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Multiobjective optimization for flapping foil hydrodynamics with a multitask
and multifidelity approach
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We develop a multitask and multifidelity Gaussian process (MMGP) model to accurately predict and optimize
the multiobjective performance of a flapping foil while minimizing the cost of high-fidelity data. Through
a comparison of three kernels, we have selected and applied the spectral mixture kernel and validated the
robustness and effectiveness of a multiacquisition function. To effectively incorporate data with varying levels
of fidelity, we have adopted a linear prior formula-based multifidelity framework. Additionally, Bayesian
optimization with a multiacquisition function is adopted by the MMGP model to enable multitask active learning.
The results unequivocally demonstrate that the MMGP model serves as a highly capable and efficient framework
for effectively addressing the multiobjective challenges associated with flapping foils.
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I. INTRODUCTION

Flapping their fins and wings, birds and fish have at-
tained the remarkable capacity to generate lift and thrust [1].
Consequently, there is an increasing interest in investigating
the formation and characteristics of unsteady flow and fluid
forces surrounding flapping foils, with particular emphasis on
determining the optimal motion parameters to achieve hydro-
dynamic objectives [2–6].

The motion of the flapping foil is effectively simplified
through sinusoidal pitching and heaving motions [7]. The
Strouhal number (St) is a crucial dimensionless parame-
ter that has a significant influence [5]. Overall, the thrust
increases with an increase of St, while the propulsion ef-
ficiency η demonstrates a distinct peak within a narrow St
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range (0.2 < St < 0.4), reaching impressive levels of up to
80%. In addition, by optimizing trajectories, the flapping foil
performance can be further enhanced [8]. As a result, the
flapping foil demonstrates the capability to accomplish mul-
tiobjective tasks (e.g., balance between propulsive efficiency
and thrust, creating thrust with a small lifting force analo-
gous to swimmers, and creating large lifting forces similar to
flyers with low speed) with multimodal parametric motions
[9,10]. Detailed physics can be found in the following reviews,
Refs. [11–14].

In the pursuit of multiobjective optimization for flapping
foils, it is imperative to accurately predict the relationship
between the foil’s performance and the prescribed trajectories,
which requires the use of high-fidelity simulations or exper-
iments. Previous researchers have successfully harnessed the
potential of the genetic algorithm (GA), leading to noteworthy
advancements in both thrust and propulsion efficiency for the
flapping foil [10,15]. For flapping foils, the high-dimensional
problem of systematic exploration is intractable, which gives
the GA an advantage in the preliminary stage. However,
the GA is limited to optimization and cannot model and
predict the system. It needs to be reoptimized whenever dif-
ferent optimization objectives are changed, resulting in most
time being spent on data generation. On the other hand,
machine learning and artificial intelligence methods pro-
vide innovative approaches for optimizing the geometry and
controlling the motion of flapping foils. Nevertheless, these
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methods heavily rely on time-varying data to effectively cap-
ture the evolving characteristics of the system. To address this
challenge, the field of machine learning has introduced mul-
tifidelity modeling, which employs a probabilistic regression
framework to seamlessly integrate information from diverse
sources with varying levels of fidelity. This approach enables
the synthesis of valuable insights from different data sources,
enhancing the accuracy and robustness of the optimization and
control processes for computational physics, transportation,
and structural optimization [16–18].

The construction of a multifidelity model using the
Gaussian process (GP) holds great promise and has found
applications in various fluid mechanics domains [19–22], in-
cluding the optimization of trajectories and shapes of single
flapping foil [9,23–25], as well as the optimization of trajecto-
ries for tandem flapping wings [26]. Bayesian optimization is
a powerful strategy for function optimization that specifically
benefits from the uncertainty estimates provided by the GP
[27]. A key strength of the GP is the inherent ability to pro-
vide predictions with quantified uncertainty. This uncertainty
quantification proves to be of great value in active learning.
In GP-based active learning, this uncertainty is harnessed by
Bayesian optimization using acquisition functions to wisely
determine where to sample next. This usually results in a
more efficient sampling strategy. In contrast, although the
deep neural networks have advantages in dealing with large-
scale data sets and complex function mappings, they lack
the innate ability to quantify prediction uncertainties. This
makes them rely on more detailed and often uniform sampling
strategies, which may be inefficient, especially when dealing
with limited or costly data such as high-precision simulations
and experiments. Combined with active learning, the adaptive
strategy provided by the GP allows the use of relatively small
but more informative data sets to improve model accuracy.
However, the previous research focused on the analysis of
the hydrodynamic performance of flapping foils, ignoring the
exploration of the multifidelity method. In addition, it did
not consider the cooperative training of multioutputs in the
process of multifidelity training, so it is difficult to tackle the
multiobjective optimization problem of flapping foils.

This study aims to develop a multitask and multifidelity
Gaussian process (MMGP) model for accurate prediction
and optimization of the multiobjective hydrodynamic perfor-
mance. This is achieved by integrating low-fidelity response
surfaces with a minimal number of high-fidelity data points
within an information-fusion framework. The generation
of numerous low-fidelity samples is accomplished through
various approaches, including data fitting, simplified physics-
based models, and numerical simulations conducted on
coarser grids or with looser criteria, akin to a hierarchi-
cal proxy model [28]. Moreover, the blackbox matrix-matrix
Gaussian process inference [29] is employed at different
fidelity levels to provide a predicted posterior distribution, en-
abling the inference of relevant physical quantities along with
quantitative uncertainty estimation. To effectively balance ex-
ploration (local search) and exploitation (global search) of
the design space, the Bayesian optimization algorithm with a
multiacquisition function (multi-AF) is utilized. Furthermore,
the optimization process considers the accurate modeling of
each subtask GP model while addressing the multiobjective

nature of the problem, thus ensuring a balanced representation
of different accuracy levels.

The structure of this paper is organized as follows: Sec-
tion II is divided into six subsections, which include the
description of the physical and numerical flapping foil mod-
els, the fundamentals of the singleGP model, the proposed
comprehensive MMGP model, and the multi-AF framework
for the multiobjective task. Section III provides an analysis
of the hydrodynamic performance of the flapping foil based
on the high-fidelity ergodic database. In Sec. III and the
Appendix, a comparison and evaluation of various kernels and
acquisition functions are presented, focusing on their mean
absolute error (MAE) and their ability to predict optimal val-
ues for the foil optimization problem. The effectiveness of the
MMGP model is then validated through a comparison with
a traditional multifidelity framework. Additionally, the results
of the multiobjective optimization using the MMGP model are
demonstrated through a practical implementation. Finally, the
paper concludes with a summary of findings and implications
in Sec. IV.

II. MATERIALS AND METHODS

In this section, physical and numerical models for the
flapping foil are first set up. The framework of the MMGP
model is then established and also how the predictions from
two different levels of fidelity are combined. This gives a
multifidelity stochastic response surface for optimizing the
kinematic parameter of the flapping foil.

A. Physical model

The motion of a flapping foil NACA0015 with the foil
thickness L can be characterized by several parameters. The
nondimensional Strouhal number St, denoting the imposed
frequency, is defined as

St = f L

U
, (1)

where f and U are the oscillation frequency and the inflow
velocity, respectively. The Reynolds number Re = ρUc/μ
takes 500 in this paper, where ρ and μ denote the density and
dynamic viscosity of the fluid, and c is the chord length as
shown in Fig. 1(b).

The flapping foil motion is usually designed by a coupling
of heaving and pitching with the same circular frequency ω =
2π f , which are defined by.

y(t ) = y0 sin(ωt ),

θ (t ) = θ0 sin(ωt + ψ ), (2)

where ψ is the phase difference, and y0 and θ0 are the heaving
and pitching amplitudes, respectively. In the present study,
the Strouhal number St, the heaving amplitude y0, the pitch-
ing amplitude θ0, and the phase difference ψ are chosen as
independent motion parameters of the flapping foil, with the
sketch shown in Fig. 1.

In general, the mean thrust coefficient CT , the mean input
power coefficient Cp, and the propulsion efficiency η are used
to describe the performance of the flapping foil. The above
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FIG. 1. Schematics of (a) pitching motion, (b) heaving motion,
and (c) combined-heaving-and-pitching motion of a foil.

three nondimensional parameters are defined as follows:

CT = Fx

0.5ρU 2cL
, Fx = 1

T

∫ T

0
Fx(t )dt,

Cp = P̄

0.5ρU 3cL
,

P̄ = 1

T

[∫ T

0
Fy(t )ẏ(t )dt +

∫ T

0
Mθ (t )θ̇ (t )dt

]
,

η = CT

Cp
, (3)

where Fx(t ) and Fy(t ) are the instantaneous forces in the x
and y directions, Mθ (t ) is the instantaneous torque around the
pitching point, ẏ(t ) and θ̇ (t ) are the first-order derivatives of
the heaving and pitching motions, and T is the motion period
with T = 2π/ω. Given the relationship between the three
parameters, CT and η are chosen to describe the performance
of the flapping foil in this paper.

B. Numerical model

The primary objective of this study is to establish an effi-
cient framework for the accurate prediction and optimization
of foil performance. In pursuit of this goal, the simulation
platform we employed is the Lilypad, which is specifically
designed based on the boundary data immersion method
(BDIM). The BDIM method exhibits remarkable capabilities
in simulating the entire domain with quadratic convergence
by effectively solving the viscous time-dependent Navier-
Stokes equations. This is achieved through the utilization of
a kernel function that seamlessly integrates the dynamics of
both the moving body and the surrounding fluid. The ef-
fectiveness and reliability of the BDIM method have been
extensively verified across a diverse range of fluid problems,

FIG. 2. Sketch of the calculation domain.

employing a comprehensive array of numerical simulations
[30–32].

In our study, we utilize a multifidelity approach by lever-
aging both high- and low-fidelity data. High-fidelity data are
obtained from simulations using finer grids, ensuring higher
accuracy but also incurring greater computational costs. In
contrast, low-fidelity data come from simulations with coarser
grids, which provide faster results but reduce accuracy. The
mesh configuration consists of dense uniform grids near the
body and in the immediate wake, transitioning to expo-
nentially stretching grids in distant regions. The simulation
domain, under a right-to-left uniform inflow, incorporates a
zero-gradient outflow, free-slip on the top and bottom, and
no-slip condition on the foil surface, as shown in Fig. 2. For
high-fidelity simulations, the domain size is set at 16L × 16L,
with a grid size of δx = δy = L/32. These simulations take
about 0.33 h on average for computation. Low-fidelity simu-
lations reduce the domain size to 8L × 8L and use a grid size
of δx = δy = L/8, reducing the computation time to an aver-
age of 8.2 s. Grid convergence tests were implemented and
are presented in Table I. All simulations were performed on
hardware configurations with an Intel(R) Core(TM) i7-10700
CPU @ 2.90GHz processor, 16.0 GB of RAM, and a NVIDIA
GeForce GT 730 graphics card.

TABLE I. Grid convergence tests with St = 0.25, y0 = 1, θ0 =
30◦, ψ = −π/2, and Re = 1100.

Resolution Domain size CT Time

8 8L × 8L 0.181 8.2 s
32 16L × 16L 1.048 0.33 h
32 32L × 32L 1.061 0.53 h
64 16L × 16L 1.252 2.41 h
64 32L × 32L 1.275 4.58 h
80 16L × 16L 1.271 4.47 h
80 32L × 32L 1.296 9.83 h
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C. Gaussian process regression model

Single-fidelity GP (SF-GP). A Gaussian process (GP) is
a stochastic process that consists of random variables with a
joint Gaussian distribution. A GP is fully characterized by its
mean function m(x) and covariance function k(x, x′), which
describe the expected value and the correlation of the outputs
for any two inputs x and x′. A common choice for the mean
function is zero, and a common choice for the covariance
function is the radial basis function (RBF) kernel with the
lengthscale 	 and the variance σ 2:

kRBF(x, x′) = exp
(− 1

2 (x − x′)�	−2(x − x′)
)
. (4)

Given a set of training data (X, y), where X is an n × d
matrix of inputs and y is an n × 1 vector of outputs, we can
use the GP to make predictions for a new input x∗ by using
the conditional distribution of y∗ given (X, y) and x∗, which is
also Gaussian with mean and variance:

μ(x∗) = k(x∗, X )
[
K (X, X ) + σ 2

n I
]−1

y,

σ 2(x∗) = k(x∗, x∗) − k(x∗, X )
[
K (X, X ) + σ 2

n I
]−1

k(X, x∗),

(5)

where K (X, X ) is the Gram matrix with entries Ki j =
k(xi, x j ), σ 2

n is the noise variance, and I is the identity
matrix [33].

To fit a GP to the data, we need to choose appropriate
mean and covariance functions and optimize their hyperpa-
rameters, which influence the shape and smoothness of the
functions. Different methods to optimize hyperparameters
include heuristic algorithms (e.g., GA and particle swarm op-
timization) and stochastic gradient descent (SGD). Heuristic
algorithms are global optimization methods that avoid local
optima, but they are computationally expensive and require
Cholesky-based approaches for matrix operations. SGD is
a local optimization method that finds a solution quickly
by using conjugate gradients for matrix-matrix multiplica-
tions, though it may be prone to local optima and instability.
Therefore, we implement GP regression using the GPYTORCH

software platform [29], which employs SGD and CG for
hyperparameter optimization. This method is advantageous
because it offers faster computation than a heuristic algorithm
and can deal with data of large size and dimensionality.

Multitask GP. We use the multitask GP model to build a
multioutput model that can predict both thrust and efficiency.
The multitask GP model is a type of GP model that can handle
multiple tasks (e.g., thrust and efficiency) simultaneously by
exploiting the shared information and the specific information
of each task. Given inputs x and x′, and tasks i and j, the
covariance between two data points and two tasks is

k([x, i], [x′, j]) = kinputs(x, x′) ∗ ktasks(i, j), (6)

where kinputs is a standard kernel (e.g., RBF) that operates on
the inputs, and ktasks is a lookup table containing intertask
covariance.

There are different ways to construct a multitask GP model,
such as the correlated multitask GP, the independent multitask
GP, and the Hadamard multitask GP [34]. The correlated
multitask GP assumes that the tasks are correlated and models
the cross-covariance between them. The independent multi-

task GP assumes that the tasks are independent and models
each task separately. The Hadamard multitask GP assumes
that the tasks are conditionally independent given some latent
variables and models the joint distribution of the tasks and the
latent variables.

Multifidelity GP. The multifidelity GP is a type of GP
model that can handle data from different sources of vary-
ing fidelity (e.g., low-fidelity simulations and high-fidelity
experiments). The idea is to combine the information from
different sources in a coherent way and leverage the cheaper
low-fidelity data to improve the accuracy and efficiency of the
high-fidelity model. A common way to construct a multifi-
delity GP model is to use a linear relationship between the
outputs of different sources, such as

f2(x) = ρ̂ f1(x) + δ2(x), (7)

where f1 and f2 symbolize the low-fidelity and high-fidelity
models, respectively. ρ̂ acts as a scaling factor, describing
the slope of the relationship between the high-fidelity and the
low-fidelity outputs. Although in many cases, ρ̂ can be a func-
tion that depends on the input x, it is seen as a deterministic
scalar that is learned from the data via maximum-likelihood
estimation in the present method. The term δ2 represents
the residual, encapsulating the discrepancies between the two
models. This residual can be further modeled using another
GP, equipped with distinct mean and covariance functions.
Consequently, the multifidelity GP model becomes proficient
at offering predictions for both fidelity models at any input
point, by leveraging the joint distribution of f1 and f2.

For the Gaussian process regression model, the choice of
kernels can highly affect the performance. The kernels in GP
are divided into the stationary kernel, the dot product kernel,
the neural network kernel, etc. [35]. A stationary kernel is
invariant to translations of the inputs and is mostly a function
of γ = x − x′ for any pair of inputs x and x′.

The Fourier transform of popular stationary kernels such
as the RBF kernel and the Matern kernel corresponds to a
very small corner of the set of possible stationary kernels [36].
While, the spectral mixture (SM) kernel whose spectral den-
sity is arbitrary Gaussian mixtures, are much more expressive.
It contains many stationary kernels with a simple form [37],

kSM(γ ) =
A∑

a=1

w2
a exp

{−2π2γ 2σ 2
a

}
cos (2πγμa). (8)

The classic Matern52 kernel is expressed as

kMatern (γ ) = 21−ν


(ν)
(
√

2νd )νKν (
√

2νd ), (9)

where d = γ �	−2γ . ν is a smoothness parameter (5/2 for
Matern52). The SM kernel together with RBF in formula (4)
and the Matern kernel are applied and compared for the foil
optimization to find the kernel that behaves best. The results
are shown in the next section.

D. Multitask GP with multiacquisition function

In each simulation, we observe both thrust and efficiency as
outputs for a given input. However, when using two separate
SF-GPs to model these two tasks, each model selects the
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inputs based on its own acquisition function and only obtains
information about its corresponding output. This means that
half of the information from each simulation remains unused.
Therefore, a more efficient multitask model is required to fully
exploit the available information. Additionally, an infill crite-
ria for the multitask model is needed to balance the iteration
process.

For active learning based on the Bayesian optimization, a
series of points �x ∈ D are sampled and calculated based on the
acquisition function, and the top n points are selected to infill
and update the model. In the multitask model, how to flex-
ibly keep balance in improving all submodels is vital for the
training result. In general, a pair of factors is expected that can
adjust itself to add more weights to the less convergent model.
A multi-AF with factor α is proposed, and the convergence of
two models can be measured by the relative prediction errors
m and n. The multi-AF can be expressed as follows:

δ(�x) = α
δct (�x)

max [δct (�x)]
+ (1 − α)

δη(�x)

max[δη(�x)]
,

α = m

m + n
,

m = Mct

max( f̂ct ) − min( f̂ct )
,

n = Mη

max( f̂η ) − min( f̂η )
, (10)

where f̂η and f̂ct are the predicted values by the GP model,
Mct and Mη are the mean absolute errors (represented by M
in mathematical expressions hereafter) that can be estimated
by the infill points in the last iteration. Denoting the kth infill
point as (�xk, f k ), we have

Mct = 1

k

k∑
i=1

(
f̂ i
ct − f i

ct

)
,

Mη = 1

k

k∑
i=1

(
f̂ i
η − f i

η

)
. (11)

Generally, δct (�x) and δη(�x) can be any acquisition function.
The most commonly used acquisition function includes prob-
ability of improvement (PI), expected improvement (EI), and
upper confidence bound (UCB). The above three acquisition
functions are applied to the multi-AF to verify its universality
in the following section. The EI, which balances exploitation
and exploration, performs better than the other two functions
in test results as shown in Figs. 10(a) and 10(b). Therefore,
EI is adopted as the priority in the implementation. For more
details of EI, see Ref. [38].

E. Multifidelity based on Hadamard multitask GP

With the use of the low-fidelity model mentioned in
Sec. II C and the high-fidelity ergodic database in Sec. II A, we
can establish the multifidelity model based on the Hadamard
multitask GP.

The Hadamard multitask GP is used for each input cor-
responding to a single task. Except for the standard kernel

kinput (x, x′) for the input, it uses an index kernel ktask (i, j) to
measure the covariance between tasks.

The correlation for the multifidelity in formula 7 can be
equivalently written in the following compact form:

[
f1(x)
f2(x)

]
∼ GP

([
0
0

]
,

[
k1(·) ρ̂k1(·)
ρ̂k1(·) ρ̂2k1(·) + k2(·)

])
, (12)

where (·) is short for (x, x′). Therefore, the multifidelity model
can be constructed based on the Hadamard multitask GP by
two designed index kernels:

ktask1 =
[

1 ρ̂

ρ̂ ρ̂2

]
, ktask2 =

[
0 0
0 1

]
. (13)

The whole covariance in formula (6) between two tasks and
inputs yields the following:

k([x, i], [x′, j])

= kinput1(x, x′)ktask1(i, j) + kinput2(x, x′)ktask2(i, j)

= kinput1(x, x′)
[

1 ρ̂

ρ̂ ρ̂2

]
+ kinput2(x, x′)

[
0 0
0 1

]
.

(14)

F. MMGP for multiobjective flapping foil prediction
and optimization

Based on the basic work prepared above, the MMGP
framework for predicting and optimizing performance of the
flapping foil can be established, as shown in Fig. 3. We use a
MMGP model to combine multifidelity and multitask GP. The
MMGP model consists of two components: an independent
multitask GP with a multi-AF and a multifidelity GP based
on the Hadamard multitask GP. The independent multitask
GP employs the multi-AF to balance the convergence of two
separate outputs of the SF-GP model, which are thrust and
efficiency, the optimization objectives. Thus the low-fidelity
multitask submodel can be constructed by utilizing the low-
fidelity data that capture the main trends of the objectives. The
multifidelity GP fuses the information from the low-fidelity
and high-fidelity multitask submodels, assuming that they are
conditionally independent given some latent variables that
represent the underlying functions of the objectives.

Prediction and optimization are two main functions for
surrogate-based methods. We evaluate the effects of pre-
diction by qualitative analysis of the three-dimensional
color maps and quantitative analysis of MAE. The three-
dimensional color maps can show the feature that the GP
model learns from the training set. Meanwhile, the MAE
shows the accuracy of the model prediction with the test
set. On the other hand, optimization effects are evaluated
by comparing the difference between the prediction point
of maximum and the actual maximum point in the ergodic
database.

The objective is to predict and optimize the performance
by using the least high-fidelity points. Therefore, a well-
trained low-fidelity multitask submodel at the beginning of the
MMGP training process is applied to assist the high-fidelity
submodel converging. The details of the training iteration
process are outlined in Algorithm 1.
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FIG. 3. Composition and workflow of the MMGP framework. The MMGP combines the multifidelity GP based on the Hadamard multitask
GP and the independent multitask GP with multi-AF. The Hadamard multitask GP and the independent multitask GP belong to the multitask
GP, which is extended from the SF-GP. The multifidelity GP works with low-fidelity data sourced from interacting with the environment and
high-fidelity data derived from the high-fidelity ergodic database. The database is divided into the training set and the test set based on whether
the data are used by the MMGP model.

The Mloop is a function of the points chosen at each
iteration, which are indirectly influenced by the infill crite-
rion. The infill criterion typically selects points with high
uncertainty according to the current model, leading to overes-
timated Mloop compared to the actual M of model. The ratio
of estimated values can thus indicate the relative convergence

Algorithm 1. MMGP for flapping foil.

Require: input �x = [St, y0, θ0, ψ]
output �f = [ f low

ct , f low
η , f high

ct , f high
η ]

1: Train a single-fidelity multitask GP with i points as
low-fidelity of f low

ct and f low
η .

2: Initial sampling j points by latin hypercube sampling for
high-fidelity of f high

ct and f high
η .

3: while episodes do
4: while iteration do
5: train �f = model(�x)
6: end while

Select n points to form a matrix �xnew according to multi-AF
δ(�x)
Calculate Mloop and update factor α of multi-AF
Add �xnew and �f high

new to the training set.
Update the model �f = model(�x)

7: end while
8: Use the rest of the points (�xrest, �frest ) in the high-fidelity

database as the test set to calculate M.

level of the two models; moreover, if the estimated values
converge, the actual Mloop of the model will also converge.

III. RESULT AND DISCUSSION

A. Hydrodynamic analysis of flapping foil

To validate the efficacy of the MMGP framework in
the optimization of flapping foil, a meticulously constructed
high-fidelity ergodic database is established, encompassing
performance evaluations across the design space with four key
parameters. Leveraging Bayesian optimization, the MMGP
intelligently selects and incorporates a substantial number
of data points from the high-fidelity database to enrich the
model. Consequently, the remaining data points serve as a
comprehensive test set for robust evaluation. Additionally,
meticulous measures are taken to identify and eliminate any
outliers present within the high-fidelity database, ensuring the
integrity and reliability of the data set.

Once the high-fidelity ergodic database is established, a
comprehensive analysis of the maximum thrust and efficiency,
as well as the thrust curve and instantaneous flow field, as
depicted in Fig. 4, is conducted. Specifically, for St = 0.26
and St = 0.18, we present five isosurfaces, color-coded by
the scaled values of fct or fη, with the labels y0, θ0, and ψ

representing the heaving amplitude, the pitching amplitude,
and the phase angle, respectively. The color bar serves to
indicate the magnitude of these values, with blue denoting
low values and red denoting high values. Notably, a gradual

015103-6



MULTIOBJECTIVE OPTIMIZATION FOR FLAPPING FOIL … PHYSICAL REVIEW E 109, 015103 (2024)

FIG. 4. The isosurfaces under St corresponding to the max f̂ct and max f̂η. Inside the yellow-contour, we present the thrust curve and the
instantaneous flow field diagram under the max f̂ct case. Subplots (a)–(h) represent the instantaneous vorticity fields corresponding to the
specific instants (a)–(h) on the thrust curve, as denoted by the normalized time parameter τ = ωt/2π .

convergence of fct and fη towards the maximum isosurface is
observed.

To provide a comprehensive understanding of the thrust
curve and corresponding characteristic instantaneous flow
fields in Fig. 4, we use the normalized time parameter τ =
ωt/2π . Specifically, the points marked (a)–(h) on the thrust
curve correspond to the eight characteristic instantaneous vor-
ticity diagrams shown in Figs. 4(a)–4(h). During the flapping
period, the trailing edge of the foil gradually moves upward
and shears at the tail, generating a counterclockwise rotat-
ing vortex, as shown in Fig. 4(a). The form drag increases
with the larger angle of attack (AOA), leading to a negative
thrust coefficient. As the foil begins to move downward, the
trailing edge vortex (TEV) gradually moves from the lower
side to the upper side of the foil under the interaction of
the downstroke and the free stream. The trailing edge shear
velocity compresses the TEV below the foil, which makes
the vorticity of the TEV rotating clockwise above the foil
increase gradually. This kind of wake mode can be used to
reduce resistance and even transfer to the propulsive mode.
With the AOA decreasing, the form drag decreases and the
thrust coefficient increases. The thrust generated by the TEV
gradually dominates, and the thrust coefficient changes from
negative to positive, reaching its peak at τ = 0.4332 as shown
in Fig. 4(c).

As the foil continues to flap downward, the TEV below
and above the foil move away from the trailing edge, reducing
the horizontal velocity component of the jet generated by the
TEV. The thrust coefficient decreases significantly, but it is
still positive as shown in Figs. 4(c) and 4(d).

As the foil flaps downward, the form drag gradually in-
creases, and the thrust coefficient continues to decrease. The
small clockwise-rotating vortex sandwiched between the trail-
ing edge shows positive vorticity. Under the influence of
trailing edge velocity attenuation, the strength of the TEV also
decreases and the thrust decreases significantly as illustrated
in Fig. 4(e). It can be seen that the leading edge vortex (LEV)
produces slowly and its intensity increases. The suction gen-
erated by the leading edge of the flapping foil can provide part
of the propulsion, so the thrust generated by the TEV and the
leading edge suction lead to the gradual increase of the thrust
coefficient, as shown in Fig. 4(f).

As the TEV moves upward after shedding, the intensity
of the LEV significantly increases and its coverage reaches
nearly half the chord length. Then a secondary vortex oppo-
site to the direction of the LEV is generated at the leading
edge. With development of the LEV strength, the leading
edge suction remains constant [39,40]. The thrust generated
by the TEV maintains the stability in Fig. 4(g). However, as
the trailing edge moves upward, the TEV that rotates coun-
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FIG. 5. The Mct of different kernels during iterations.

terclockwise is produced on the lower surface of the trailing
edge. The decrease of the AOA leads to the reduction of
leading edge suction and cannot produce obvious thrust. At
the same time, the boundary layer stops transporting energy
to develop the vorticity of the secondary vortex, which means
that the vorticity of “λ” structure reaches its peak, cutting off
the further growth of the LEV and leading to the separation
[41]. The thrust coefficient decreases significantly when the
TEV and the small vortex that rotates clockwise are far away
from the foil, as shown in Fig. 4(h).

B. Thrust optimization: Kernel selection for single-fidelity GP

Consider an ergodic search with St ∈ [0.1, 0.3], y0 ∈
[0.1, 0.6], θ0 ∈ [5, 40], and ψ ∈ [0, 180]. Supposing to set up
a database of 6 × 6 × 8 × 7 = 2016 points by equal-distance
sampling, the low-fidelity data are less complex than the
high-fidelity data and are much easier to train. Therefore, the
low-fidelity output fct is taken as an implementation. The Mct

of different kernels is illustrated in Fig. 5.
The Mct of the SM kernel reaches 0.14 ( fct ∈ [−15, 12])

with 600 points, almost an order of magnitude more accurate
than the standard kernels like the Matern52 kernel and the
RBF kernel. The SM kernel is more suitable for the flap-
ping foil’s motion response which involves many complex
features since it has a more abundant spectrum. Therefore, the
SM kernel is adopted as the base kernel of the present GP
framework. After training for 600 points, the predictions of
the parameter space compared with the raw data are shown
in Fig. 6 for St = 0.1 and St = 0.3, where the y0, θ0, and
ψ labels denote the heave amplitude, the pitch amplitude,
and the phase angle, respectively. It can be observed that the
SF-GP learns sufficient features with only 30% of the ergodic
data set, significantly saving the number of simulations with
adequate accuracy.

C. Validation and implementation for MMGP

The efficiency of a multifidelity GP for the flapping foil
by the BDIM has been validated in Ref. [9]. Meanwhile, the

FIG. 6. The three-dimensional view of low-fidelity CT comparison between the uniformly sampled result (left) and the GP model with 600
points (right).
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FIG. 7. The training process of the MMGP model. We fuse two fidelities of the multitask GP model in the MMGP model. The low-
fidelity model provides trend and gradient information with 1200 points. The high-fidelity model initially resembles the low-fidelity model and
gradually converges to the raw high-fidelity database during the training process. The color bars correspond to the values represented by the
isosurfaces in the respective plots, with different color maps being employed for fct and fη for clearer distinction.

advantage, the robustness, and the capability of the proposed
multitask GP with multi-AF have been verified in the Ap-
pendix. In this subsection, the advantage of prediction and
multiobjective optimization performance of the MMGP com-
pared with the multifidelity GP will be shown.

Figure 7 shows the isosurfaces of the prediction with the
MMGP model for St = 0.1, using the same isosurface config-
uration as in Fig. 4. The labels y0, θ0, and ψ indicate the heave
amplitude, the pitch amplitude, and the phase difference, re-
spectively. The variance of the high-fidelity data is larger than
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TABLE II. The number of high-fidelity points that the MMGP
and the multifidelity GP needed to converge.

Objective Objective
fct fη Total points

MMGP 650 650 650
Multifidelity GP 610 270 821 (duplicates removed)

that of the low-fidelity data, which means the former has more
features. Meanwhile, the MMGP needs to predict both fct and
fη, which is more complex than the previous task in Sec. II C.
In the training process of 650 high-fidelity points, the MMGP
learns most of the features of both fct and fη. The relative
prediction errors according to formula (10) are m = 5.174%
and n = 5.729%, illustrating that the multi-AF balances the
convergence of two outputs well. The relative prediction er-
rors are further defined as the training stop conditions, or
rather the conditions of convergence.

To demonstrate the prediction efficiency of the MMGP,
the multifidelity framework is reproduced to make a com-
parison between the MMGP and the multifidelity based on
the stopping condition. The MMGP necessitates the training
of just one model to achieve convergence. The multifidelity
approach separately and independently trains two models, one
for the objective fct and another for fη. Once both models
converge, their data sets, obtained through the active learning,
are deduplicated and merged. The combined data set is then
compared with the dataset required by the MMGP to achieve
convergence for both fct and fη. As seen in Table II, although
the MMGP might not converge as efficiently as each indi-
vidual task in the multifidelity approach, the MMGP utilizes
around 20% fewer high-fidelity points to attain the same ac-
curacy when handling both tasks simultaneously. In essence,
the MMGP proves to be more adept than the multifidelity GP
for such multiobjective optimization problems.

To show the optimization performance of the MMGP, a
multiobjective optimization problem is set up as follows:

max P = [ fct, fη],

s.t . St ∈ [0.1, 0.3],

y0 ∈ [0.1, 0.6],

θ0 ∈ [5, 40],

ψ ∈ [0, 180]. (15)

The linear weighting model is widely used for the multiob-
jective optimization. The simple additive weighting (SAW)
[42], a classical class of linear weighted summing methods,
is applied in this study. The SAW includes two steps, adding
zoom factors β and adding weights w to different objectives.
The target function can be expressed as

P = wctβct fct + wηβη fη, (16)

where zoom factors βη and βct satisfy

βη

βct
= max fη − min fη

max fct − min fct
. (17)

In the present study, we set βct = 1 and βη = 40 as fct is
nearly 1 order larger than fη. Three tasks are designed and

TABLE III. The parameter configurations of task P1 and P2.

wct βct wη βη

P1 0.5 1 0.5 40
P2 0.8 1 0.2 40

listed in Table III. Additionally, the optimal efficiency near the
rated thrust is of interest in engineering practice. Therefore,
another task, P3 = −βct| fct − 10| + βη fη, is further consid-
ered.

The prediction of loss Li = max P̂i − max Pi is shown in
Fig. 8. It can be observed that different tasks converge at
different points(P2 converges at 250, while P1 and P3 converge
at 950), while the trend is similar. Though predictions get
better or worse during the training process, the overall trend
is gradually close to the optimum. Taking P2, for example,
the flow field of the predicted optimal point x̂ is constantly
optimized in the training process.

We use the nondominated sorting genetic algorithm 2
(NSGA-II) to find the Pareto-optimal solutions for the mul-
tiobjective optimization problem. These solutions are not
dominated by any other feasible solutions in terms of the
two objectives. Figure 9 shows the Pareto front of the op-
timal solutions obtained by NSGA-II. Three optimal points
are selected to illustrate the corresponding values of tasks P1

to P3. P1 represents a balanced motion model. P2 represents
the high-thrust motion model. P3 represents the high-efficient
motion model around the rated thrust. As the parameter ψ

decreases gradually, the foil’s motion mode transitions from

FIG. 8. (a) The prediction loss of multiobjective function
Li during the training process. (b)–(d) The instantaneous
vorticity diagram’s optimization shown in the early,
middle, and late stages of training are also marked on
the curve. (b) For [St, y0, θ0, ψ] = [0.26, 0.2, 15, 150],
[CT , η, P2] = [−1.06, 0.1, −0.38]. (c) For [St, y0, θ0, ψ] =
[0.26, 0.1, 15, 30], [CT , η, P2] = [6.17, 0.049, 5.3]. (d) For
[St, y0, θ0, ψ] = [0.3, 0.4, 20, 0], [CT , η, P2] = [21.3, 0.052, 17.49].
The color bar below represents the vorticity magnitude in panels
(b)–(d).
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FIG. 9. The Pareto front in the objective space. The square,
triangle, and pentagon points indicate the selected optimal points
corresponding to tasks P1, P2 and P3, where P1 is for [St, y0, θ0, ψ] =
[0.22, 0.5, 15, 90], P2 is for [St, y0, θ0, ψ] = [0.22, 0.3, 35, 0], and
P3 is for [St, y0, θ0, ψ] = [0.26, 0.4, 20, 60].

high efficiency to high thrust, along with other subtle changes
in the parameters. This method can facilitate the design of
different motion modes for flapping-wing robots in the future.

IV. CONCLUSION

A multitask and multifidelity Gaussian process (MMGP)
model, based on Bayesian optimization, is proposed to accu-
rately predict and optimize the multiobjective performance of
flapping foils using minimal high-fidelity data. By integrat-

ing the multifidelity submodel and the multitask submodel,
the MMGP effectively leverages low-fidelity data and ef-
ficiently addresses multiobjective problems. The Bayesian
optimization with the multi-AF algorithm is employed to
select candidate samples, representing multiple outputs,
which are automatically simulated to update the MMGP
model.

To determine the most suitable prior GP model for de-
scribing the hydrodynamic responses of the flapping foil, an
ergodic database is constructed and analyzed. Initially, the
basic single-fidelity GP model is investigated, revealing that
the SM kernel exhibits faster convergence than the RBF kernel
and the Matern kernel for the present flapping foil case. More-
over, the single-fidelity GP with the SM kernel can capture
sufficient features using only 30% of the ergodic database.
For the multitask GP based on Bayesian optimization, it is
observed that the proposed multiacquisition function is com-
patible with classic basic acquisition functions such as EI,
PI, and UCB. The optimizing and predicting performance of
the MMGP model is evaluated using optimal value prediction
and mean absolute error. The results demonstrate that the
multi-AF, employing a pair of factors aimed at improving less
convergent models, exhibits better robustness in optimization
ability when compared with fixed factors. Finally, the predic-
tion task indicates that the proposed MMGP requires fewer
total points to converge compared to the multifidelity GP, sug-
gesting its high efficiency as an optimization framework for
flapping foil motion. Additionally, the MMGP demonstrates
its capability as a paradigm for addressing multiobjective
problems in the context of flapping foils.

FIG. 10. Compare the two models’ global optimization ability and convergence by predicting the two tasks. (a) The prediction of maximum
f̂ct during the training process. (b) The prediction of maximum f̂η during the training process. (c) The Mct of f̂ct during the training process.
(d) The Mη of f̂η during the training process.
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FIG. 11. Compare the performance of multi-AF with different basic acquisition functions. (a) The prediction of maximum f̂ct during the
training process. (b) The Mct of f̂ct during the training process.

As demonstrated in previous sections, while the simplified
problem is far from practical engineering applications, it is
believed that the MMGP holds the potential for handling
high-dimensional and complex problems. Exploring neural
network approaches to represent the nonlinear component of
different fidelities would be of significant interest in future
studies. Furthermore, although the optimization efficiency of
the MMGP may not match that of heuristic algorithms, the
MMGP is capable of inferring the mean and the variance.
Hence, merging the MMGP and the GA holds promise for
further exploration and investigation.
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APPENDIX: VALIDATION FOR MULTITASK GP
WITH MULTIACQUISITION FUNCTION

To set up the MMGP, a low-fidelity multitask GP model
needs to be trained. Therefore, the multi-AF is proposed to
construct a high-efficiency multitask GP. In this Appendix, we

demonstrate the advantage, the robustness, and the capability
of the multi-AF for the multitask GP.

To compare with the multi-AF, we use a fixed factor of α =
0.5 in formula (10) as the control group fixed AF. Then we
measure the global optimization ability and convergence of
the two multitask models. In Figs. 10(a) and 10(b), the green
line denotes the raw maximum point in the ergodic database.
The max f̂η and max f̂ct of multi-AF (acquisition function)
have a variance of 0.01 and 0.06, while the control group
has 2.29 and 0.06. Combined with the analysis in Figs. 10(a)
and 10(b), the prediction is more stable when the multi-AF
converges near the optimal raw value. Thus, it has better
robustness in optimization ability. In Figs. 10(c) and 10(d), the
Mct and Mη of multi-AF decreased with the training process
and the declining trend gradually slowed down, just slightly
lower than the control group.

To verify the compatibility of the multi-AF, we replace
δct (�x) and δη(�x) with a common single acquisition function
such as PI, EI, and UCB. The result is shown in Fig. 11.
The result shows that the multi-AF is a compatible combined
policy for the classic basic acquisition functions. The variance
of optimization values PI, EI, and UCB in Fig. 11(a) is 0.02,
0.01, and 0.11, respectively. The EI is chosen as the basic
acquisition function in the implementations since it has better
robustness in optimization. Additionally, Fig. 11(a) shows that
UCB has weak robustness early in the training process but has
the best robustness in the middle and late stages of training.
The converging speed of the three acquisition functions is
nearly the same as shown in Fig. 11(b).
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