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Reassessing the transport properties of fluids: A symbolic regression approach
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The viscosity and thermal conductivity coefficients of the Lennard-Jones fluid are extracted through symbolic
regression (SR) techniques from data derived from simulations at the atomic scale. This data-oriented approach
provides closed form relations that achieve fine accuracy when compared to well-established theoretical, empir-
ical, or approximate equations, fully transparent, with small complexity and high interpretability. The novelty is
further outlined by suggesting analytical expressions for estimating fluid transport properties across the whole
phase space, from a dilute gas to a dense liquid, by considering only two macroscopic properties (density and
temperature). In such expressions, the underlying physical mechanisms are reflected, while, at the same time, it
can be a computationally efficient alternative to costly in time and size first principle and/or molecular dynamics
simulations.
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I. INTRODUCTION

As thermophysical property data is constantly becoming
available, mainly through atomic-scale simulations, and some
well-posed experiments, reevaluation methods, and tech-
niques are proposed to produce better correlations between
properties of interest and provide insight to the physics of
the underlying physical system. Empirical or approximate
relations have been the basic theoretical tool to lead the es-
tablishment of related theories during the past decades while
in the last few years, machine learning (ML) based methods
have emerged. In the era of big data, it would be highly
profitable to investigate the possibility of unraveling complex
physical processes through statistical data analysis, as long as
the proposed methods are set on concrete ground and focus on
enhancing and binding current knowledge into new directions.

Atomic scale simulations, such as molecular dynamics
(MD), have proven to be an invaluable choice to calculate
fundamental fluid properties (i.e., density, specific heat, com-
pressibility, and more) through interatomic potentials, such as
the Lennard-Jones potential. On the other hand, fluid transport
properties such as shear viscosity, and thermal conductivity,
require computationally intensive and timely MD simulations,
and suggested models were focused on suggesting an accurate
framework able to reproduce the available experimental re-
sults [1–10]. Before MD simulations take the leading role in
property extraction, the Enskog transport theory, which was
based on the hard sphere (HS) fluid model, had been widely
incorporated, especially for the investigation of low-density
fluids [11]. For denser fluids, more complex approaches have
been introduced, such as the excess-entropy method [12]. The
excess-entropy has been found to control liquid equilibrium
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transport properties for simple liquids which closely resemble
the behavior of HS models, while other recent efforts have
investigated this connection [13], improving the accuracy and
scaling of the initial theory [14].

Other approaches include kinetic theory principles, where
collision integrals have to be calculated [15–17], and the
inversion method [18–20]. The field of application in real flu-
ids includes ionic liquids [21,22], gases [23], thermoelectric
analysis [24,25], polar and nonpolar fluids [26,27], and more
[28,29]. One can find more information in several well-written
reviews [30,31].

However, the kinetic solution for dilute monatomic gases
cannot be applied for polyatomic molecules [18]. In such
cases, molecules undergo several inelastic collisions and
therefore kinetic energy is not conserved (on the opposite,
mass and momentum are). As a result, that theory is only
applicable to low pressure, high temperature, nonpolar gases
[23]. To overcome this obstacle, several empirically correlated
density-dependent functions are being introduced into the ex-
isting kinetic gas theory, in order to extend calculations of
transport properties at higher densities [26]. Similarly, meth-
ods (e.g., [32]) are bound to liquid phases [27], or nanofluid
procedures are hindered by the type of nanofluid, the size of
nanoparticle, and volume fractions [30].

It is well known that the accuracy of MD simulations
rely on the quality of the interatomic potential employed. On
the one hand, first principle MD simulation attempts have
been reported, but on the other hand, the huge computa-
tional demands hamper their application to common materials
[33]. In [34], MD simulations based on the density func-
tional theory (DFT) framework has given accurate transport
property values for Ar and water, that are close to litera-
ture results. Another methodology within the framework of
Maxwell viscoelastic theory has been presented for local
shear viscosity calculations in nanopores [35]. Recently, an
integrated computational framework, FeOs [36], has been pro-
posed, which can be used to compute various properties of
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materials (pure or mixtures), with a basis on equations of state
and DFT.

A conclusive remark on all these methods is that, notwith-
standing their wide applicability and proven accuracy with
experimental results, their restriction to a certain extent of
experimental conditions, their computational burden, and the
fact that the proposed relations fail to generalize over a
fluid phase transition, are still open issues. Next generation
approaches employed in physical sciences are data driven
and focus on data-derived knowledge through ML [37]. The
introduction of ML for material properties calculations has
provided increased accuracy, followed by reduced computa-
tional cost [38–40], by exploiting the wealth of available data
in the literature. In more advanced schemes, an ML frame-
work running in parallel to the simulation can be exploited in
order to train a macroscopic model with microscopic data [41]
in different time and length scales [42]. In physical sciences, it
would be highly desirable to transform the available data into
explainable and interpretable mathematical relations [43].

Genetic programming-based (GP) approaches, which code
natural species evolution mechanisms into computational
tools, can have a primitive role toward this direction. More
specifically, a subfield of GP, symbolic regression (SR), is ca-
pable of deriving analytical expressions that fit in a particular
dataset, only by focusing on data behavior [44] and without
prior knowledge of the investigated system [45]. Overpass-
ing the traditional computational and statistical approaches
[46–53], SR provides a different outlook to reveal the phys-
ical data behavior and many recent works have shown that it
can be successfully applied to diffusion coefficient prediction
[54–56], ionic conductivity [57], lattice thermal conductivity
[58], and viscosity [59,60], to mention a few.

In the upcoming sections, a ML procedure is implemented
for viscosity and thermal conductivity analysis. The aim is to
obtain symbolic expressions (SE) for shear viscosity and ther-
mal conductivity of the Lennard-Jones (LJ) fluid as a function
of two macroscopic properties, fluid density and temperature.
The investigation is spread across all fluid states available
in the MD datasets, from dilute gases to dense liquids. At
first, several conventional approaches that are widely used for
shear viscosity and thermal conductivity analysis and predic-
tion are briefly introduced. Second, we focus on the adopted
ML methodology, where a preprocessing data analysis is per-
formed to reveal statistical correlations between input features
and the properties of interest, followed by the SR algorithm
description. Resulting ML-derived equations are presented
and discussed on their physical correspondence. It is found
that the proposed equations for shear viscosity and thermal
conductivity achieve sufficient accuracy and it is concluded
that SR could be embedded in transport properties prediction,
either in interpolation or extrapolation, bypassing simulation
techniques wherever possible.

II. MATHEMATICAL MODELS AND METHODS

A. The transport properties of fluids

In general, transport properties such as viscosity and ther-
mal conductivity can be described at a molecular point of view
by statistical mechanics equations that account for intermolec-

ular forces [61]. These quantities have gained attention due to
their ability to control the transfer of momentum (viscosity)
and thermal energy (thermal conductivity). Moreover, as fluid
transforms from dilute gas into dense liquid, an increase at
the values of transport properties for constant temperature has
been reported, which could be a hint that different mecha-
nisms might govern these phases [62]. Hence, decoding this
behavior is of particular interest.

It is a fact that several mathematical (empirical and/or ap-
proximate) relations have emerged, but the inherent limitation
that bounds them into a certain density interval or the fact
that they contain adjustable parameters prone to experimental
measurement uncertainty, makes them of limited practical
applicability. For instance, viscosity and thermal conductivity
can be described by the Chapman-Enskog solution of the
Boltzmann kinetic theory, which accounts for the binary inter-
actions of the molecules and correlates the former properties
into various collision integrals (�(l,s)). These collision inte-
grals are defined by [18]

�(l,s) = [(s + 1)!(kBT )s+2]−1
∫ ∞

0
Q(l )(E )e−E/kBT Es+1 dE ,

(1)

Q(l )(E ) = 2π

[
1 −

(
1 + −1l

2(l + 1)

)]−1 ∫ ∞

0
(1 − cosl θ )b db,

(2)

θ (b, E ) = π − 2b
∫ ∞

0

[
1 − b2

r2
− V (r)

E

]−1/2 1

r2
dr, (3)

with kB being the Boltzmann constant, T is temperature, l
and s are weighting factors linked to the transport mechanism
due to collisions, E being the relative energy of colliding
molecule, Q(l )(E ) is a transport collision integral, θ is the
scattering angle between two colliding molecules with energy
E and b impact parameter at the gas temperature, r is the
distance of two molecules, and V (r) is the intermolecular pair
potential function. However, this approach exhibits deviations
when implemented at higher densities.

The transport properties of fluids are usually extracted via
MD simulations. By screening the particle trajectories, veloc-
ities, and calculating interatomic forces during simulations, it
is possible to derive time-dependent properties at equilibrium
or nonequilibrium conditions. These approaches, highly rely
on the accuracy of the chosen interatomic potential. Some
decades ago, simple numerical approaches for dilute gases
have depended on the HS potential [63]

�HS =
{∞, r < σ

0, r > σ
, (4)

where �HS is the HS potential of two spheres with σ diameter
at r distance. For this potential, it is hypothesized that all
particles are finite sized and the collisions are strictly elastic.
Transport coefficient relations produced from this potential
are accurate at gas phases but weaken while approaching
dense liquid states. This is mainly because the above inter-
atomic potential is perhaps too simple and cannot account
for more complex interactions. On the contrary, the widely
used LJ potential has been found to perform better on the
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calculation of the transport coefficients of real fluids, provid-
ing results with increased accuracy (e.g., several noble gases
[64]). The 12–6 LJ potential �LJ is given by [65]

�LJ = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (5)

where r is the distance between particles, σ is the interatomic
separation where the potential energy is zero, and ε is the
potential well depth. LJ potential encompasses variables such
as density (ρ), temperature (T ), distance (r), viscosity (η),
thermal conductivity (λ), and time (t ) with a special trait
that they appear dimensionless (oftentimes symbolized by
an asterisk in superscript). These dimensionless variables are
merely a product of simulation features, scaled by ε and σ and
defined by the following equations [66,67]:

ρ∗ = ρσ 3, T ∗ = kBT

ε
, r∗ = r

σ
,

η∗ = η
σ 2

√
mε

, λ∗ = λ
σ 2

kB

(
m

ε

)1/2

, t∗ = t
√

ε/m

σ
, (6)

with kB being the Boltzmann constant, σ and ε are the LJ
parameters, N is the number of particles, m is the mass of the
atom in pure system, and V is the volume of the simulation
box.

1. Shear viscosity

During gas phase, transport of momentum takes place by
molecular collision, whereas at liquid phase, molecules in-
teract within a more dense environment, and the momentum
transfer is achieved by advancing forces between them [68].
The difference between these procedures leads to the assump-
tion that different approaches might be more precise in order
to estimate the viscosity coefficient. In fact, it is stated that
gas theories are more advanced when compared to liquid ap-
proaches, where the complexity makes it difficult to produce
a solid basis [68].

Starting from low densities, viscosity of a dilute
monatomic gas can be expressed in the first Enskog approxi-
mation as [1]

η = 5

16

(
mkBT

π

)1/2 1

σ 2�(2,2)∗ , (7)

with η being the viscosity, m is the molecular mass, T is the
temperature, kB is the Boltzmann constant, and σ is the inter-
atomic separation. �(2,2)∗ is the collision integral of Eq. (1)
where l, s = 2 and scaled by π and σ , via [18]

�(l,s)∗ = �(l,s)

πσ 2
. (8)

Moreover, the temperature dependence is different for each
interatomic potential chosen, while what should also be noted
is that a correction multiplicative factor ( fη ) is occasionally
included in Eq. (7); however, most of the times, it is consid-
ered as fη = 1 [18].

Alternatively, MD simulations have a prominent advantage
over other theoretical approaches. For a system at equilibrium,
shear viscosity (and thermal conductivity, as will be shown
next) can be calculated via the Green-Kubo (GK) formulation

[69]. The shear viscosity for a pure fluid is obtained by

η = 1

V kBT

∫ ∞

0
dt

〈
Jxy

p (t ) · Jxy
p (0)

〉
, (9)

with Jxy
p being the off-diagonal elements of the microscopic

stress tensor, described by

Jxy
p =

N∑
i=1

miv
x
i v

y
i −

N∑
i=1

N∑
j>1

rx
i j

∂u(ri j )

∂ry
i j

, (10)

where u(ri j ) is the LJ potential of the interacting atoms i and
j, ri, j is the distance between these atoms, and v

j
i is the j com-

ponent (whereas j = x, y, z) of the velocity that corresponds
to the i atom.

At nonequilibrium conditions, GK can also be incorpo-
rated, however, care has to be taken in order to stay in the
linear regime, not far from equilibrium [70]. In the presence of
strain rates, where fluid layers (in the y direction) tend to move
toward each other (in the x direction), nonequilibrium MD
(NEMD) methods are exploited [71], and the shear viscosity
is obtained as a profile in y axis from

η(y) = − Pxy

γ (y)
, (11)

where γ is the strain rate and Pxy is the time-averaged, off-
diagonal component of the microscopic stress tensor. For
more details on the equation, the reader refers to [72]. In this
paper we focus only on bulk, equilibrium systems.

It has been observed that the viscosity increases in denser
fluids at constant temperature [62]. Moreover, at gas phase,
an increase of viscosity values is expected when temperature
increases. On the other hand, at liquid phase, viscosity should
decrease at higher temperature. This contradicting behavior
can be anticipated with the introduction of density fluctuation
theory (DFT). According to DFT, shear viscosity is in fact a
product of two different parts, the kinetic and the potential
[73],

η = ηk + ηv, (12)

where the kinetic part is given by Eq. (7), i.e., the Enskog
approximation for viscosity of dilute gases and the potential
part is equal to

ηv = ρ2ω(ρ, T )

6D
, (13)

with ω(ρ, T ) given by

ω(ρ, T ) = 2π

15

∫ ∞

0
dr r5 V ′(r)g(r, ρ, T )θ (ξ − r), (14)

where V (r) is the LJ interaction potential energy, g(r, ρ, T )
is the dynamic radial distribution function, and θ charac-
terizes the nature of density fluctuations over the ξ range
[73,74]. Conversely, by following the general behavior of
of Eq. (12), it is stated that the constitutive parts present
a diametrically opposite way of acting at gases and liquids
regarding temperature and density, which basically describes
the viscosity transition of gases into liquids. In addition, as
phase shifts from dilute gas into dense liquid and vice versa,
each equation term may surpass the values of the other at the
corresponding regimes [73].
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TABLE I. Dataset description.

Parameter value range

Dataset (assembled from Ref.) No. of observations Density (ρ∗) Temperature (T ∗) Transport property (η∗, λ∗)

Shear viscosity (η∗) [66] 343 0.005–1.275 0.698757–6.004 0.04947–11.06
Thermal conductivity (λ∗) [67] 134 0.05–0.95 0.6–4.0 0.6336–11.48

2. Thermal conductivity

Following a similar approach to viscosity investigation, an
expression to calculate the thermal conductivity of a dilute
monatomic gas can be obtained by the first Enskog approxi-
mation [1]:

λ = 75

64

(
k3

BT

πm

)1/2 1

σ 2�(2,2)∗ , (15)

with λ being the thermal conductivity, m is the molecular
mass, T is the temperature, kB is Boltzmann’s constant, and
�(2,2)∗ is the reduced collision integral of Eq. (8).

Thermal conductivity can also be divided in two distinct
terms, the kinetic and potential part [75], as

λ = λk + λv. (16)

The kinetic contribution, λk , is given by the Enskog
approximation of thermal conductivity for dilute gases
[Eq. (15)], while the potential contribution, λv , is given by

λv = ρ2χ (ρ, T )

6D
, (17)

where χ (ρ, T ) is defined by

χ (ρ, T ) = 4πkBκ∗

m

∫ ∞

0
dr12r4

12

[
r12V ′(r12)

5
− V (r12)

]
× g(r12; ρ)θ (r12 − ξ ). (18)

More details can be found in [75].
The statistical mechanics GK formula for thermal conduc-

tivity is given by

λ = 1

V kBT 2

∫ ∞

0
dt

〈
Jx

q (t ) · Jx
q (0)

〉
, (19)

with Jq being the microscopic heat flow which is given by

Jq=1

2

N∑
i=1

mi(vi )
2vi−

N∑
i=1

N∑
j>1

[
ri j :

∂u(ri j )

∂ri j
−I · u(ri j )

]
· vi,

(20)
where vi is the velocity vector of i atom and I is the unitary
matrix.

In general, thermal conductivity for simple organic liquids
increases as the fluid shifts from dilute gas into dense liquid,
where typical values are between two orders of magnitude
larger. At gas phase with low pressure and high temperature,
an increase of thermal conductivity is expected, while at liquid
phase, as temperature increases, the value of thermal conduc-
tivity decreases [62].

B. Data analysis

Viscosity and thermal conductivity simulation data are
taken from literature sources, originated from MD simulations
of the Lennard-Jones fluid. Table I presents some basic data
features. To feed the SR algorithm, the datasets are randomly
split into a training and a test (validation) dataset via a parti-
tioning factor of 80% and 20%, respectively.

As shown in Fig. 1(a), data for shear viscosity expand to
a wide region of the (ρ∗-T ∗) phase space, incorporating gas,
liquid, dense-liquid, and supercritical states, while the avail-
able data points for thermal conductivity are mainly gathered
at the liquid/dense liquid region. The effect of fluid density
for T ∗ = constant is depicted in Fig. 1(d). Here we notice
an increase of viscosity in denser fluids, and this behavior is
likely to be approached by some kind of exponential or power
function. On the other hand, density and thermal conductivity
diagrams exhibit a more direct increase of thermal conduc-
tivity; however, this is highly more likely to be formed of
a parabolic or maybe an exponential function, rather than a
linear. Conversely, temperature and transport property plots
[Fig. 1(c)] indicate a connection that resembles in a more or
less linear proportional function. Finally, from the correlation
tables in Fig. 1(b), viscosity appears highly positive correlated
to density values and low correlated to temperature. In case of
thermal conductivity, the correlation plot reveals high positive
correlation to temperature, while density and thermal conduc-
tivity are not correlated at all.

C. Symbolic regression

Symbolic regression derives a closed form SE which de-
scribes, to a certain extent, the underlying mechanisms inside
a collection of data [45]. Other ML-based methods such as
neural networks (NNs), are generally employed to derive
numerical predictions from data. However, these are based
on “black-box” models, that do not provide a physical in-
terpretation of the investigated system and this might lead
to an abstract mapping of the system’s behavior [78]. Alter-
natively, SR is able to model the system’s behavior through
an analytical equation. Although not producing new theory,
this data-driven approach can provide an equation to be used
at hand, making it more suitable for physical-related tasks:
explainable, interpretable, and generelizable.

In general, the supersets of SR, evolutionary algorithms
(EA) [79] and genetic programming (GP) [80], create a large
search space (population) filled by random solutions (indi-
viduals) and locate those that achieve higher performance (in
terms of a loss function). The final step includes a random re-
combination process into a new set of equations via crossover.
This is an iterative process that creates as many populations
as selected by each user or when the loss functions becomes
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FIG. 1. Statistical analysis for shear viscosity and thermal conductivity. (a) Phase diagram. Dashed lines denote the critical temperature,
vapor-liquid equilibrium (VLE) [76], and freezing line [77]. (b) Mixed correlation matrix, where the upper triangle is for λ∗ and the lower
for η∗. (c) Transport properties vs temperature. (d) Transport properties vs density, where (i) corresponds to viscosity and (ii) to thermal
conductivity.

smaller than a given value. Random mutations of these solu-
tions are also being introduced to minimize the possibility of
overfitting [81]. A schematic diagram of the above procedure
is illustrated in Fig. 2. More details on the method can be
found in the recent review of Ref. [43].

For the algorithmic implementation, the SR-proposed
framework here is based on the SR library package included

FIG. 2. Symbolic regression approach.

in the open python-julia software PySR [82]. The conquering
equations are selected based on a loss function metric, along
with an estimation of the equation complexity metric. The loss
function applies to the mean square error [MSE, Eq. (21)],

MSE = 1

n

n∑
i=1

(Yi − Ŷi )
2, (21)

while the number of nodes that correspond to a treelike equa-
tion accounts for the level of complexity. Therefore, the total
score for each proposed equation lies in the pareto front [83].

The generated expressions appear in a tree structure form,
whilst the selection of the best performing equations is
twofold. First, a loss function determines the degree of fitness
these individuals achieve over the dataset. In our case, we
have MSE as the loss function. Second, complexity values
are assigned at each individual, which corresponds to the
number of their tree nodes, and the total score is a prod-
uct of two. Moreover, individuals are being reproduced by
the typical evolutionary mutation operators (e.g., crossover,
mutation) and after a number of iterations, each population
achieves a high score that lies at the pareto front [83]. Each
population develops autonomous knowledge, however, equa-
tions that fit to a specific problem are constantly appearing in
the results pool. In the end, physical knowledge and intuition,
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TABLE II. Symbolic expressions measures of accuracy.

Training dataset (80%) Test dataset (20%)

Equation Compl. R2 MSE RMSE MAE R2 MSE RMSE MAE

η
∗symb
1 (22) 15 0.99 0.02 0.14 0.11 0.99 0.02 0.14 0.10

η
∗symb
2 (23) 15 0.99 0.03 0.17 0.11 0.99 0.03 0.17 0.12

λ
∗symb
1 (24) 17 1.0 0.02 0.14 0.1 1.0 0.02 0.14 0.1

λ
∗symb
2 (25) 9 0.99 0.04 0.20 0.13 0.99 0.04 0.20 0.14

in a manual manner, are exploited to select these expressions
that achieved low error metrics, low complexity, and, most im-
portantly, can be explained in physical terms for the problem
investigated.

III. RESULTS

A. Symbolic regression equations

The SR framework, as presented in Fig. 2, is implemented
in order to acquire viscosity and thermal conductivity co-
efficients as functions of density and temperature. After a
great number of parallel runs, a pool of candidate equa-
tions have been extracted. Attention has been drawn on those
equations that keep appearing in the output, even though the
algorithm starts by considering random initial parents every
time. This case of equation reappearances in such a random
process could be an indication of capturing some kind of
physical behavior inside data. Finally, we ended up in two
equations for viscosity, Eqs. (22) and (23), and two for thermal
conductivity, Eqs. (24) and (25), as

η
∗symb
1 = a1

√
T ∗ + a2ρ

∗4

(
a3 + a4ρ

∗
√

T ∗

)2

, T ∗ �= 0, (22)

η
∗symb
2 = √

ρ∗ + ρ∗(b1 − log (T ∗))(ρ∗4 − b2), T ∗ �= 0,

(23)

λ
∗symb
1 = c1

√
T ∗ + ρ∗2(T ∗ + ρ∗ + e2ρ∗ + c2), (24)

λ
∗symb
2 = e(ρ∗+d1 )2 − d2

T ∗ , T ∗ �= 0, (25)

where ai, b j, ck, dl (i = 1 − 4, j = 1, 2, k = 1, 2, l = 1, 2)
coefficients have been approximately calculated as
a1 = 0.21, a2 = 2.06, a3 = 1, a4 = 0.7, b1 = 4.84, b2 =
0.09, c1 = 0.9, c2 = 1.9, d1 = 0.635, andd2 = 1.28.

It should be noted that η
∗symb
1 [Eq. (22)] and η

∗symb
2

[Eq. (23)] present a high order polynomial dependence on
density. This is somewhat expected, if we take into account
the behavior presented in Fig. 1(d), where viscosity presents
a polynomial increase over density increase. Temperature de-
pendence appears in η

∗symb
1 as square root, while it is more

complicated in η
∗symb
2 , where a temperature logarithmic term

is drawn.
In case of thermal conductivity, λ

∗symb
1 [Eq. (24)] denotes a

square root correlation on temperature and, in parallel, a more
complex interconnection with density, with square, cubic,
and exponential dependencies identified. In contrast, λ

∗symb
2

[Eq. (25)] is simpler, inversely proportional, and negatively

affected by temperature, while density has some kind of ex-
ponential relation.

The MD simulations dataset exploited for equation ex-
traction contains measurements across every fluid phase (gas,
liquid, dense liquid, and supercritical). Therefore, we expect
that the proposed equations account for fluid behavior across
all states, along with critical regions and phase transitions
from gas to liquid. However, we have to bear in mind that SR
is not a process of suggesting new physics; we consider it as a
computational tool that may be able to reveal physical trends
only from data, where possible, without former assumption
on its behavior. Next, the suggested equation accuracy is ana-
lyzed.

B. Statistical post processing

To argue on the proposed equations accuracy, several sta-
tistical measures have been calculated, such as the coefficient
of determination R2, MSE , the root MSE (RMSE ), and the
mean absolute error (MAE ). To account for overfitting, each
equation is rerun at a range of 0–100 different random initial
states. The average value of the statistical measures, along
with equation complexity (Compl.) (analog to the number of
tree nodes in each equation) are presented in Table II.

The identity plots for viscosity equations, η
∗symb
1 and

η
∗symb
2 , in Fig. 3 present an excellent fit between simula-

tion and predicted values. This is also verified by low error
metrics in Table II. Another point worth mentioning is the
measure similarity between the training and the test dataset,
which is an indication of no overfitting. Low complexity of
both equations is, further, an asset. Nevertheless, some de-
viations appear at intermediate viscosity values (mostly for
3.0 � η∗ � 8.0).

Equally noteworthy is the fact that thermal conductivity
identity plots suggest that both equations fit well on simu-
lation data. Moreover, despite the significant difference on
complexity values, accuracy measures remain comparable
(see Table II). No overfitting occurs here as well.

IV. DISCUSSION

Apart from fine fitting of the proposed equations on MD
simulation data, a physical connection to the hidden nature of
the transport properties of fluids is further needed. We start the
investigation by considering ρ∗ = constant and plot viscosity
and thermal conductivity values vs temperature at different
fluid regions (gas, liquid, dense liquid) in Fig. 4.

The y-axis scale is different in each fluid state, since
viscosity is higher at high-dense liquids compared to liquids
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FIG. 3. Identity plots of symbolic expressions. The 45o line denotes perfect fit between equation and available data.

and, even more, to gases. An increase of viscosity values
at gas phase for higher temperature is expected, and this is
observed for both equations (at least for values below the
critical point), in Figs. 4(a) and 4(b). When at liquid state, a
fluid confronts decrease of viscosity as temperature increases.
This premise is also fulfilled for both proposed equations.
Last but not least, it seems that both equations perform
relatively well at liquid and dense liquid regimes, since
deviations are minimum. On the other hand, different results
are obtained for the gas state, where both η

∗symb
2 and η

∗symb
1

fail to capture simulation data behavior.
Conversely, it is not straightforward to draw physical con-

clusions from the suggested thermal conductivity equations at
gas states [Figs. 4(c) and 4(d)], where the implied dataset
does not contain ample measurements. The physical trend of
thermal conductivities increase as the fluid transforms from
gas to liquid, and dense liquid is followed by the proposed
equations and the available data. What is also evident is a
continuous increase of λ at constant density values when
temperature increases, as is also shown in the density-thermal

conductivity diagram in Fig. 1(d). On the opposite, λ
∗symb
2

displays a peculiar behavior for temperature values below the
critical value, as a dramatic decrease is noticed for T ∗ < 1.0.
In addition, the fact that the proposed interdependence be-
tween thermal conductivity and temperature does not adhere
to the statistical preprocessing analysis shown, we believe that
λ

∗symb
2 might not be a potential thermal conductivity relation.

The SR-extracted equations are further investigated on the
limits of density and temperature values. At dilute gas condi-
tions, we practically reach the zero density limit. An inherent
advantage is that every equation is defined at zero density
limit. Therefore, as density approaches zero, each remaining
expression η

∗symb
1 , η

∗symb
2 , λ

∗symb
1 becomes η

∗symb
1,dilute, η

∗symb
2,dilute,

λ
∗symb
1,dilute, accordingly, and equations transform to

η
∗symb
1,dilute = lim

ρ→0
η

∗symb
1 = a1

√
T ∗, (26)

η
∗symb
2,dilute = lim

ρ→0
η

∗symb
2 = 0, (27)

λ
∗symb
1,dilute = lim

ρ→0
λ

∗symb
1 = c1

√
T ∗. (28)
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FIG. 4. Fitting of symbolic equations at various fluid states. Color lines correspond to the respective equation data, black line is the Tc

limit, and symbols to the available data points.

From the analysis above, it appears that η
∗symb
2,dilute equals to

zero at dilute gas state, and this shows a nonphysical behavior.
Thus, for viscosity estimation, only η

∗symb
1 is kept next for

further investigation.

The next step on establishing a firm physical basis to our
derived expressions for viscosity and thermal conductivity, is
their performance evaluation in various conditions and their
relationship with some long-established theoretical models.
We mostly focus on well-known approaches across various
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FIG. 5. Performance of viscosity and thermal conductivity components (L, M, a1, c1) in the dilute situation.

fluid regions, without diving deep into a comprehensive pre-
sentation of those. More details can be found on the respective
literature sources.

Starting from the dilute gas scenario, both viscosity
(η∗symb

1,dilute) and thermal conductivity (λ∗symb
1,dilute) equations, suggest

a square root dependence between the transport property and
temperature. This term is also found in the Enskog theory for
viscosity [Eq. (7)] and thermal conductivity [Eq. (15)].

Furthermore, one could apply slight modifications on the
traditional theoretical approaches to gain more insight on the
implied mechanisms. By reconfiguring the parts of Enskog
expressions for viscosity and thermal conductivity [Eq. (7)
and Eq. (15)], the first component of each equation would
translate to the L and M terms, respectively, as

ηEnskog =

L︷ ︸︸ ︷(
5

16
√

π

1

�(2,2)∗

) [√
mkB

σ 2

√
T

]
, (29)

λEnskog =

M︷ ︸︸ ︷(
75

64
√

π

1

�(2,2)∗

)[
k(3/2)

B√
mσ 2

√
T

]
. (30)

If we turn our attention to Eq. (26) for viscosity and
Eq. (28) for thermal conductivity, substitute the reduced
parameters with those of Eq. (6), and rearrange some param-
eters, we obtain

η
symbolic
dilute = (a1)

[√
mkB

σ 2

√
T

]
, (31)

λ
symbolic
dilute = (c1)

[
k(3/2)

B√
mσ 2

√
T

]
. (32)

Notwithstanding the fact that the proposed SR-derived ex-
pressions capture exactly the dynamics of the second part of
each equation, we have also calculated the values of L and M
from Eqs. (29) and (30). For the estimation of �(2,2)∗, we have

utilized the commonly used empirical relation [62]

�(l,s)∗ = [A(T ∗)−B] + C[exp(−DT ∗)] + E [exp(−FT ∗)],
(33)

where, for the l = s = 2 situation, A = 1.16145, B =
0.14874, C = 0.52487, D = 0.77320, E = 2.16178, F =
2.43787, and T ∗ is given by Eq. (6). This equation is valid in
the 0.3 � T ∗ � 100 regime. Since our data points are inside
this range, we have calculated �(2,2)∗ at each data point for
both transport properties. Considering that the �(2,2)∗ factor
of Enskog’s expression is temperature dependant, a volatile
response of the L and M parts is expected. On the contrary,
symbolic expressions suggest a constant behavior of the
corresponding factors (a1 and c1). Results appear in Fig. 5.
Firstly, it is observed that both symbolic and Enskog factors
operate in the same order of magnitude; however, deviations
are evident for both instances. We can see that as temperature
increases symbolic predictions converge towards Enskog’s
values while the differences are larger at lower temperatures.
We can notice again that the differences are larger in the case
of thermal conductivity where fewer data were available.

What is also worth mentioning, is that according to
theoretical approaches [73,75], shear viscosity and thermal
conductivity consist of two parts, a kinetic and a potential,
with the kinetic part posing major influence over the transport
property at gas phase, whereas at liquid phase the potential
part conquers. The interesting aspect here is that η

∗symb
1 and

λ
∗symb
1 somehow consists of two parts X1, X2 & Y1, Y2, re-

spectively, as:

η
∗symb
1 =

{
X1 = a1

√
T ∗,

X2 = a2 ρ∗4
(
a3 + a4 ρ∗√

T ∗
)2

.
(34)

λ
∗symb
1 =

{
Y1 = c1

√
T ∗,

Y2 = ρ∗2(T ∗ + ρ∗ + e2ρ∗ + c2).
(35)

Further analysis of η
∗symb
1 and λ

∗symb
1 by examining sepa-

rately the behavior of X1 − X2 and Y1 − Y2 parts at different
densities for constant temperature is made in Fig. 6. For
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FIG. 6. Decomposing viscosity and thermal conductivity SR-extracted equations. Kinetic parts refer to X1 and Y1 and potential parts to
X2 and Y2. Figures on the inset zoom into the points where transport properties increase.

simplicity, we consider T ∗ = 1.0. Since transport property
value range may be misleading in the low density regime, an
additional inset figure is presented inside the main plot.

Here, it is observed that for low densities, i.e., ρ∗ < 0.2,
(at gas phase), the overall behavior of η

∗symb
1 resembles the

behavior of X1. For 0.2 < ρ∗ < 0.5, there is a transition
phase where both parts contribute at the final value of vis-
cosity, while at density values above 0.5 (at liquid phase),
the behavior of viscosity is completely governed by X2. This
could be an indication that X1 and X2 operate as the ki-
netic and potential part respectively. To further support that
assumption, the fact that X1 has a strong relation with the
Chapman-Enskog equation (i.e., the kinetic part) strengthens
our hypothesis. In contrast to viscosity dynamics, λ∗symb

1 starts
to approach Y2 from a density value ρ∗ ≈ 0.1, i.e., when fluid
is at the gas phase. Despite the Y1 relation with the Chapman-
Enskog equation for thermal conductivity, this characteristic
complicates the behavior and requires further investigation.
Therefore, for the next step, we plot the potential parts of
generated expressions, i.e, X2 and Y2 at different fluid phases,
similar to Fig. 4.

Furthermore, Fig. 7 demonstrates the performance of X2

and Y2 across different fluid regimes. The viscosity’s (η∗symb
1 )

term, X2, misses the fluid behavior at the gas phase and re-
mains near to zero viscosity values. Since the potential part
has a minor influence over the kinetic at the gas phase and the
fact that X1 resembles the kinetic, then X2 correctly fails to
approach gas measurements or, even more, its overall dynam-
ics. Conversely, as the fluid becomes denser, X2 achieves an
increasingly fine fitting while concurrently sustaining physical
correspondence, as it predicts viscosity reduction with tem-
perature increase. Thus, it seems that the constitutive parts of
viscosity, X1 and X2, exhibit strong similarity to the expected
behavior of kinetic and potential parts.

In contrast, the Y2 part of thermal conductivity ( η
∗symb
1 )

has shown less precision. It has to be noted that sparse dataset
points at the gas phase, and the fact that they appear in the
vicinity of the critical point, does not allow a direct estimation.

However, what is evident is the tendency of Y2 to increase at
the gas phase. This fact contradicts to the expected behavior.
Moreover, we notice that Y2 perceives the overall physics at
liquid and dense liquid phase, as it follows a trail similar to the
simulation data points. Nonetheless, Y2 performance seems to
be significantly reduced, as it fails to capture the simulation
data points. It should be reminisced that in Fig. 4 the united
response of Y1 and Y2 achieves an excellent fit at both liquid
and dense liquid phases. Therefore, Y1, which resembles the
Chapman-Enskog relation for dilute gas thermal conductivity,
has a strong influence at the thermal conductivity in liquid
and dense liquid phase. Therefore, it is deduced that λ

∗symb
1 is

not in fact two distinct parts, but these are interconnected and
operate as one.

To sum up, from the initial pool of
η

∗symb
1 , η

∗symb
2 , λ

∗symb
1 , λ

∗symb
2 expressions, despite fine

agreement with observation values, η
∗symb
2 and λ

∗symb
2 are

discarded due to physical disagreement. On the other hand,
η

∗symb
1 has been found to achieve excellent physical and

statistical agreement. By splitting its two constitutive parts
into a density independent kinetic part, X1, and a temperature
dependent potential part, X2, it has been shown that these
two have diametrically opposite characteristics and strongly
resemble the kinetic and potential part that the DFT approach
suggests. In addition, resemblance of the X1 term to the
Chapman-Enskog relation for dilute viscosity [Eq. (7)],
strengthens this hypothesis.

On the contrary, this scenario does not apply to λ
∗symb
1 , in

which the two constitutive terms, Y1 and Y2, operate as one.
However, since the thermal conductivity dataset contains only
a small set of observations at the gas phase, near the critical
point, λ∗symb

1 would need more data points to be established as
a firm relation for estimating thermal conductivity of fluids. At
present, it can be considered as a decent choice for the liquid
and dense liquid states.

It is important to emphasize, that the derived equations are
solely derived from macroscopic fluid properties (density
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FIG. 7. Parts X2 and Y2 of viscosity and thermal conductivity equations (η∗symb
1 and λ

∗symb
1 ) at different fluid phases.

and temperature). Comparison to GK formulas, Eq. (9) and
Eq. (19), is not possible, since these equations contain terms
from the microscopic state of the system, such as particle
positions, velocities, potential energies, and their correlated
time averages. The proposed SR-based equations rely on
macroscale properties and pose as a fast and accurate alter-
native means of transport properties calculation, making them
practical tools for various applications. Nevertheless, more
GK or relevant methods simulation data would train the SR
model even better.

Therefore, from a physics point of view, the proposed re-
lations reflect the underlying physical mechanisms that affect
the transport properties of fluids, with a closed form equa-
tion that seems robust and accurate. Efforts to obtain closed
form relations from basic assumptions have been made, as for
example, the Enskog relations, but these are based on simple
assumptions, while the real situation may be more complex,
and interdependencies cannot be easily incorporated. With aid
of SR, such a closed form relation is able to catch the physical
meaning in a transparent way, which is beneficial compared
to other ML methods, such as shallow and deep learning.
Comparison with semianalytical equations both shows the
accuracy of the approximations and extends the description to
more complex situations, which cannot be treated with other
approaches.

V. CONCLUSION

Machine learning techniques have entered almost every
aspect of computational science research, providing enhanced

estimation with increased accuracy and minimal computa-
tional cost. A symbolic regression model has been chosen
here, capable of unravelling hidden relations inside a simula-
tion dataset and providing physical interpretation, overpassing
common black-box models. Viscosity and thermal conductiv-
ity equations are extracted, without previous knowledge of the
system under investigation. Results indicate that it is possible
to obtain macroscopic equations driven by microscopic state
data and achieve satisfying accuracy, while concurrently ad-
hering to statistical and physical laws.

The proposed viscosity equation, η
∗symb
1 , presents an in-

teresting behavior bound to physical intuition, with one term
representing the gas phase behavior where viscosity increases
with temperature, and a second term which encloses a com-
bined effect of density and temperature. In the liquid phase,
a phenomenon reproduced by our equation lies upon the in-
creased value of viscosity, and at the same time, a viscosity
reduction with an increase of temperature at constant density.
Another interesting aspect is that the gas related term (

√
T ) is

similar to the Enskog relation. As far as thermal conductivity
is concerned, the proposed equation λ

∗symb
1 has a term with

increasing temperature behavior (depending only on tempera-
ture), along with combined density/temperature terms, and a
term based only on density.

Going one step further from conventional models, the
generated expressions encompass microscopic molecular dy-
namics accuracy with general macroscopic features, and
provide a reliable model able to bridge dynamics across
scales. Viscosity expressions adhere to the overall behavior
of traditional empirical and theoretical models. On the other
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hand, due to limited data, even though thermal conductivity
expressions achieve fine accuracy and low error measures, it is
harder to establish a physical interpretation to existing domain
knowledge.

Finding the golden mean between computationally in-
tensive simulations and ML-assisted schemes could be the
dominant approach in computational science in the near
future.
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