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Fingering stabilization and adhesion force in the lifting flow with a fluid annulus
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The lifting Hele-Shaw cell flow commonly involves the stretching of a viscous oil droplet surrounded by air,
in the confined space between two parallel plates. As the upper plate is lifted, viscous fingering instabilities
emerge at the air-oil interface. Such an interfacial instability phenomenon is widely observed in numerous
technological and industrial applications, being quite difficult to control. Motivated by the recent interest in
controlling and stabilizing the Saffman-Taylor instability in lifting Hele-Shaw flows, we propose an alternative
way to restrain the development of interfacial disturbances in this gap-variable system. Our method modifies
the traditional plate-lifting flow arrangement by introducing a finite fluid annulus layer encircling the central
oil droplet, and separating it from the air. A second-order, perturbative mode-coupling approach is employed
to analyze morphological and stability behaviors in this three-fluid, two-interface, doubly connected system.
Our findings indicate that the intermediate fluid ring can significantly stabilize the interface of the central oil
droplet. We show that the effectiveness of this stabilization protocol relies on the appropriate choice of the ring’s
viscosity and thickness. Furthermore, we calculate the adhesion force required to detach the plates, and find that
it does not change significantly with the addition of the fluid envelope as long as it is sufficiently thin. Finally,
we detect no distinction in the adhesion force computed for stable or unstable annular interfaces, indicating that
the presence of fingering at the ring’s boundaries has a negligible effect on the adhesion force.
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I. INTRODUCTION

The Saffman-Taylor (or viscous fingering) instability [1]
is a popular fluid dynamic problem that takes place in the
confined geometry of Hele-Shaw cells (two motionless glass
plates separated by a small gap) when a less viscous fluid is
injected against a more viscous one. The viscosity difference
between the fluids makes the two-fluid interface unstable,
resulting in the formation of complex patterns, where multiple
fingerlike structures are formed [2–7]. This iconic interfacial
instability has been the object of considerable interest since
the late 1950s, mostly due to its multiple scientific and prac-
tical applications, and since then has become a paradigmatic
system for interfacial instabilities and pattern formation [8].

A variant of the traditional injection-driven, viscous fin-
gering situation in motionless-plates Hele-Shaw cells, is the
lifting Hele-Shaw cell problem [9–13]. In this alternative
setting, a more viscous fluid droplet surrounded by a less
viscous fluid is stretched, when the upper cell plate is lifted
uniformly, and the lower plate remains at rest. In contrast to
the conventional injection-induced, fixed-gap arrangement, in
the lifting version the cell gap varies with time. During the
lifting-plate process, the outer less viscous fluid penetrates the
more viscous central droplet, and the contracting fluid-fluid
interface quickly deforms as it moves inwards toward the cen-
ter of the cell. As a result, visually striking interfacial patterns

*irio.menezes@ufpe.br
†pamorimanjos@esp.puc-rio.br
‡rmo@puc-rio.br
§jose.mirandant@ufpe.br

arise [14–16], which are very different from those produced in
the injection-induced, constant-gap configuration. Regarding
important technological applications, it is worth noting that
the lifting Hele-Shaw cell problem involves essentially the
same setup as the one utilized in the so-called probe-tack test
[17–19], an experimental technique widely used to study tech-
nologically relevant problems in adhesion science [20–25].

Despite the richness of the pattern formation systems asso-
ciated with the Saffman-Taylor instability, and its scientific
and practical relevance, depending on the situation the de-
velopment of interfacial instabilities can be undesirable, and
difficult to control. For example, the viscous fingering in-
stability is a major cause of poor oil recovery [26,27], once
evolving branching fingers may reach the entrance of the well,
and mainly water, and not petroleum is retrieved. A similar
unwelcome effect occurs during displacement of groundwater
by hydrogen [28,29] in renewable energy processes, where
the viscous fingering instability leads to gas leakage from
anticlinal traps and stimulates undesired gas dissolution. Fur-
thermore, the development of viscous fingering is potentially
detrimental to chromatographic separation processes [30,31]
and can also be unwanted in applications involving adhesives
[21–25] and in the fabrication of lithium rechargeable batter-
ies [32,33]. In this way, it is of great importance to find ways
to minimize, suppress, and control the growth of interfacial
disturbances in these systems.

Several strategies have been pursued to restrain and
possibly stabilize the growth of fingering patterns in
injection-driven, radial Hele-Shaw cells with motionless
plates. To obtain the desired stabilization, researchers
modified the geometry of the Hele-Shaw cell, through the
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use of elastic [34–36] and tapered [37–39] plates, employed
various different fluid injection schemes [40–46], added
suspended particles at the fluid-fluid interface [47,48], and
utilized applied external electric fields [49–51].

A relatively smaller number of studies have been devoted
to try to control and eventually stabilize fingering instabilities
occurring in confined lifting flows. Recently, an interesting
experimental investigation in a lifting Hele-Shaw cell with a
modified geometry has shown that it is possible to generate
more regular meshlike patterns in such gap-variable circum-
stances by introducing holes in the cell plates in a setup named
the “multiport lifted Hele-Shaw cell” [52]. A related theoret-
ical study [53] used linear stability analysis and numerical
simulations to analyze a simplified version of the multiport
arrangement proposed in Ref. [52], and considered a lifting
Hele-Shaw cell with a single hole in the upper cell plate.
The existence of such a single hole makes the less viscous
outer fluid to penetrate the confined more viscous liquid si-
multaneously from two fronts: the periphery and from the
center of the cell. In this two-interface scenario, the authors
of Ref. [53] characterized the stability of the invading fingers
and demarcated parameter regions over which the resulting
interfaces are unstable.

Even more recently, investigators performed probe-tack
adhesion measurements of viscoelastic thin films in a mod-
ified version of the lifting Hele-Shaw cell [54]. In Ref. [54]
the rigid upper plate of the lifting apparatus is replaced by a
soft spherical probe. Under these conditions, they examined
how the mode of debonding between the soft probe and the
viscoelastic adhesive film is impacted as the compliance of
the probe is varied. Their experimental results demonstrate
that the adhesive-air interface stabilizes as the compliance of
the probe is increased [see Figs. 1(c)–1(e) in Ref. [54]]. In
other words, they have found that detachment from a soft
probe suppresses the Saffman-Taylor instabilities normally
encountered in probe-tack adhesion experiments with rigid
probes (for many examples of such unstable patterns, see
Refs. [13–15,20,21]). In addition, they have also verified that
the adhesion strength (i.e., the maximum value of the adhesion
force) is nearly the same for stable and unstable adhesive-air
interfaces (see Fig. 2 in Ref. [54]).

Motivated by the recent interest in controlling and stabiliz-
ing the Saffman-Taylor instability in lifting Hele-Shaw flows
[52–54], and stimulated by the related findings of Ref. [54]
concerning the impact of fingering on the adhesive strength, in
this paper we propose an alternative way to control interfacial
disturbances in this gap-variable fluid flow system. More pre-
cisely, we investigate the possibility of stabilizing a shrinking
interface separating a central droplet of a viscous fluid (e.g.,
oil), originally surrounded by a fluid of negligible viscosity
(e.g., air). Note that this particular setup (single oil-air inter-
face) is precisely the most common situation studied in many
existing theoretical and experimental research explorations of
lifting Hele-Shaw flows and fluid adhesion problems (see, for
example, Refs. [9–16,20–25]). We seek interface stabilization
(see Fig. 1) by enveloping the central droplet (fluid 1) with a
fluid annulus of intermediate viscosity (fluid 2) between those
of fluids 1 and the outmost fluid (fluid 3). In this framing,
in addition to examining the stability behavior of the inner
and outer interfaces of the intermediate annular fluid ring, we

FIG. 1. Schematic illustration (upper view) of the time-
dependent gap [b = b(t )], or lifting flow in a Hele-Shaw cell
containing three fluids. A fluid annulus of viscosity η2 surrounds a
central droplet of viscosity η1 and separates this region from an infi-
nite fluid domain of negligible viscosity η3 � η1, η2. Between fluids
1 and 2 (2 and 3), there exists a perturbed interface (solid curve) rep-
resented by R1(θ, t ) = R1(t ) + ζ (θ, t ) [R2(θ, t ) = R2(t ) + ε(θ, t )],
where ζ (θ, t ) [ε(θ, t )] is a small interfacial perturbation. Addi-
tionally, the dashed circle with radius R1(t ) [R2(t )] expresses the
time-dependent unperturbed inner (outer) boundary of the annular
structure.

also evaluate the influence of the fluid annular structure on
the adhesion force in such a modified lifting Hele-Shaw flow
configuration.

The outline of the rest of the paper is as follows. In Sec. II
we formulate the physical problem and present the governing
equations used to model the motion of the fluid annulus.
By employing a second-order, perturbative mode-coupling
approach, we derive a set of coupled nonlinear differential
equations which describes the time evolution of the inner
and outer interfaces of the fluid ring. In Sec. III we analyze
some relevant features of the pattern formation dynamics and
interfacial stabilization in the early nonlinear regime. We fo-
cus on understanding how the viscosity and thickness of the
intermediate fluid ring affect the development and stability
of the nonlinear pattern-forming annular structures. Then,
in Sec. IV, we derive the fluid adhesion force considering
the presence of the fluid annulus, as well as the fingering
formation on its boundaries. Under these circumstances, we
examine how the ring’s viscosity and thickness influence the
adhesion force as time advances. Finally, Sec. V summarizes
our main results and presents some concluding remarks.

II. PROBLEM FORMULATION
AND GOVERNING EQUATIONS

Figure 1 illustrates the physical system considered in this
paper, a Hele-Shaw cell of variable gap thickness b (as seen
from above). In such an apparatus, while the lower plate of
the cell is kept fixed, the upper glass plate is lifted along the
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direction perpendicular to the cell plates, and thus, the gap
thickness varies in time [b = b(t )]. As the upper plate moves
upward with lifting velocity ḃ = db/dt , three fluids with vis-
cosities denoted by η1, η2, and η3 flow within the Hele-Shaw
cell toward its center. Fluid 1 forms the central droplet en-
veloped by an annular-shaped region of fluid 2. Surrounding
both of these fluids there is an infinite fluid domain composed
of fluid 3. The fluids are immiscible, incompressible, and
Newtonian.

At the beginning of the lifting flow process (t = 0), a
nearly circular interface having surface tension σ12, and
located at the radial distance R1(t = 0) = R1(0) (represented
by the inner dashed circle in Fig. 1) separates fluids 1 and
2. Likewise, a second interface having surface tension σ23 at
R2(t = 0) = R2(0) (represented by the outer dashed circle in
Fig. 1) separates fluids 2 and 3. As the upper plate starts to
move upwards, the slightly perturbed, circular interfaces can
become unstable and deform, due to the action of the Saffman-
Taylor instability. These perturbed boundaries (depicted as
the inner and outer solid lines in Fig. 1) are mathematically
described as R1(θ, t ) = R1(t ) + ζ (θ, t ) and R2(θ, t ) =
R2(t ) + ε(θ, t ), where θ denotes the azimuthal angle and

ζ (θ, t ) =
+∞∑

n=−∞
ζn(t ) einθ (1)

and

ε(θ, t ) =
+∞∑

n=−∞
εn(t ) einθ (2)

are the netinterface perturbations on the inner and outer
boundaries, respectively. In the Fourier expansions (1) and (2),
ζn(t ) and εn(t ) represent complex Fourier amplitudes with in-
teger wave numbers n. In addition, we include the n = 0 mode
in the summations to maintain the area of the regions filled
with fluids 1 and 2 independent of the net perturbations [4],
leading to the relations ζ0 = − 1

2R1

∑∞
n=1[|ζn(t )|2 + |ζ−n(t )|2],

and ε0 = − 1
2R2

∑∞
n=1[|εn(t )|2 + |ε−n(t )|2] [55]. Furthermore,

volume conservation imposes that the unperturbed radii vary
in time according to the equations

R1(t ) = R1(0)

√
b0

b(t )
(3)

and

R2(t ) = R2(0)

√
b0

b(t )
, (4)

where b(t = 0) = b0.
In our theoretical description of the plate-lifting Hele-Shaw

flow, the lifting velocity ḃ must be small, allowing us to
neglect inertial effects safely. Moreover, despite the increasing
values of b over time due to the lifting procedure, it is also
necessary to ensure that the system always remains at a large
aspect ratio, i.e., b(t ) � R1(t ), R2(t ). As it will become clear
in Sec. III, such requirements are easily met by the appropriate
choice of physical parameters. Under these circumstances, the
quasi-two-dimensional flow that takes place within the Hele-
Shaw setting can be described by the gap-averaged Darcy’s

law [1,8]

v j = −b2(t )

12η j
∇p j (5)

and by a modified gap-averaged incompressibility condition
[9,13]

∇ · v j = − ḃ(t )

b(t )
, (6)

where v j = v j (r, θ ) and p j = p j (r, θ ) represent the gap-
averaged velocity and pressure in fluid j (with j = 1, 2, or
3), respectively, and r denotes the radial coordinate.

Besides the governing equations (5) and (6), we need two
sets of boundary conditions at each fluid-fluid interface in
order to determine the interfacial motions. For the innermost
interface located between fluid layers 1 and 2, the first set
of conditions is given by the Young-Laplace pressure jump
boundary condition [1,8] due to the surface tension σ12, and
by the kinematic boundary condition [8], which states that
the normal components of each fluid’s velocity are continuous
across the inner interface. These are respectively given by

(p1 − p2)|r=R1 = σ12κ12|r=R1
(7)

and

(v1 · n̂)|r=R1 = (v2 · n̂)|r=R1 . (8)

Similarly, the second set of boundary conditions acting on the
outermost interface is

(p2 − p3)|r=R2 = σ23κ23|r=R2
(9)

and

(v2 · n̂)|r=R2 = (v3 · n̂)|r=R2 . (10)

Note that in Eqs. (7) and (9), κ12 and κ23 denote the interfacial
curvatures on the plane of the cell for the inner and outer
interfaces, respectively. Additionally, n̂ appearing in Eqs. (8)
and (10) is the unit normal vector at the interfaces.

As the flow field is irrotational in the bulk of each fluid,
i.e., ∇ × v j = 0, it allows the definition of velocity potentials
φ j , with v j = −∇φ j . By taking into account the modified in-
compressibility condition (6), one can find that these velocity
potentials satisfy Poisson’s equation ∇2φ j = ḃ(t )/b(t ), with
general solution (for j = 1, 2, 3)

φ1(r, θ ) = ḃr2

4b
+

∑
n

αn(t )

(
r

R1

)|n|
einθ , (11)

φ2(r, θ ) = ḃr2

4b
+

∑
n

βn(t )

(
r

R1

)−|n|
einθ

+
∑

n

γn(t )

(
r

R2

)|n|
einθ , (12)

φ3(r, θ ) = ḃr2

4b
+

∑
n

ωn(t )

(
r

R2

)−|n|
einθ . (13)

We seek to describe the motion and shape of the two
interfaces present in our annular system by means of a mode-
coupling, weakly nonlinear theory accurate to second order
in the perturbation amplitudes ζn and εn [4,55,56]. This is
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accomplished by first restating the problem in terms of φ j ,
and then relating these velocity potentials (11)–(13) to ζn and
εn through the kinematic boundary conditions (8) and (10).
These newly found relations are then plugged in together
with the remaining Young-Laplace conditions (7) and (9) into
Darcy’s law (5). By keeping only terms up to second order in
ζn and εn, we obtain, after Fourier transforming, the set of cou-
pled equations of motion for both the perturbation amplitudes
ζn and εn (for n �= 0)

ζ̇n = f1 (n)ζn + f2 �(n)εn

+ f1

∑
p�=0

[F (n, p)ζpζn−p + G(n, p)ζ̇pζn−p]

+ f2

∑
p�=0

[H (n, p)εpεn−p + I (n, p)ε̇pεn−p]

+ f2

∑
p�=0

[J (n, p)εpζn−p + K (n, p)ε̇pζn−p

+ L(n, p)ζpεn−p + M(n, p)ζ̇pεn−p] (14)

and

ε̇n = f3 �(n)ζn + f4 �(n)εn

+ f3

∑
p�=0

[F (n, p)ζpζn−p + G(n, p)ζ̇pζn−p]

+ f4

∑
p�=0

[H(n, p)εpεn−p + I (n, p)ε̇pεn−p]

+ f3

∑
p�=0

[J (n, p)εpζn−p + K(n, p)ε̇pζn−p

+L(n, p)ζpεn−p + M(n, p)ζ̇pεn−p], (15)

where

(n) = − ḃ

2b

(|n| + f −1
1

) − b2σ12|n|(n2 − 1)

12A12R3
1(η2 + η1)

, (16)

�(n) = − ḃ

2b
|n| − b2σ23|n|(n2 − 1)

12A23R3
2(η3 + η2)

, (17)

�(n) = − ḃ

2b
|n| − b2σ12|n|(n2 − 1)

12A12R3
1(η2 + η1)

, (18)

�(n) = − ḃ

2b

(|n| + f −1
4

) − b2σ23|n|(n2 − 1)

12A23R3
2(η3 + η2)

, (19)

with A12 = (η2 − η1)/(η2 + η1) [A23 = (η3 − η2)/(η3 + η2)]
being the viscosity contrast between fluids 1 and 2 [2 and 3],
and

f1 = A12(1 − A23R2|n|)
1 + A12A23R2|n| , (20)

f2 = A23(1 + A12)R|n|−1

1 + A12A23R2|n| , (21)

f3 = A12(1 − A23)R|n|+1

1 + A12A23R2|n| , (22)

f4 = A23(1 + A12R2|n|)
1 + A12A23R2|n| . (23)

The parameter R appearing in Eqs. (20)–(23) is defined as

R = R1(t )

R2(t )
= R1(0)

R2(0)
(24)

and quantifies the coupling strength between the annular inter-
faces of the system [55–57], besides being related to the ring
thickness. Therefore, it is evident that the two ordinary dif-
ferential equations (ODEs) (14) and (15) are coupled through
the terms proportional to f2 and f3 appearing on the right-
hand side (r.h.s.) of these expressions, and that the coupling
strength increases for larger values of R (with 0 < R < 1). We
also stress that as R → 0, which corresponds to the physical
situation where the two interfaces of the annulus are very
far apart, ( f2, f3) → 0, and thus the interfaces decouple. In
such a limit, there is no interaction between the interfaces,
and their independent dynamics are described by Eqs. (14)
and (15) with f1 → A12, ( f2, f3) → 0, and f4 → A23. In this
specific scenario, Eqs. (14) and (15) reproduce the results
from previous two-fluid, single interface lifting Hele-Shaw
cell studies [11].

On the other hand, the opposite scenario, in which the
interfaces are very close together and, therefore, strongly
coupled, is achieved by taking the limit R → 1. In this
case, it is possible to show numerically [by using Eqs. (14)
and (15)] that ζn → εn, and the interfacial dynamics cor-
responds to a single boundary between fluids 1 and 3
(without the presence of fluid 2), with surface tension equals
to σ12 + σ23.

The remaining nonlinear mode-coupling functions F , G,
H , I , J , K , F , G, H, I, J , and K appearing on the
r.h.s. of Eqs. (14) and (15) are given in the Appendix [see
Eqs. (A1)–(A20)].

It is known that weakly nonlinear analyses, as the one
we employ in this paper, provide a more accurate descrip-
tion of the fluid-fluid interfacial dynamics in Hele-Shaw
cell flows, when compared with conventional, purely lin-
ear stability studies (see, for instance, Refs. [4,45,55,56,58],
and references therein). In fact, very important (and in-
trinsically nonlinear) morphological effects that emerge in
Hele-Shaw flows, such as finger tip-sharpening, -broadening,
and -splitting, as well as finger competition cannot be properly
captured and described by linear stability analyses. A note-
worthy advantage of weakly nonlinear analysis is that one is
able to go up to longer times in the evolution of the system,
while still respecting the validity of the perturbative method
[i.e., |ζ | � R1(t ), and |ε| � R2(t )]. For these reasons, in this
paper we carry out a second-order mode-coupling analysis of
the lifting Hele-Shaw system with a fluid annulus, focusing on
early nonlinear effects. Moreover, as we will see in Sec. IV,
the contribution of viscous fingering to the adhesion force
between the cell plates is of second order in the perturbation
amplitudes [see Eq. (32)]. Therefore, also for the sake of con-
sistency, throughout this paper, we present our results within
the scope of a perturbative, second-order weakly nonlinear
theory.

III. FINGERING STABILIZATION VIA A FLUID ANNULUS

In our perturbative, weakly nonlinear mode-coupling the-
ory developed in Sec. II, the time evolution of the Fourier
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amplitudes ζn and εn is key variables that dictate the evo-
lution of the annular interfaces and the physical behaviors
observed in the lifting-induced, three-fluid flow problem.
Such quantities are obtained by numerically solving the non-
linear coupled ODEs (14) and (15) corresponding to each
mode n. Then the inner and outer interfacial shapes are
acquired through planar plots of the functions R1(θ, t ) =
R1(t ) + ζ (θ, t ) and R2(θ, t ) = R2(t ) + ε(θ, t ), with 0 � θ �
2π . However, note that ζn and εn appearing on the expres-
sions corresponding to ζ (θ, t ) and ε(θ, t ), i.e., Eqs. (1) and
(2), respectively, are complex Fourier amplitudes. Therefore,
to plot the interfaces one must first rewrite these complex
amplitudes in terms of real-valued amplitudes. This is done
by first defining an(t ) = ζn(t ) + ζ−n(t ) and bn(t ) = i[ζn(t ) −
ζ−n(t )], which denote real-valued cosine and sine ampli-
tudes for the inner boundary, respectively. Likewise, ān(t ) =
εn(t ) + ε−n(t ) and b̄n(t ) = i[εn(t ) − ε−n(t )] represent real-
valued cosine and sine amplitudes for the outer interface.
In terms of these new variables, we can express R1(θ, t )
and R2(θ, t ) as

R1(θ, t ) = R1(t ) + ζ0 +
N=40∑
n=1

[an(t ) cos(nθ ) + bn(t ) sin(nθ )]

(25)

and

R2(θ, t ) = R2(t ) + ε0 +
N=40∑
n=1

[ān(t ) cos(nθ ) + b̄n(t ) sin(nθ )].

(26)

Note that in Eqs. (25) and (26), we have limited the num-
ber of participating modes to all n lying within the interval
1 � n � N = 40. This upper limit (N = 40) for the number of
participating modes is adopted for our weakly nonlinear anal-
ysis based on computational accuracy and cost considerations.
More specifically, it was chosen after carrying out repeated
and careful computations utilizing more participating modes
(40 < N � 70), and our tests indicated that the interfacial
patterns and perimeters obtained are almost indistinguishable
from the results currently presented in this study for N = 40
(depicted in Figs. 2–5).

To maintain our theoretical analysis as close as possible to
real-life lifting Hele-Shaw cell experimental conditions, we
introduce background noise effects by assigning at t = 0 a
random complex phase to each ζn(0) and εn(0) mode ampli-
tudes. The initial amplitude of each mode is given by |ζn(0)| =
|εn(0)| = R1(0)/2400 and is independent of n. Moreover,
as done in previous experimental [13–15] and theoretical
[11,12,23] studies in lifting Hele-Shaw flows, all the analy-
sis performed in this section considers that the upper plate
moves with constant lifting speed ḃ = v along the direction
perpendicular to the cell plates, such that the gap width grows
linearly with time as b(t ) = b0 + vt . Furthermore, we empha-
size that the values we take for our parameters throughout the
rest of this work are consistent with typical physical quantities
used in experiments [13–15]. In these experimental studies,
the viscosity of the central droplet can range from 10 to
500 Pa s, while v ranges from O(10−7) m/s to O(10−4) m/s.

Typically, the surface tension is taken as 0.02 N/m, and the
droplet’s radius varies from 10−3 m to 2.0 × 10−2 m, while
10 µm � b0 � 800 µm.

Additionally, as pointed out in Sec. II, the description of the
lifting Hele-Shaw flow in terms of Darcy’s law requires that
the cell gap width be always far smaller than a characteristic
length scale in the plane of the cell, which one can take as the
inner unperturbed radius, leading to the small-gap condition
b(t )/R1(t ) � 1. In all the simulations presented in our work,
b(t f )/R1(t f ) = 0.045 at the final time t f , and, therefore, our
results are within the small-gap condition. Also, note that such
a condition can be rewritten explicitly in terms of the time
t , yielding t � tcrit = [(R1(0)

√
b0)

2/3 − b0]/v. This is useful
if one wishes to estimate the maximum time beyond which
Darcy’s law description is not valid.

In most experiments concerning the traditional two-fluid,
lifting Hele-Shaw flow, the usual configuration consists of a
viscous fluid droplet surrounded by air, with a single fluid-
fluid interface shrinking towards the center of the Hele-Shaw
cell during the plate-lifting process. Inspired by such a con-
ventional setting, in our current study, we also consider the
outermost fluid as air, such that η3 ≈ 0. In addition, the in-
nermost fluid is also taken as a very viscous oil of viscosity
η1 = 200 Pa s. However, in contrast to previous experimental
[13–15] and theoretical [11,12,23] studies in lifting Hele-
Shaw flows, here we introduce an additional finite fluid layer
of viscosity η2 separating the inner and outermost regions.
Therefore, in this section, our primary goal is to analyze how
this new fluid annulus impacts the morphology and stability
of the interface of the central oil droplet. To explore these
aspects, two very important governing parameters are varied,
namely, the annulus viscosity η2 and the annulus thickness
(related to the coupling parameter R). Under these consid-
erations, we initiate our morphological and stability analysis
by examining Fig. 2, which displays snapshots taken at time
t = 300 s of representative weakly nonlinear patterns formed
during three-fluid, lifting Hele-Shaw flow. We stress that this
final time value (t = 300 s) is consistent with the typical times
associated with early nonlinear stages of the dynamics pre-
sented in Refs. [13–15].

For a given row in Fig. 2, the three displayed patterns are
plotted considering increasingly larger values for the inter-
mediate fluid viscosity η2, so that η2 = 10 Pa s for (a), (d),
and (g), η2 = 30 Pa s for (b), (e), and (h), and η2 = 50 Pa s
for (c), (f), and (i). Furthermore, the coupling parameter R
varies through each row, being equal to R = 0.6, R = 0.75,
and R = 0.9 for the first, second, and third rows, respec-
tively. Such variation on R corresponds to a decrease in the
annulus thickness from the top to bottom in Fig. 2. The re-
maining physical parameters are set as R1(0) = 0.01 m, b0 =
200 µm, v = 5 × 10−7 m/s, and σ12 = σ23 = 0.02 N/m. We
stress that, although we illustrate our results by using this par-
ticular set of representative parameter values, we have tested
several others and found behaviors similar to those we report
here. This fact supports the generality of our representative
findings.

We initiate our discussion by examining the pattern por-
trayed in Fig. 2(a), formed under a low value of η2 and a
relatively thick annulus. It is evident that while the inner
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FIG. 2. Snapshots of representative weakly nonlinear interfacial patterns formed during the lifting Hele-Shaw flow of three fluids for R =
0.6 (a–c), R = 0.75 (d–f), and R = 0.9 (g–i). In each row, the annulus viscosity increases from left to right, assuming the values η2 = 10 Pa s
(a, d, g), η2 = 30 Pa s (b, e, h), and η2 = 50 Pa s (c, f, i). All the snapshots are taken at t = 300 s, and the patterns are plotted considering the
coupling of all sine and cosine Fourier modes lying within the interval 1 � n � 40, with random initial phases for each participating mode.
In addition, consistent with existing two-fluid, single interface experiments in lifting Hele-Shaw cells [13–15], we set η1 = 200 Pa s, η3 = 0,
R1(0) = 1 cm, b0 = 0.2 mm, v = 5 × 10−7 m/s, and σ12 = σ23 = 0.02 N/m.

interface deforms, presenting multiple fingering undulations,
the outer boundary of the fluid ring remains essentially a
circle, despite the existence of a positive viscosity jump be-
tween the outermost fluid and the intermediate annular region.
As the intermediate fluid viscosity increases to η2 = 30 Pa s
while all the other physical parameters remain unchanged,
one observes that such a variation affects the generated pattern
shown in Fig. 2(b) by turning the inner (outer) interface less
(more) perturbed when compared with the three-fluid struc-
ture depicted in Fig. 2(a). Further increasing η2 to 50 Pa s, as
presented in Fig. 2(c), we see that the effects already pointed
out in Fig. 2(b) become more prominent: while the inner
boundary is now mildly perturbed, the external interface of

the ring presents very sizable, well-developed, viscous fin-
gers. The observed stability and instability effects found in
the analysis of Figs. 2(a)–2(c) as η2 varies have a simple
explanation: by increasing η2, one simultaneously enhances
the viscosity difference between fluids 2 and 3 while dimin-
ishing this quantity for fluids 1 and 2. Thus, the annulus outer
and inner boundaries become increasingly unstable and stable,
respectively.

The results obtained from Figs. 2(a)–2(c) indicate that an
air-oil interface (as the one that normally appears in com-
mon two-fluid, single interface lifting Hele-Shaw flows, and
fluid adhesion problems [13–15,20–23]) can be stabilized by
enveloping the central oil droplet with a thick fluid ring of
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intermediate viscosity between the air and oil viscosities. Nev-
ertheless, such an application of the fluid annulus on the inner
interface stabilization appears to be of limited use since very
pronounced fingers emerge on the outer interface due to the
strong Saffman-Taylor instability between fluids 2 and 3 [see
Fig. 2(c)]. Eventually, this intense interface destabilization
between fluids 2 and 3 would induce the rupture of the fluid
annulus, as one of these protuberances reach the inner bound-
ary. Unfortunately, this rupture would break the integrity of
the fluid ring, and cease the stabilization effects induced by
the annulus. However, it is worth recalling that besides η2,
our system also allows variations on the annulus thickness by
increasing the value of the coupling parameter R.

To probe into additional stabilization possibilities by using
a thinner annulus, we turn our attention to the analysis of the
second row of Fig. 2 [Figs. 2(d)–2(f)], which depicts three-
fluid patterns for R = 0.75, and the same viscosities utilized
in Figs. 2(a)–2(c). An initial inspection of the inner interfaces
of the annular structures presented in the three-fluid patterns
of Figs. 2(d)–2(f) does not reveal a significantly different
scenario from the one already seen in Figs. 2(a)–2(c). That is,
as η2 increases from left to right, the inner interface becomes
more and more stable. One can also verify that the inner
interfaces in Figs. 2(d)–2(f) for R = 0.75 are very similar to
those illustrated in Figs. 2(a)–2(c) for R = 0.6. This indicates
that the inner interface stabilization effect produced by the
annulus is independent of its thickness.

On the other hand, by comparing Figs. 2(a)–2(c) with
Figs. 2(d)–2(f) it is also noticeable that the annulus thickness
strongly impacts the stability and morphology of the outer
interface of the fluid ring. Even when a large value of η2 is
considered, as in Fig. 2(f), the outer boundary of the annulus
is just moderately disturbed. Such a slightly undulated outer
interface differs considerably from the very perturbed fingered
structure shown in Fig. 2(c) for R = 0.6. As in other cir-
cumstances involving fluid rings in Hele-Shaw flows [55–57],
this physical behavior is caused by the augmented coupling
between inner and outer annular interfaces for smaller thick-
nesses. Since we have increased the coupling parameter from
R = 0.6 (first row of Fig. 2) to R = 0.75 (second row of
Fig. 2), the stability of each interface becomes more depen-
dent on the coupling between them, and less determined by
the viscosity difference between fluids 2 and 3, as it used to be
in usual one-interface, two-fluid Hele-Shaw flows. Therefore,
the combination of a thin annulus with a large viscosity η2 has
led to a nearly stable central droplet surrounded by a slightly
undulated fluid ring, highlighting the usefulness of the fluid
annulus strategy in controlling the emergence of Saffman-
Taylor instabilities on the interface of the central shrinking
droplet in lifting flows.

We close our discussion of Fig. 2 by considering the in-
fluence of an even thinner fluid ring (R = 0.9), as depicted in
Figs. 2(g)–2(i). Notice that all the effects already mentioned
in the previous analysis of Figs. 2(a)–2(f) are enhanced. While
the inner interface stabilization is mainly controlled by the
fluid ring viscosity η2, its thickness is responsible for main-
taining the outer boundary stability. It is worthwhile to note
that the utilization of a very thin fluid annulus in Fig. 2(i)
is perfectly capable of inducing an efficient stabilization of
the central droplet interface, while maintaining the structural

integrity of the fluid ring by avoiding its rupture. Thus, the
weakly nonlinear results obtained from Fig. 2 suggest that if
one seeks to minimize the emergence of instabilities on an oil
droplet boundary surrounded by air during lifting Hele-Shaw
flows, then enveloping it with a thin, viscous fluid ring is
indeed a suitable and effective strategy.

In Fig. 2 we have found a number of useful results con-
cerning morphological aspects of the fluid ring inner and outer
boundaries, as well as the possibility of using the intermediate
annulus to stabilize the central oil droplet interface during
the plate-lifting process. Such conclusions were obtained by
visual comparison of the generated three-fluid patterns. In
Fig. 3 we complement the previous visually-based analysis by
providing more quantitative data, namely, the time evolution
of the rescaled interfacial perimeters of the intermediate fluid
annulus, defined as

Li(t ) = 1

2πRi(t )

∫ 2π

0

√
R2

i (θ, t ) +
[

dRi(θ, t )

dθ

]2

dθ, (27)

associated with the structures displayed in Fig. 2. In Eq. (27),
the subscript i = 1 (i = 2) refers to the rescaled perimeter
of the inner (outer) interface of the fluid ring. In addition,
Li(t ) measures how much the perturbed fluid-fluid inter-
face perimeter deviates from the corresponding unperturbed
perimeter 2πRi(t ). Each column of Fig. 3 is associated with a
row of Fig. 2. In this way the time evolution of the perimeters
L1(t ) and L2(t ) portrayed respectively in Figs. 3(a) and 3(d)
for 0 � t � 300 s are related to the inner and outer interfaces
of the three-fluid patterns illustrated in Figs. 2(a)–2(c) for
t f = 300 s and R = 0.6. Likewise, the data shown in Figs. 3(b)
and 3(e) [Figs. 3(c) and 3(f)] correspond to situations pictured
in Figs. 2(d)–2(f) for R = 0.75 [Figs. 2(g)–2(i) for R = 0.9].

In Fig. 3(a) the dotted curves correspond to the time evolu-
tion of L1(t ) considering the same three values of η2 that have
been used in Fig. 2. Since we intend to demonstrate the fluid
annulus capability of stabilizing the inner interface perimeter,
we have also added a solid curve labeled as “Single interface”
representing the evolution of L1(t ) without the intermediate
fluid envelope, i.e., the case in which air (fluid 3) displaces
the central oil droplet (fluid 1) directly, without the presence
of an annulus (fluid 2). It is quite evident that the fluid annulus
exerts a significant effect on the inner interface stability. For
t > 0, one observes that all the dotted curves lie below the
solid one and verifies that the stabilization effect caused by
the fluid ring is stronger for larger viscosity values η2. On the
other hand, the “Single interface” perimeter keeps growing
as time progresses. Thinner fluid envelopes are considered in
Figs. 3(b) and 3(c). Nevertheless, the two graphs portrayed
in these figures look exactly like the one already shown in
Fig. 3(a). These facts quantitatively reinforce what we have
found in Fig. 2 about the inner interface stabilization effect
induced by the annulus being independent of its thickness, and
dictated mainly by its viscosity η2.

The graphs on the bottom of Fig. 3 show how variations
in η2 and R affect the time evolution of L2(t ). By inspecting
Fig. 3(d), we see that larger values of η2 increase the outer
interface perimeter, enhancing interfacial instabilities on
the annulus external boundary. As the annulus thickness is
reduced, as in Fig. 3(e) for R = 0.75 and 3(f) for R = 0.9,
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FIG. 3. Time evolution of the inner (a–c) and outer (d–f) interfacial perimeters L1(t ) and L2(t ) of the intermediate fluid annulus,
respectively, for the situations depicted in Fig. 2. The perimeters’ evolutions portrayed in (a) and (d) for 0 � t � 300 s are related to the
patterns snapshots illustrated in Figs. 2(a)–2(c) for t = 300 s. Likewise, the data shown in (b) and (e) (c and f) correspond to situations pictured
in Figs. 2(d)–2(f) [Figs. 2(g)–2(i)]. All the physical parameters used here are identical to those utilized in Fig. 2. Note that in (a)–(c) we have
included solid curves (labeled as “Single interface”) associated with the evolutions of L1(t ) in the traditional lifting Hele-Shaw flow setup in
which only two fluids separated by a single interface are involved (i.e., the case in which fluid 3 displaces fluid 1 directly, without the presence
of an annulus of fluid 2).

all the L2(t ) curves tend to approach the horizontal axis, and
are not significantly influenced by the η2 values as in the case
depicted in Fig. 3(d) for a thicker annulus. These findings once
again support one of the main results extracted from Fig. 2:
thinner fluid annuli have less perturbed outer boundaries than
thicker ones, and thus are more appropriate to be used as an
instability control tool in lifting Hele-Shaw cell flows.

During the analysis of Figs. 2 and 3, our findings pointed
out to the annulus viscosity η2 as a key parameter regulating
the inner interface stabilization. However, there is also another
potential contributing factor coming from surface tension ef-
fects through coupling mechanisms. Recall that in the limit
of a very thin fluid annulus, R → 1. Under this circumstance,
Eqs. (14) and (15) reduce exactly to the same expression, both
describing the dynamics of an interface positioned between
the outer fluid 3 and the central droplet of fluid 1, with surface
tension equal to σ12 + σ23. Therefore, this important limit in-
forms us that as R gets closer to unit, as in the case of R = 0.9
utilized in Figs. 2 and 3, the surface tension σ23 coming from
the outer interface of the annulus could as well contribute to
the inner interface stabilization.

To investigate which parameter contributes the most to
the inner interface stabilization effect, in Fig. 4 we plot the
time evolution of the inner interfacial perimeter L1(t ) for a
thin annulus having R = 0.9, and three different sets of outer
interface surface tension σ23, and annulus viscosity η2: (i)
σ23 = 0.02 N/m and η2 = 10 Pa s, (ii) σ23 = 0.1 N/m and

η2 = 10 Pa s, and (iii) σ23 = 0.02 N/m and η2 = 50 Pa s. The
remaining physical parameters are the same as in Fig. 2.

The parameter sets (i) and (ii) differ only by the σ23 values,
which are five times larger in set (ii) than in (i). By comparing
the dotted curves associated with these two parameter sets,
we note that the larger σ23 value related to set (ii) only slightly
reduces the perimeter L1(t ) in comparison to the perimeter
plotted for set (i). On the other hand, parameter set (iii) has the
same σ23 value of set (i) and considers a viscosity η2 five times
larger than the viscosities of (i) and (ii). The impact of such
a large value of η2 on the time evolution of L1(t ) is apparent
since the dotted curve associated with (iii) is far below the
two dotted curves related to (i) and (ii). The results indicate
that although a thinner annulus leads to an increased coupling
between the two interfaces of our system, the observed inner
interface stabilization is mainly determined by viscosity ef-
fects rather than by surface tension.

IV. ADHESION FORCE: INFLUENCE
OF A FLUID ANNULUS

In Sec. III we investigated pattern formation aspects
arising during three-fluid, lifting Hele-Shaw flows, focus-
ing on morphological and stability behaviors of the outer
and inner boundaries of the intermediate annulus. Neverthe-
less, as commented earlier in this paper, the lifting flow of
confined viscous fluids is also connected to another impor-
tant physical aspect: namely, the bond strength of stretched
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FIG. 4. Time evolution of the inner interfacial perimeter L1(t ) of
the intermediate fluid annulus for R = 0.9, and three different sets of
outer interface surface tension σ23, and annulus viscosity η2: (i) σ23 =
0.02 N/m and η2 = 10 Pa s, (ii) σ23 = 0.1 N/m and η2 = 10 Pa s,
and (iii) σ23 = 0.02 N/m and η2 = 50 Pa s. The rest of the physical
parameters are equal to the ones used in Fig. 2.

liquids sandwiched between solid plates, something mea-
sured via probe-tack adhesion tests [17–19]. Therefore, in
this section our goal is to quantify the effects of the in-
termediate fluid annulus on the adhesion force, during the
three-fluid-stretching process. To do it, we use the lifting
Hele-Shaw cell flow results derived in Sec. II, and calculate
the pulling force F = F (t ) required to detach the parallel flat
plates “glued” together by such an annular fluid system. Then
we examine how the viscosity of the fluid ring η2 and the
thickness of the annulus (related to the parameter R) affect the
adhesion force. We also compare the behavior of the pulling
force in the presence of the fluid annulus, with the correspond-
ing response obtained when fluid envelope contributions are
neglected.

As described in Sec. III, we consider that the upper plate is
lifted at a given speed, so that the external pulling force F =
Fez should balance the fluid pressure force Fp = Fpez, where
ez is the upward unit vector perpendicular to the plates. In this
framework, F can be calculated by integrating the pressure
field p over the areas �1 and �2 occupied, respectively, by
viscous fluids 1 and 2, i.e.,

F = −Fp = −
∫

�1,�2

pdA. (28)

Note that the outermost fluid 3 does not contribute to F since
its viscosity η3 ≈ 0. Hence, pressure p3 is constant, and we
set it to zero without loss of generality. On the other hand,
the pressure fields within fluids 1 and 2 are obtained by first
rewriting the gap-averaged velocity v j in terms of the velocity
potential φ j and then substituting them in the left-hand side
(l.h.s.) of Eq. (5), leading to the relations p j = 12η jφ j/b2,
where j = 1, 2, and 3. Next, we consider Eqs. (11)–(13) to

express the pressure fields as

p(r, θ ) =

⎧⎪⎨
⎪⎩

p1(r, θ ) if r < R1,

p2(r, θ ) if R1 < r < R2,

0 if R2 < r,

(29)

where

p1(r, θ ) = 3η1ḃr2

b3
+ 12η1

b2

∑
n

αn(t )

(
r

R1

)|n|
einθ (30)

and

p2(r, θ ) = 3η2ḃr2

b3
+ 12η2

b2

∑
n

βn(t )

(
r

R1

)−|n|
einθ

+ 12η2

b2

∑
n

γn(t )

(
r

R2

)|n|
einθ . (31)

Finally, the force required to lift the upper plate is obtained
after solving Eq. (28) considering the pressure fields (29),
yielding

F = 3π ḃ

2b3

[
η1R4

1 + η2
(
R4

2 − R4
1

)]
+

∑
n �=0

{
3ḃπ

b3
[R2

1(η1 − η2)|ζn|2 + R2
2η2|εn|2]

− 12π

b2

[
f2R2

1�(n)εnζ−n + f1R2
1(η1 − η2)(n)|ζn|2

+ R2
2η2( f4�(n)|εn|2 + f3�(n)ζnε−n)

]}
. (32)

Equation (32) is a central result of this section, accounting for
the influence of the fluid annulus of viscosity η2 enveloping
the central viscous droplet of viscosity η1 on the adhesion
force. Note that the time dependence of F in Eq. (32) is
implicit in b = b(t ). In addition, the summation appearing
in the second line of Eq. (32) represents the contribution up
to second order in the perturbations amplitudes ζn and εn

coming from the fingering formation on the annulus bound-
aries. Recall that the functions f1, f2, f3, and f4 appearing
in Eq. (32) are given in Eqs. (20)–(23). Likewise, the func-
tions (n), �(n), �(n), and �(n) present in Eq. (32) are
expressed by Eqs. (16)–(19). It should be pointed out that,
consistent with experimental findings, we have verified that
for the strongly confined, very viscous fluids used here, and in
Refs. [14,20,23,24,59,60], surface tension contributions [see
Eqs. (7) and (9)] to the adhesion force (32) are very small
and can be neglected. However, surface tension effects are still
relevant for calculating the interfacial perturbation amplitudes
ζn and εn. We call the reader’s attention that if one seeks
to evaluate the adhesion force in the single interface limit,
the integration in Eq. (28) must be performed over the area
occupied by the central droplet of fluid 1, i.e., from r = 0 to
r = R1 in polar coordinates.

In real probe-tack adhesion tests, the experimental appa-
ratus utilized for lifting the upper Hele-Shaw cell plate is
not rigid and deforms as the plate-lifting process occurs. The
compliance of the measurement apparatus is responsible for
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FIG. 5. Adhesion force F (t ) as a function of time t for (a) R = 0.6, (b) R = 0.75, and (c) R = 0.9. Here the viscosity of the annular layer
η2 is taken as 10, 30, and 50 Pa s. All the other physical parameters are the same as in Fig. 2. As in Fig. 3, here we have also added solid curves
corresponding to the lifting force obtained in the usual fluid adhesion arrangement involving only two fluids (e.g., a viscous oil and air) and a
single interface.

the typical adhesion force curve shape evaluated in probe-
tack tests, which usually starts with a sharp increase of the
force once the probe is pulled apart. Then the force quickly
reaches its maximum and drops asymptotically to zero as the
plate-plate separation is increased (see, for example, Figs. 1
and 2 of Ref. [59], or Fig. 5 in this paper). To implement
the compliance effect in our theoretical analysis, we follow
Refs. [19,20,24,59,60] and assume that the apparatus has a
spring constant denoted by k. At a given time t , the plate
spacing is b = b(t ), while the deformation due to the stretch-
ing of the apparatus is L(t ) − b(t ), where at t = 0 we have
b(0) = L(0). We direct the readers to Refs. [24,60] for illustra-
tive sketches of the probe-tack apparatus with the definition of
the geometrical quantities b and L. Note that due to the com-
pliance of the measurement apparatus, the actual plate spacing
b is not necessarily equivalent to L, except for the case of a
completely rigid configuration. Therefore, the presence of the
compliance yields an interplay between the viscous force F =
F (b, ḃ), quantified by Eq. (32), and a spring restoring force
k(L − b), which results from the deflection of the apparatus,
determined by the nonlinear differential equation [19,20,59]

k(L − b) = F (b, ḃ), (33)

obtained after neglecting the apparatus inertia.
In existing probe-tack instruments, the control parameter

set by the flexible apparatus’s motors is L, not b. Consistent
with these real experimental setups and theoretical works on
fluid adhesion phenomena, we consider that L evolves in time
according to the expression L(t ) = b0 + vt . So, in order to
obtain the temporal evolution of b, one first has to substitute
Eq. (32) into Eq. (33). Then the resulting ODE is solved
numerically for b(t ). This numerical outcome is plugged back
into Eq. (32), and thus, we finally obtain the force F as a
function of time t .

In order to understand the consequences of wrapping a
central oil droplet with a viscous fluid annulus in the adhesion
phenomenon, in Fig. 5 we plot the adhesion force F (t ) against
the time t for different annulus thicknesses, so that we have
in (a) R = 0.6, (b) R = 0.75, and (c) R = 0.9. In addition,
we also consider the same three values for the annulus vis-
cosity that has been used in Figs. 2 and 3, i.e., η2 = 10, 30,
and 50 Pa s. Consistent with probe-tack instruments, we set
k = 105 N/m [19,20,24,59,60], and the remaining physical
parameters are the same as in Fig. 2.

Figure 5(a) illustrates the case associated with a thick fluid
annulus, as quantified by the parameter R = 0.6. First, we
note that the typical adhesion curve shape is preserved even
when considering the fluid envelope’s presence, as well as the
fingering formation on the annulus boundaries. However, by
comparing the three curves for the different viscosities related
to the fluid annulus with the one associated with the single
interface case, it is clear that the presence of the annulus not
only increases the adhesion force peak (adhesion strength),
but also delays the rate at which the force decays asymptot-
ically to zero. Such effects are significantly augmented as η2

is increased. Therefore, the addition of a thick fluid ring sur-
rounding a central oil droplet modifies the adhesion properties
by increasing the force required to detach the parallel plates of
the lifting apparatus.

Nevertheless, for thinner fluid annuli, as the ones consid-
ered in Fig. 5(b) for R = 0.75, and Fig. 5(c) for R = 0.9,
fluid annulus effects on the adhesion force become less and
less pronounced. In Fig. 5(b) the difference between the four
curves is still noticeable although less evident than the sit-
uation depicted in Fig. 5(a) for a thicker fluid ring. On the
other hand, the difference between the curves in Fig. 5(c)
is barely noticeable, with all the annulus cases approaching
the single interface situation regardless of the viscosity η2.
This can be understood by recalling that the adhesion force
[Eqs. (28)–(32)] is proportional to the area of the viscous
fluids in contact with the upper plate of the lifting apparatus.
We increase R = R1(0)/R2(0) by keeping R1(0) fixed, while
decreasing the value of R2(0). This is equivalent to maintain-
ing the contact area of fluid 1 with the upper plate constant,
and reducing the corresponding contact area of fluid 2, leading
to a decrease in the adhesion force. This latter result, together
with the findings presented in Figs. 2 and 3, demonstrates
the possibility of utilizing fluid envelopes to stabilize an oil
droplet interface during lifting plate flows without modifying
the adhesion force significantly, as long as the fluid envelope
is sufficiently thin.

As a last remark of this section, we point out that we have
also analyzed the adhesion force without considering the fin-
gering formation. Such a scenario is achieved by setting ζn and
εn to zero in Eq. (32). Within our perturbative, second-order,
weakly nonlinear theory, and for the physical parameters
considered in this work, our results indicate that the fingering
instability arising on the boundaries of the fluid annulus has
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a very modest effect on the adhesion curve, even for the
case with R = 0.6, where considerably developed fingers are
present on the interfaces [see the patterns in Figs. 2(a)–2(c)].
These findings are in line with the experimental results
reported in Ref. [54] regarding the adhesion strength being
almost independent of the Saffman-Taylor instabilities.

V. CONCLUSION

In recent years there has been increased interest in studying
how to control, and eventually suppress, the development
of the viscous fingering instability in the confined environ-
ment of Hele-Shaw cells. In particular, much attention has
been devoted to manipulating such instabilities for injection-
driven flows in Hele-Shaw cells with fixed gap width (see,
for instance, Refs. [34–51], and references therein). Curiously,
equivalent explorations in variable-gap Hele-Shaw cells have
received comparatively much less attention in the literature.
Only very recently, some research groups started to devise
strategies to control or minimize the emergence of finger-
ing instabilities in the time-dependent gap, lifting Hele-Shaw
flows [52–54].

In the light of the disparity in the amount of research done
on the control of the Saffman-Taylor instability in Hele-Shaw
cells with fixed and variable gap widths, and encouraged by
the stimulating results reported in Refs. [52–54], in this paper
we propose an alternative control method seeking to suppress
viscous fingering formation in lifting Hele-Shaw flows. Our
control scheme is realized by taking advantage of the presence
of a viscous fluid annulus, separating a central fluid droplet of
larger viscosity, from an infinite fluid domain of negligible
viscosity.

By employing a mode-coupling perturbative approach to
describe the time evolution of the annulus inner and outer
boundaries at the onset of nonlinearities, we have found that
depending on the value of the fluid ring viscosity, and on the
thickness of such annular layer, one can restrain interfacial
instabilities. More specifically, we have shown that while the
stability behavior of the inner interface of the annulus is
largely regulated by the viscosity of the fluid ring, the annulus
thickness has control over the stability of the outer boundary.
Our results indicate that increased interface stabilization is
achieved by using thinner annuli of relatively large viscosities.
These findings support the idea that the utilization of such a
viscous thin annulus constitutes a very simple and effective
stabilization strategy for lifting Hele-Shaw cell flows.

We have also investigated how the ring’s viscosity and
thickness, as well as the presence of fingering at the inner
and outer boundaries of the ring, affect the adhesion force
between the plates. We found that for a given annulus thick-

ness, fluid rings having larger viscosities lead to augmented
adhesive strengths. On the other hand, for a given value of the
fluid ring viscosity, increasingly thinner annuli result in lower
adhesive strengths. Furthermore, we have verified that the
adhesion forces for thinner annuli of different viscosities are
nearly identical, indicating that the use of thinner fluid rings to
stabilize fingering instabilities can be done without changing
the adhesion force substantially. Finally, we have detected
no distinction in the adhesion force computed for stable or
unstable annular interfaces, indicating that the presence of
fingering at the ring’s boundaries has an inconsequential effect
on the adhesion force.

We conclude by briefly outlining some possible extensions
of this work. These extensions may include the utilization of
annular rings composed of non-Newtonian fluids (e.g., shear-
thinning and shear-thickening fluids [61,62]), or keep the
intermediate annulus as a Newtonian fluid, but considering the
inner and outer boundaries of it as elastic interfaces [63–65].
Another interesting possibility is to consider a Newtonian
fluid ring bounded by inner and outer interfaces that possess
nontrivial interfacial rheology properties [58,66,67]. In ad-
dition, one could examine the intermediate fluid annulus as
being a magnetic fluid (ferrofluid [68] or magnetorheological
fluid [69,70]), and use an externally applied magnetic field
to try to control interfacial instabilities and fluid adhesion in
lifting Hele-Shaw cell flows. Moreover, one could still explore
an electro-osmotic flow [49–51] of the annulus under the
influence of an applied electric field during the lifting process.
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APPENDIX : SECOND-ORDER
MODE-COUPLING FUNCTIONS

In this Appendix we give the expressions for the second-
order mode-coupling functions which have been presented in
Sec. II. The second-order functions appearing in Eq. (14) are
written as

F (n, p) = |n|
R1

{
ḃ

2b

[
1

2
− g1(n, p)sgn(np) − f −1

1

|n|

]
− b2σ12

12A12R3
1(η2 + η1)

[
1 − (3p + n)

p

2

]}
, (A1)

G(n, p) = 1

R1

{|n|[1 − g1(n, p)sgn(np)] − f −1
1

}
, (A2)

H (n, p) = |n|
R2

{
ḃ

2b

[
1

2
− g2(p)sgn(np)

]
− b2σ23

12A23R3
2(η3 + η2)

[
1 − (3p + n)

p

2

]}
, (A3)
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I (n, p) = |n|
R2

{1 − g2(p)sgn(np)}, (A4)

J (n, p) = |n|
R1

ḃ

2b

(
R|p|−|n|(1 + A23R|n|)

A23(1 − R2|p|)

)
sgn(np), (A5)

K (n, p) = |n|
R1

(
R|p|−|n|(1 + A23R|n|)

A23(1 − R2|p|)

)
sgn(np), (A6)

L(n, p) = |n|
R1

ḃ

2b

(
(1 + A23)R2+|p|

A23(1 − R2|p|)

)
sgn(np), (A7)

M(n, p) = |n|
R1

(
(1 + A23)R2+|p|

A23(1 − R2|p|)

)
sgn(np), (A8)

where

g1(n, p) = A12 + A23R2|n| + R2|p| + A12A23R2(|n|+|p|)

A12(1 − A23R2|n|)(1 − R2|p|)
(A9)

and

g2(p) = 1 + A23

A23(1 − R2|p|)
. (A10)

The second-order expressions in Eq. (15) are given by

F (n, p) = |n|
R1

{
ḃ

2b

[
1

2
− g3(p)sgn(np)

]
− b2σ12

12A12R3
1(η2 + η1)

[
1 − (3p + n)

p

2

]}
, (A11)

G(n, p) = |n|
R1

[1 − g3(p)sgn(np)], (A12)

H(n, p) = |n|
R2

{
ḃ

2b

[
1

2
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4
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, (A13)

I (n, p) = 1
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4

}
, (A14)

J (n, p) = |n|
R2

ḃ

2b

(
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)
sgn(np), (A15)

K(n, p) = |n|
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)
sgn(np), (A16)

L(n, p) = |n|
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)
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sgn(np), (A18)

where

g3(p) = A12 − 1

A12(1 − R2|p|)
, (A19)

and

g4(n, p) = R2|p|(1 + A12A23R2|n|) − (A23 + A12R2|n|)
A23(1 + A12R2|n|)(R2|p| − 1)

. (A20)
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