,HORNET to be useful in a variety of analysis
techniques for non-LTE systems for which fσ can be mea-
sured, such as numerical simulations, laboratory experiments,
and spacecraft observations of space plasma. In particular,
phase space densities are readily obtainable in particle-
in-cell and Vlasov/Boltzmann simulations, thus calculating
Pσ,HORNET is possible. Slices of phase space densities can be
measured in plasma experiments [73–77], although full three-
dimensional measurements are currently beyond the present
technology. For spacecraft data, it has been shown [36,78,79]
that kinetic entropy can reliably be measured using NASA’s
Magnetospheric Multiscale (MMS) satellites [80]. One di-
rect avenue of future work is to measure Pσ,HORNET using
MMS data during turbulence, reconnection, and collisionless
shocks.

Another avenue for future work is to ascertain the im-
pact of the system size on the two-dimensional structure of
Pi,HORNET during magnetic reconnection. A limitation of the
present reconnection study is the small system size; larger
simulations are necessary to determine how Pi,HORNET will
change in a system in which ions fully couple to large-scale
physics [53]. In a simulation with a larger domain, we expect
ions to recouple to the reconnected field near the downstream
edges of the IDR and thermalize, which will appear as a
Pi,HORNET < 0 signature, analogous to the negative Pe,HORNET

seen for electrons near the downstream edges of the EDR in
the present study. Other avenues for future work, for both
reconnection and turbulence, include utilizing a more realistic
mass ratio, performing three-dimensional simulations, study-
ing the parametric dependence on Pσ,HORNET with ambient
plasma parameters, and studying the dependence on out-of-
plane mean (guide) magnetic field, upstream asymmetries,
and/or upstream bulk flow.

In the absence of physical collisions as in the PIC sim-
ulations discussed here, energy and entropy are conserved
reasonably well but are not conserved perfectly due to nu-
merical dissipation. This implies that the physical energy
conversion to internal energy by the discussed energy con-
version measures, i.e., pressure dilatation, Pi − Dσ , and the
divergence of the vector heat flux density, is not equal to the
rate of change of internal energy density (in the Lagrangian
frame) as suggested by Eq. (2). Similarly, the rate of change
in relative energy in Eq. (12) is affected by numerical dissipa-
tion. Entropy metrics can be useful for quantifying numerical
dissipation (e.g., [43]). The effects of physical collisions and
entropic approaches to quantifying numerical dissipation will
be topics of future study.

We based our color map for two-dimensional plots on the
“bam” color map [82] in an effort to improve color-vision de-
ficiency accessibility [83,84]. The colorbar extrema are green
[(rg, gg, bg) = (2, 73, 29) = Cg] and purple [(rp, gp, bp) =
(68, 3, 79) = Cp], where (r, g, b) are the red, green, and blue
components of each color, given by the subscript g for green
and p for purple. Bam varies linearly from purple to white
to green, but we stretch the color map to provide higher
contrast for small values. Letting C(k) = (r(k), g(k), b(k)) be
the color map with index k from 0 to 255, we use a color
map of C(k) = 255 − (255 − Cp)F (k) from k = 0 to 127
(purple) and C(k) = 255 − (255 − Cg)F (−k) from k = 127
to 254 (green), with r(255) = g(255) = b(255) = 0 (black)
and F (k) = tanh [3(127 − k)/127]/ tanh 3.

Data used for the figures are available publicly at [81].
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with PPG = 25 600 from Ref. [14]). (a) Inside the EDR, close to its upstream edge, (b) farther inside the EDR, and (c) near the X-line.
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APPENDIX A: WHY Pe,HORNET IS NEGATIVE INSIDE THE
EDR NEAR ITS UPSTREAM EDGE DURING

RECONNECTION NONLINEAR GROWTH PHASE

In Sec. IV A, we provided a physical reason for the nega-
tive Pe,HORNET inside the EDR between the upstream edge and
the region near the X-line (0.15 � |y − y0| � 0.25) during the
nonlinear growth phase of antiparallel magnetic reconnection.
Here, we provide further details. We show reduced electron
phase space densities fe(vx, vy) (with vz integrated out) in
Fig. 5 at three locations from the reconnection simulation
from Ref. [14] that is identical to the simulation presented
in this study except PPG = 25 600. Figure 5(a) is at (x −
x0, y − y0) = (0,−0.3) inside the EDR, close to its upstream
edge. Here fe is elongated in the parallel (≈ x̂) direction,
as explained by Egedal and colleagues [45]. Figure 5(b) is
at (x − x0, y − y0) = (0,−0.2), closer to the X-line inside
the EDR where Pe,HORNET < 0. Figure 5(c) is at (x − x0, y −

y0) = (0,−0.1), even closer to the X-line where electrons
undergo Speiser orbits. Figure 5(b) reveals that fe contains
particles from the distributions in Figs. 5(a) and 5(c), which
reduces the anisotropy in fe going from Fig. 5(a) to Fig. 5(b).
Therefore, in the comoving reference frame for a plasma
parcel convecting from outside the EDR to inside the EDR
close to its upstream edge, the phase space density becomes
more Maxwellian, so Pe,HORNET is negative, in agreement with
the simulations.

APPENDIX B: PHYSICAL MECHANISM FOR THE
VECTOR HEAT FLUX DENSITY STRUCTURE IN THE

RECONNECTION DIFFUSION REGION

At the X-line, the reduced phase space density is sym-
metric around vx = 0, so qe,x = 0 [Fig. 6(d)]. Similarly, fe is
symmetric in vy (not shown), so qe,y = 0 [Fig. 6(e)]. However,
the striated phase space density fe at the X-line is not sym-
metric in vz. Relative to the bulk flow velocity ue,z, the phase
space density weighted by v′2 is more significant at vz < ue,z

than vz > ue,z, so there is a negative heat flux density qe,z at
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FIG. 6. Particle-in-cell magnetic reconnection simulation results (using the simulation with PPG = 25 600 from Ref. [14]) to explain the
vector heat flux density profiles observed. Reduced electron phase space densities fe(vx, vz ) at the (a) green, (b) magenta, and (c) cyan “x”’s
overlayed on the x component of electron heat flux density qe shown in panel (d). Panels (e) and (f) show the y and z components of qe. The
magenta dashed lines in (a)–(c) denote the bulk flow velocity components ue,x and ue,z.
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FIG. 7. Plot of Pe,HORNET identical to Fig. 3(a), except with col-
orbar saturated at values identical to that of Pi,HORNET in Fig. 3(e).

the X-line [Fig. 6(f)]. As one goes away from the X-line in
either outflow direction, the phase space density is rotated by
the reconnected magnetic field By along the y − y0 = 0 line,
as has been discussed previously [12,47,48,85]. To the left of
the X-line, there is a negative ue,x [Fig. 6(a)]. The part of the
phase space density below the bulk velocity ue,z rotates in the

positive vx direction, so this rotation creates an asymmetry in
fe that gives a positive qe,x, consistent with Fig. 6(d). Simi-
larly, to the right of the X-line, qe,x is negative, also consistent
with Fig. 6(d). This is the kinetic manifestation of the spatial
structure in qe,x. This term is the dominant contribution to the
converging vector heat flux −∇ · qe at and near the X-line as
seen by the green color near the X-line in Fig. 1(d).

APPENDIX C: Pe,HORNET IN THE TURBULENCE
SIMULATION

In Sec. V A, we display a two-dimensional plot of
Pe,HORNET in a PIC simulation of decaying turbulence at t =
30 and discuss its structure. To highlight the structure beyond
the regions of its peak value, we show the same quantity
shown in Fig. 3(a) in Fig. 7, but with the colorbar saturated
to have the same range as that for Pi,HORNET in Fig. 3(e).
The regions with nonzero Pe,HORNET outside the intermittent
structures are more clearly visible here.
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