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Undular bore theory for the modified Korteweg–de Vries–Burgers equation
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We consider nonlinear wave structures described by the modified Korteweg–de Vries equation, taking into
account a small Burgers viscosity for the case of steplike initial conditions. The Whitham modulation equa-
tions are derived, which include the small viscosity as a perturbation. It is shown that for a long enough time
of evolution, this small perturbation leads to the stabilization of cnoidal bores, and their main characteristics
are obtained. The applicability conditions of this approach are discussed. Analytical theory is compared with
numerical solutions and good agreement is found.
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I. INTRODUCTION

The modified Korteweg-de Vries (mKdV) equation

ut − 6αu2ux + uxxx = 0 (1)

appeared first in the study of the famous KdV equation

ut + 6uux + uxxx = 0 (2)

related to Eq. (1) by the Miura transformation [1]. The ex-
istence of such a transformation allowed the pioneers of the
inverse scattering transform method to discover this method
[2–4] for the KdV equation, and it was extended later to many
other equations, including the mKdV equation [5,6] (see also,
e.g., the books in [7–9] and references therein). The mKdV
equation is almost as widely used in physical applications as
the KdV equation. Actually, the Gardner equation

ut + 6βuux − 6αu2ux + uxxx = 0, (3)

combining the nonlinear terms of the KdV and mKdV equa-
tions, can be transformed into Eq. (1) by a simple change of
variables. In addition, in physical applications, it often hap-
pens that the coefficient β is very small and can be neglected,
so Eq. (3) reduces directly to the equation. The Gardner
equation and its simplified mKdV version find applications
to the theory of nonlinear waves in stratified fluids, for ex-
ample, for the description of large-amplitude internal waves
[10–12].

One of the most important and universal phenomena in
nonlinear physics is the formation and evolution of dispersive
shock waves (see, e.g., review articles in [13,14] and refer-
ences therein). They are called undular bores in water wave
physics and they were observed in both surface and inter-
nal waves. Their theory was initially developed by Gurevich
and Pitaevskii [15], who represented such structures as mod-
ulated nonlinear periodic waves governed by the Whitham
modulation equations [16,17]. They gave two typical exam-
ples of solutions that describe dispersive shock waves: the
evolution of an initial discontinuity and the formation of a
shock after generic wave breaking for the KdV equation case.

The Whitham modulation equations for the mKdV case were
derived in Ref. [18], but their application to the theory of
dispersive shock waves turned out to be quite a difficult task
even in the case of an initial discontinuity problem. The reason
for this difficulty is that the mKdV equation is not genuinely
nonlinear. (This notion was introduced by Lax in Ref. [19] for
hyperbolic systems of first-order partial differential equations
and it plays an important role in the classification of wave
structures evolving from initial discontinuities in dispersive
nonlinear systems; see, e.g., Ref. [20].) This means that in
the dispersionless approximation, the nonlinear velocity 6αu2

has an extremal (minimal for α > 0) value at u = 0, whereas
in the case of the genuinely nonlinear KdV equation, the
nonlinear velocity 6u is everywhere a monotonic function of
the wave amplitude u. As a result, in the KdV case an initial
discontinuity can only evolve into two different structures
(rarefaction waves or cnoidal undular bores), whereas in the
mKdV case an initial discontinuity evolves into eight different
wave structures depending on the parameters of the initial
jump of u. Some particular results in this direction were ob-
tained in Ref. [21] and the full solution was given in Ref. [22]
in the context of the Gardner equation (3).

In Gurevich-Pitaevskii theory, dispersive shock waves
are wave structures that expand with time, so in initial
discontinuity-type problems, the change of modulation pa-
rameters per unit length decreases with time and can become,
at large enough time, smaller than some other physical pa-
rameters that were neglected in the derivation of Eq. (1) or
(2). For such large values of time, the neglected effects must
be taken into account in the modulation theory. For example,
small dissipation stops the infinite expansion of undular bores
and their length is stabilized at some value inversely propor-
tional to the viscosity coefficient in accordance with the early
ideas of Refs. [23,24] about the structure of undular bores in
water-wave physics and plasma. The corresponding modified
Whitham equations for the KdV theory with weak Burgers
dissipation were derived in Refs. [25,26] and were applied in
these papers to the description of stationary dispersive shocks
whose characteristic length is defined by the small viscosity
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coefficient γ in the KdV-Burgers equation

ut + 6uux + uxxx = γ uxx. (4)

The extension of this theory to the mKdV-Burgers (mKdVB)
equation

ut − 6αu2ux + uxxx = γ uxx (5)

was discussed qualitatively in Ref. [27]; however, the modi-
fied Whitham equations were not obtained for this case and
the quantitative theory was not developed. The main aim of
this paper is to derive the Whitham modulation equations for
the mKdVB case (5) and apply them to the theory of undular
bores. To this end, we will use the direct Whitham method
[16,18] developed further for the perturbed KdV equation in
Ref. [28]. Its advantage is that it does not require the devel-
opment of quite involved methods of the inverse scattering
transform (see Ref. [29]). We obtain analytical formulas for
the main characteristics of shock waves and confirm them by
numerical solutions of Eq. (5).

We confine ourselves to the case of the defocusing mKdV
equation with α > 0, when dispersive shock wave are modula-
tionally stable. The focusing mKdV equation with α < 0 has
modulationally unstable periodic solutions (see, e.g., Ref. [30]
and references therein) and their slow modulations are also de-
scribed by the Whitham modulation equations, but this theory
is beyond the scope of the present paper.

II. ELEMENTARY WAVE STRUCTURES
IN mKdVB EQUATION THEORY

Wave structures evolved from an initial discontinuity are
typically combined from several types of elementary wave
structures and we consider them briefly. For definiteness, we
confine ourselves to the case of a positive coefficient α > 0,
although a similar theory can be developed for the case of
negative α. Naturally, the viscosity coefficient γ is positive.

A. Rarefaction waves

First we consider situations when a wave connects two
trivial solutions u = u− on the left and u = u+ on the right
from the initial discontinuity and assume that during the evo-
lution the wave remains a smooth function of x. Then we
can neglect dispersive and dissipative effects proportional to
higher-order derivatives of x and describe such a wave in the
simplest approximation taking into account only nonlinear
effects proportional to the first-order space derivative

ut − 6αu2ux = 0. (6)

The boundary conditions suggest that there are two character-
istic functions, one for the sound wave propagating along the
plateau u = u−, which has the characteristic xl = −6αu2

−t ,
and the other for the sound wave propagating along the
plateau u+, so this edge moves according to the equation xr =
−6αu2

+t . Consequently, the solution consists of three parts:
u = u− for x < xl , u = u+ for x > xr , and between these two

regions an evident self-similar solution of Eq. (6),

u(x, t ) =

⎧⎪⎨
⎪⎩

u−, x < xl

±
√

x
−6αt , xl < x < xr

u+, x > xr .

(7)

Obviously, such a solution exists only if both boundary values
u± are lying in either of the monotonicity intervals 0 < u+ <

u− or 0 > u+ > u−. In both cases, these rarefaction waves
propagate to the left with the left edge speed sl = −6αu2

−
smaller than the right edge speed sr = −6αu2

+. If the bound-
ary values u± are lying in the different monotonicity intervals,
then more complicated combined structures are generated,
which we study in the following sections.

B. Periodic solutions

If the boundary values u± do not satisfy the above con-
dition of belonging to the same monotonicity intervals, then
the wave breaks and an undular bore forms. In the Gurevich-
Pitaevskii approach [15], they are represented by modulated
periodic solutions of Eq. (5), so first we have to describe the
nonmodulated solutions for zero dissipation.

We look for traveling-wave solutions u = u(ξ ), ξ = x −
V t , of Eq. (5) with γ = 0 and after two integrations we get

u2
ξ = αu4 + Vu2 + 2Bu − 2A, (8)

where A and B are constants of integration. We assume that
the polynomial on the right-hand side has four real roots
νi, i = 1, 2, 3, 4, which are ordered according to inequalities
ν1 � ν2 � ν3 � ν4, so Eq. (8) can be rewritten in the form

u2
ξ = α(u − ν1)(u − ν2)(u − ν3)(u − ν4). (9)

The constants in these two equations are related by the
expressions

V = α(ν1ν2 + ν1ν3 + ν1ν4 + ν2ν3 + ν2ν4 + ν3ν4),

B = −α

2
(ν1ν2ν3 + ν1ν2ν4 + ν1ν3ν4 + ν2ν3ν4),

A = −α

2
ν1ν2ν3ν4 (10)

and the roots νi are not independent of each other but
connected by the formula

ν1 + ν2 + ν3 + ν4 = 0. (11)

Periodic real solutions can only exist when u oscillates be-
tween two consecutive roots where the potential curve is
positive, that is, ν2 � u � ν3, as shown in Fig. 1. Integration
of Eq. (9) with the initial condition u = ν3 at ξ = ξ0 gives

ξ − ξ0 =
∫ ν3

u

du√
α(u − ν1)(u − ν2)(u − ν3)(u − ν4)

(12)

and standard calculation yields the expression

u = ν3(ν4 − ν2) − ν4(ν3 − ν2)sn2(θ ; m)

(ν4 − ν2) − (ν3 − ν2)sn2(θ ; m)
, (13)

where sn(θ, m) is the Jacobi elliptic sinus function, with

θ = 1
2

√
α(ν3 − ν1)(ν4 − ν2)ξ (14)
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FIG. 1. Periodic solutions correspond to oscillations in the
interval ν2 � u � ν3 where f (u) � 0.

and

m = (ν4 − ν1)(ν3 − ν2)

(ν4 − ν2)(ν3 − ν1)
. (15)

The expression (14) allows us to define the wave number and
the frequency of the periodic wave in terms of parameters νi,

k =
√

α(ν3 − ν1)(ν4 − ν2), ω = kV, (16)

where V is given by Eq. (10).
The cnoidal wave solution (13) reduces to important par-

ticular solutions in special limits. When ν1 → ν2, and thus
m → 1 and sn(θ ; m) → tanh θ , we arrive at the bright soliton

u(ξ ) = ν1 + ν3 − ν1

cosh2 θ − ν3−ν1
ν4−ν1

sinh2 θ
, (17)

propagating along a constant background u = ν1. When ν3 →
ν4, we obtain the dark-soliton solution

u(ξ ) = ν4 − ν4 − ν2

cosh2 θ − ν4−ν2
ν4−ν1

sinh2 θ
, (18)

propagating along a constant background u = ν4. When ν3 →
ν2, we get m → 0, so the elliptical sinus becomes the trigono-
metric one, sn(θ ; 0) = sin θ , and we obtain a harmonic wave
solution oscillating with very small amplitude around u = ν2,

u(ξ ) = ν2 + 1
2 (ν3 − ν2) cos 2θ. (19)

Finally, if we have simultaneously ν1 → ν2 and ν3 → ν4, it is
convenient to change the initial condition in such a way that
the integral (12) takes the form

ξ =
∫ ν3

u

du√
α(u − ν2)(u − ν4)

(20)

and elementary integration yields

u = ν2 + ν4 exp[∓√
α(ν2 − ν4)(ξ − ξ0)]

1 + exp[∓√
α(ν2 − ν4)(ξ − ξ0)]

. (21)

It is important that due to Eq. (11) the parameters are related
by the formula ν2 + ν4 = 0 and therefore the left and right
limiting values of u have opposite signs and their absolute
values are equal to each other. It is remarkable that an exact
solution of this type exists for the full Eq. (5), taking into
account dissipation [31]; we consider this modification of this
so-called kink solution in the next section.

C. Kink

Here we find the kink solution of Eq. (5) with γ �= 0. As
usual, we look for a traveling-wave solution u = u(ξ ), ξ =
x − V t , and assume that u → u− as ξ → −∞. Then trivial
integration taking into account our boundary condition gives

uξξ = γ uξ + V (u − u−) + 2α(u3 − u3
−). (22)

We also have u → u+ as ξ → +∞, as it should be for a
kink solution. Then we immediately get the expression for the
velocity

V = −2α(u2
− + u−u+ + u2

+); (23)

substitution of this expression into Eq. (22) gives

uξξ = γ uξ + 2α(u − u−)(u − u+)(u + u− + u+). (24)

Now, following Ref. [31], we assume that this equation has an
integral in the form

uξ = a(u − u−)(u − u+),

that is,

uξξ = duξ

du

du

dξ
= a2(2u − u− − u+)(u − u−)(u − u+).

Substitution of these expressions into Eq. (24) yields

a2(2u − u− − u+) = γ a + 2α(u + u− + u+).

A comparison of the coefficients before u gives a2 = α or

a = ±√
α. (25)

Then the remaining terms give

u− + u+ = ∓ γ

3
√

α
. (26)

Finally, elementary integration of the equation

uξ = ±√
α(u − u−)(u − u+) (27)

yields

u(ξ ) = 1
2 {u− + u+ ± (u− − u+) tanh[α(u− − u+)ξ )]}. (28)

As one can see, the upper sign corresponds to the growing
kink with u+ > u− and u+ + u− = γ /3

√
α and the lower sign

corresponds to the decreasing kink with u+ < u− and u+ +
u− = −γ /3

√
α. These are the separatrix solutions joining the

stationary solutions of the second-order equation (24), so there
are no other kink solutions of this equation.

III. WHITHAM MODULATION EQUATIONS
FOR mKdVB THEORY

According to Whitham [16,17], the modulation theory
can be based on averaging of the conservation laws for
the equation under consideration over fast oscillations in
the slightly modulated cnoidal wave. The perturbed theory
of the Whitham modulation method for the mKdVB equation
can be performed in the same way as it was done for the KdVB
equation [28].

Due to condition (11), in this theory there are three inde-
pendent parameters that can be chosen arbitrarily from the
set νi, i = 1, 2, 3, 4. Therefore, we have to average three
conservation laws. However, it is convenient to replace one
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of them by the universal law of conservation of the number
of waves [16,17]. Indeed, a slightly modulated wave can be
considered locally as a uniform one with the wave number
and the frequency defined by the expressions

k = θx, ω = −θt . (29)

Consequently, they satisfy the conservation law

kt + ωx = 0, (30)

where k plays the role of the density of waves and ω is their
flux. They are still expressed in terms of the local values of
the modulation parameters νi by Eqs. (16). Averaging can
be performed over a wavelength due to the smallness of
modulations,

〈φ〉 = 1

L

∫ L

0
φ dx = 1

L

∮
φ(x, t )√

f (u)
du, (31)

where L = k−1 is the wavelength and f (u) = u2
x = α

∏
(u − νi ). Thus, the averaged Eq. (30) can be written as

〈k〉x + 〈ω〉t = 0, (32)

and it is easy to find two other conservation laws for the
perturbed mKdV equation

ut − 6αu2ux + uxxx = R, (33)

so in the averaged form they read

〈u〉t + 〈−2αu3 + uxx〉x = 〈R〉,
〈u2〉t + 〈 − 3αu4 + 2uuxx − u2

x

〉
x
= 2〈uR〉. (34)

In the case of Burgers friction we have R = γ uxx [see Eq. (5)],
but to stress the generality of our derivation we keep it
unspecified here.

Following Refs. [16–18,28], we express all averaged
functions in terms of

W (A, B,V ) = −
∮

uξ du = −
∮ √

f (u)du

= −
∮ √

αu4 + Vu2 + 2Bu − 2A du (35)

so that

WA =
∮

du√
f (u)

=
∮

dx = L = k−1,

WB = −
∮

udu√
f (u)

,

WV = −1

2

∮
u2du√

f (u)
. (36)

Consequently, we get

〈u〉 = k
∮

udu√
f (u)

= −kWB,

〈
1
2 u2

〉 = k

2

∮
u2du√

f (u)
= −kWV . (37)

In view of the relation uxx = 1
2

df
du , we have 〈uxx〉 = 0. After

simple transformations with the use of the mKdV equation,

we can express all averaged quantities in terms of the above
expressions and arrive at

(−kWB)t + (−kVWB + B)x = 〈R〉,
(−kWV )t + (−kVWV + A)x = 〈uR〉,

(WA)t − V (WA)x = WAVx. (38)

These equations can be rewritten in a more convenient form
with the use of the differential operator D

Dt = ∂
∂t + V ∂

∂x ,

DWB

Dt
= WA

(
∂B

∂x
− 〈R〉

)
,

DWV

Dt
= WA

(
∂A

∂x
− 〈uR〉

)
,

DWA

Dt
= WA

∂V

∂x
. (39)

As we mentioned in the Introduction, the mKdV equa-
tion is not genuinely nonlinear. Therefore, as in the case of
the Gardner equation [22], the relationship between physical
parameters νi and the most convenient modulation parameters
used in the Whitham equations is not single valued. In a
similar way, the Whitham equations (39) can be transformed
to the diagonal form for the Riemann invariants r1, r2, and r3

which are related to ν1, ν2, ν3, and ν4 by two different sets of
formulas. To obtain one such set of formulas, we choose ν1,
ν2, and ν3 as dependent variables, so ν4 is given by Eq. (11)
and dν4 = −(dν1 + dν2 + dν3). Then differentials dV , dA,
and dB of the modulation parameters used in Eqs. (39) are
equal to

dV = α[(ν4 − ν1)dν1 + (ν4 − ν2)dν2 + (ν4 − ν3)dν3],

dB = − α

2
[(ν4 − ν1)(ν2 + ν3)dν1 + (ν4 − ν2)(ν1 + ν3)dν2

+ (ν4 − ν3)(ν1 + ν2)dν3],

dA = − α

2
[ν2ν3(ν4 − ν1)dν1 + ν1ν3(ν4 − ν2)dν2

+ ν1ν2(ν4 − ν3)dν3]. (40)

Introducing the variables wi = ν4 − νi, we write Eq. (39) in
the form

3∑
i=1

WA,νi

Dνi

Dt
= αWA(w1ν1,x + w2ν2,x + w3ν3,x ),

3∑
i=1

WB,νi

Dνi

Dt
= −α

2
WA[w1(ν2 + ν3)ν1,x + w2(ν1 + ν3)ν2,x

+ w3(ν1 + ν2)ν3,x] − WA〈R〉,
3∑

i=1

WV,νi

Dνi

Dt
= −α

2
WA(ν2ν3w1ν1,x + ν1ν3w2ν2,x

+ ν1ν2w3ν3,x ) − WA〈uR〉. (41)

To diagonalize the last system, we multiply the first, second,
and third lines by the constant parameters p, q, and r, respec-
tively, sum the resulting equations, and choose p, q, and r in
such way that the coefficient of ν1,x on the right-hand side
vanishes and the coefficients of ν2,x and ν3,x are equal to each
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other. These conditions determine p, q, and r up to a numerical
factor, and we take the following values:

p = −(ν2 + ν3)(ν1ν4 + ν2ν3),

q = −2(ν1ν4 − ν2ν3),

r = −4(ν2 + ν3). (42)

After elementary transformations the resulting right-hand side
of the sum takes the form

WA

(
α(ν2 − ν1)(ν3 − ν1)(ν4 − ν2)(ν4 − ν3)

∂ (ν2 + ν3)

∂x

+ 2(ν1ν4 − ν2ν3)〈R〉 + 4(ν2 + ν3)〈uR〉
)

. (43)

Calculation of the coefficient before Dν1/Dt gives

K1 = pWA,ν1 + qWB,ν1 + rWV,ν1

= −ν4 − ν1

2

∮
(p − qu − ru2/2)du√

α(u − ν1)3(u − ν2)(u − ν3)(u − ν4)3

= −(ν4 − ν1)
∮

d

du

√
(u − ν2)(u − ν3)

α(u − ν1)(u − ν4)
= 0. (44)

Similar calculation of the coefficient before Dν2/Dt gives

K2 = pWA,ν2 + qWB,ν2 + rWV,ν2

= (ν4 − ν2)(ν4 − ν3)I1, (45)

where

I1 =
∮ √

u − ν1

α(u − ν2)(u − ν3)(u − ν4)3
. (46)

As one can see, this expression is symmetrical with respect
to the interchange of ν2 and ν3, so K3 = pWA,ν3 + qWB,ν3 +
rWV,ν3 = K2. Consequently, we obtain one of the modulation
equations in the form

(ν4 − ν2)(ν4 − ν3)I1

(
∂ (ν2 + ν3)

∂t
+ V

∂ (ν2 + ν3)

∂x

)

= WA

(
α(ν2 − ν1)(ν3 − ν1)(ν4 − ν2)(ν4 − ν3)

∂ (ν2 + ν3)

∂x

+ 2(ν1ν4 − ν2ν3)〈R〉 + 4(ν2 + ν3)〈uR〉
)

, (47)

and the other two equations can be obtained by cyclic permu-
tations of ν1, ν2, and ν3.

The terms that do not depend on R have a diagonal form
with respect to derivatives, so the three values of any function
of ν1 + ν2, ν1 + ν3, and ν2 + ν3 can serve as the Riemann
invariants of the resulting Whitham modulation equations. It
is convenient to define them as

r1 = 1
4 (ν2 + ν3)2, r2 = 1

4 (ν1 + ν3)2, r3 = 1
4 (ν1 + ν2)2

(48)

and

ν1 = √
r1 − √

r2 − √
r3, ν2 = −√

r1 + √
r2 − √

r3,

ν3 = −√
r1 − √

r2 + √
r3, ν4 = √

r1 + √
r2 + √

r3. (49)

The Riemann invariants ri are positive and we assume that
they are ordered according to the inequalities 0 < r1�r2�r3.
Then the parameters νi are ordered as

ν1 � ν2 � ν3 < 0 < ν4. (50)

The phase velocity V and elliptic modulus m reduce to

V = −2α(r1 + r2 + r3), m = r3 − r2

r3 − r1
(51)

and the wavelength is given by the formula

L = 2√
α(r3 − r1)

K (m), (52)

with K (m) the complete elliptic integral of the first kind. The
integral (46) can also be expressed in terms of the Riemann
invariants,

I1 = 2(
√

r2 − √
r1)(

√
r3 − √

r1)
∂L

∂r1
, (53)

and similar expressions can be obtained for its counterparts for
equations derived from Eq. (47) by cyclic permutations of ν1,
ν2, and ν3. As a result, we arrive at the form of the Whitham
equations for the perturbed mKdV theory,

∂ri

∂t
+ vi

∂ri

∂x
= L

∂L/∂ri

√
r1r2r3〈R〉 − ri〈uR〉∏

j �=i(ri − r j )
, (54)

where

vi =
(

1 − L

∂L/∂ri

∂

∂ri

)
V = V + 2αL

∂L/∂ri
(55)

are the standard Whitham velocities for the unperturbed
mKdV equation [18,32].

The definitions (48) and (49) of the Riemann invariants
imply that in this case a modulated wave oscillates in the
region ν2 � u � ν3 < 0 of its amplitude [see Eq. (50)]. To
get modulation equations for bores with positive values of
the amplitude, it is convenient to take ν2, ν3, and ν4 as the
modulation parameters, so that ν1 = −(ν2 + ν3 + ν4), and to
define the Riemann invariants by the formulas

r1 = 1
4 (ν2 + ν3)2, r2 = 1

4 (ν2 + ν4)2, r3 = 1
4 (ν3 + ν4)2

(56)

and

ν1 = −√
r1 − √

r2 − √
r3, ν2 = √

r1 + √
r2 − √

r3,

ν3 = √
r1 − √

r2 + √
r3, ν4 = −√

r1 + √
r2 + √

r3. (57)

For 0 < r1 � r2 � r3 the parameters νi are ordered according
to

ν1 < 0 < ν2 � ν3 � ν4 (58)

and the variable u takes positive values in the interval

0 < ν2 � u � ν3. (59)

The Whitham equations (54) for this definition of the Riemann
invariants remain the same. Consequently, one solution of
the Whitham modulation equations describes two different
modulated wave structures, which is a characteristic feature
of not-genuinely nonlinear wave equations (other examples of
such a behavior can be found in Refs. [22,33,34]).
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IV. STATIONARY BORES IN mKdVB THEORY

As mentioned in the Introduction, after a long enough time
of evolution, small dissipation stops expansion of undular
bores and they acquire stationary profiles. The correspond-
ing theory for the KdV-Burgers equation was developed in
Refs. [25,26,28]. Here we obtain similar solutions for the
case of the mKdVB theory, following mainly the method of
Ref. [28].

A stationary bore propagates with constant velocity V
without a change of the profile determined by the modulation
variables ri = ri(ξ ), ξ = x − V t . Such a stationary profile is
supported by the difference of the values of the wave variable
u at two infinities,

u(x, 0) →
{

u− as x → −∞
u+ as x → +∞.

(60)

If there were no dispersion effects, we would get a jumplike
viscous shock with velocity determined by the Rankine-
Hugoniot conditions (see, e.g., Ref. [17]). Dispersion effects
transform a jumplike transition between two levels of the u
variable into an oscillatory bore, but the Rankine-Hugoniot
conditions are still applicable [27]. Following Whitham’s
theory of weak shocks [17], we introduce the flux function
Q = −2αu3 so that the dispersionless limit of the mKdV
equation takes the form the conservation law

ut + Qx = 0 (61)

and then a shock wave propagates with velocity

V = Q(u−) − Q(u+)

u− − u+
= −2α(u2

− + u−u+ + u2
+). (62)

[It is worth noting that it coincides with the velocity of kinks
(23) calculated taking into account viscosity, which confirms
the generality of the above argumentation.] This velocity must
coincide with the constant velocity V of the bore given by
Eq. (51),

V = −2α(r1 + r2 + r3). (63)

Thus, in stationary solutions, the sum of three Riemann invari-
ants is constant and Eq. (54) reduces to

dri

dξ
=

√
r1r2r3〈R〉 − ri〈uR〉
2α

∏
i �= j (r j − ri )

, i = 1, 2, 3. (64)

It is convenient to introduce symmetric functions of the
Riemann invariants,

σ1 = r1 + r2 + r3, σ2 = r1r2 + r1r3 + r2r3, σ3 = r1r2r3.

(65)

It is not hard to derive equations for them,

dσ1

dξ
= 0,

dσ2

dξ
= 1

2α
〈uR〉, dσ3

dξ
=

√
σ3

2α
〈R〉. (66)

Consequently, σ1 is an integral of motion, as it should be.
The theory greatly simplifies if 〈R〉 = 0. In particular, it takes
place for the Burgers viscosity 〈uxx〉 = (1/L)(ux )|L0 = 0 due to
periodicity of u in the main approximation. Then σ3 = const is
also an integral of motion and we get an ordinary differential
equation for a sole dependent variable σ2 or any other variable
changing along the bore. It is convenient to choose as such

a variable the modulus m. The Riemann invariants can be
expressed as functions of m in the following way. The first
and third of Eqs. (65) give r1 and r2 as functions of r3:

r1 = 1
2 [σ1 − r3 −

√
(σ1 − r3)2 − 4σ3/r3],

r2 = 1
2 [σ1 − r3 +

√
(σ1 − r3)2 − 4σ3/r3]. (67)

Then, with the use of Eq. (51) for m, we find the formula

m = 3r3 − σ1 −
√

(σ1 − r3)2 − 4σ3/r3

3r3 − σ1 +
√

(σ1 − r3)2 − 4σ3/r3

, (68)

which defines in an implicit form the function r3 = r3(m)
so that substitution of this function into Eqs. (67) gives the
functions r1 = r1(m) and r2 = r2(m). Differentiation of m
by ξ and substitution of Eq. (64) with 〈R〉 = 0 yield the
equation for m:

dm

dξ
= −�(m). (69)

Consequently, we obtain the solution in the implicit form

ξ − ξ0 =
∫ 1

m

dm

�(m)
, (70)

with

�(m) = r1(r2 − r3)2 + r2(r1 − r3)2 + r3(r1 − r2)2

2α(r1 − r2)(r1 − r3)3(r2 − r3)
〈uR〉,

(71)

where 〈uR〉 can also be expressed in terms of the Riemann
invariants, that is, as a function of m (ξ0 is the position of
the soliton edge of the bore with m = 1 at the initial moment
of time). This completes, in principle, the solution of the
Whitham equations for a stationary bore. When the func-
tion m = m(ξ ) is found, it means that the dependence of the
Riemann invariants r1, r2, and r3 on ξ is also known. Substitu-
tion of these functions into the two sets (49) and (57) gives us
two different dependences of the parameters νi, i = 1, 2, 3, 4,
on ξ . This means that their substitution into the solution (13)
yields two different modulated bores. We distinguish the cor-
rect solution by the boundary conditions. Thus, now we are in
a position to classify all possible wave structures supported by
boundary conditions at infinities in the mKdV theory taking
into account the small Burgers viscosity.

V. CLASSIFICATION OF WAVE STRUCTURES
FOR JUMPLIKE BOUNDARY CONDITIONS

In the region of applicability of the Gurevich-Pitaevskii
theory based on the Whitham method of slow modulations of
periodic solutions of the mKdV equation, the general diagram
of possible wave structures coincides qualitatively with the
diagram obtained in Ref. [22] for the related Gardner equa-
tion without viscosity (see also Ref. [27]). Taking viscosity
into account leads to two modifications: (i) Undular bores
become stationary and (ii) the kinks’ parameters are slightly
changed, as shown in Sec. II C. The resulting diagram is
shown in Fig. 2 and here we derive analytical formulas for the
main characteristics of the wave structures and compare them
with numerical solutions of the mKdVB equation. All numer-
ical simulations in this section are performed with the use
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u− = −u+ − γ
3
√
α

u− = −u+ + γ
3
√
α

u− = u+

1

2

3 4

5

6

78

u+

u−

FIG. 2. Wave structures supported by the boundary conditions
u− as x → −∞ and u+ as x → +∞.

of the split-step Fourier technique with fourth-order accuracy
similar to the approach in Refs. [35,36]. To avoid interference
caused by the periodicity of the boundary conditions in this
method, we use a very large x domain.

In regions 1 and 5 in Fig. 2, we get just undular bores
of different polarities. Let us consider first region 1 where
u+ < u− < 0 so that u oscillates in the negative interval ν2 �
u � ν3 < 0. Correspondingly, we have to use the formulas
(48) and (49) relating νi and r j . In the small-amplitude limit
x → −∞ we have ν2 = ν3 = u− and m → 0, that is, r2 → r3.
Consequently, we get at the left edge of the bore r−

1 = u2
− and

r−
2 = r−

3 , that is,

σ1 = u2
− + 2r−

2 , σ3 = u2
−(r−

2 )2. (72)

FIG. 3. Riemann invariants for the bores in regions 1 and 5
and the boundary conditions u− = −0.1 and u+ = −0.5 in region
1 and u− = 0.1 and u+ = 0.5 in region 5. The parameters of the
equations are equal to α = 0.2 and γ = 0.01.

At the soliton edge we have m = 1 and r2 = r1, that is, ν1 =
ν2 = −√

r3 = u+ (or r+
3 = u2

+), so

σ1 = 2r+
2 + u2

+, σ3 = (r+
2 )2u2

+. (73)

The values of these two constants of motion must be the
same at both edges of the bore, so simple calculations give
the limiting expressions for the Riemann invariants at the
small-amplitude edge,

r−
1 = u2

−, r−
2 = r−

3 = 1
2 u+(u+ + u−), (74)

and at the soliton edge,

r+
1 = r+

2 = 1
2 u−(u− + u+), r+

3 = u2
+. (75)

Naturally, their substitution into Eq. (63) reproduces the ex-
pression (62) for the velocity of the bore. In addition, we
obtain the necessary expressions for the constants of motion

σ1 = u2
− + u−u+ + u2

+, σ3 = 1
4 u2

−u2
+(u− + u+)2. (76)

To average the Burgers friction term with uR = γ uuxx, it
is convenient to make the replacement u → 2v − s1, where
s1 = √

r1 + √
r2 + √

r3. The variable v oscillates in the inter-
val

√
r2 � v � √

r3, so we obtain the expression

〈uuxx〉 = −16

L

∫ √
r3

√
r2

√
Q(v)dv, (77)

where Q(v) = α(v − √
r1)(v − √

r2)(v − √
r3)(v − s1). The

integral here can be expressed in terms of the Jacobi elliptic
integrals, but it is convenient enough for practical calculations
to keep it in this nonintegrated form.

To find the criterion of applicability of our theory, we note
that it is correct as long as the length l of the whole bore is
much greater than a typical local wavelength L inside it. To
estimate these two parameters, we turn to the small-amplitude
limit ξ → −∞ where the Riemann invariants are given by the
formulas (74). Then Eq. (69) reduces to

dm

dξ
= 4γ m, m ∝ exp(4γ ξ ), (78)

so the bore’s length can be estimated as

l ∼ (4γ )−1. (79)

Substitution of Eqs. (74) into Eq. (52) gives, according to the
standard definition L = 2π/k, the wavelength

L = π√
r3 − r1

=
√

2π√
(u− − u+)|u+ + 2u−| . (80)

Then the condition L � l can be written in the form

u− − u+ � 32π2γ 2

|u+ + 2u−| . (81)

On the axis u− = 0 we get −u+ � uc = 4
√

2πγ , and for
|u−| � uc we obtain

u− − u+ � u2
c

3|u+| ∼ γ 2

|u+| . (82)

Thus, the applicability region is separated from the line u+ =
u− by a narrow strip formed by the hyperbola boundary (81).
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FIG. 4. Numerical evolution of undular bores (blue solid lines) and the stationary asymptotic solution (70) (red dashed lines) at (a) t = 50,
(b) t = 100, (c) t = 2000, and (d) t = 3000. The parameters of the equations are equal to α = 0.2 and γ = 0.01 and the boundary conditions
are u− = −0.1 and u+ = −0.5.

In a similar way, in region 5, where u oscillates in the
positive interval 0 < ν2 � u � ν3, we have to use the for-
mulas (56) and (57) relating the Riemann invariants to the
physical parameters of the wave. We obtain the same for-
mulas (74) and (75) for the limiting values of the Riemann
invariants, but to average the viscosity term, we make the
replacement u = −2v + s1 and obtain again the same formula
(77).

If we take symmetrical boundary conditions in regions 1
and 5 that differ only by signs, then in both cases we get the
same function m = m(ξ ) [see Eq. (70)] and the same plots
of the Riemann invariants r1(ξ ), r2(ξ ), and r3(ξ ) shown in
Fig. 3. Their substitution into Eqs. (49) or (57) gives the
dependences νi = νi(ξ ), i = 1, 2, 3, 4, for the modulation pa-
rameters of the bores in regions 1 and 5, correspondingly.
These functions νi = νi(ξ ) substituted into Eq. (15) yield the
profiles of bores in these two regions shown in Fig. 4 by red
dashed lines. They are compared with numerical solutions of
the mKdVB equation for different times of evolution and quite
good agreement is found for large values of time, especially
for the positions and amplitudes of the leading solitons. In
agreement with the qualitative estimates of Ref. [26], the
leading soliton reaches its stationary state at the characteristic
time of order of magnitude of approximately γ −1. At the same
time, quite a slow convergence to the stationary profile is
observed at the small-amplitude tail of the dispersive shock.
The numerically found velocity of the shock agrees very well
with the analytical formula (62) for the asymptotic state. The

resulting undular bore wave structures for regions 1 and 5 are
shown in Figs. 5(a) and 5(b), respectively.

As was shown in Ref. [22], we cannot join the boundaries
u− > 0 and u+ < 0 by a single undular bore solution because
the mKdV equation is not genuinely nonlinear. In this case,
the wave structure must contain a kink solution as shown
in Fig. 2 for region 2 and for the symmetrical region 6. In
region 2, we have a decreasing kink joining the right boundary
u+ < 0 with the intermediate plateau

u∗ = −u+ − γ

3
√

α
> u−. (83)

This plateau is connected with the left boundary u− < u∗ by
the negative undular bore, whose profile can be found in the
same way as above by means of the replacement u+ �→ u∗. In
particular, velocities of the kink and the bore are equal to

Vkink = −2α(u2
∗ + u∗u+ + u2

+),

Vbore = −2α(u2
− + u−u∗ + u2

∗). (84)

For separation of these two constituents of the whole wave
structure in space, the difference

Vkink − Vbore = 2α(u− − u+)

(
u− − γ

3
√

α

)
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FIG. 5. Wave structures calculated numerically (blue solid lines) and analytically (red dashed lines) for α = 0.2, γ = 0.01, and the
evolution time t = 3000. The boundary conditions correspond to different regions in the diagram of Fig. 2: (a) region 1, u− = −0.1 and
u+ = −0.5; (b) region 5, u− = 0.1 and u+ = 0.5; (c) region 2, u− = 0.1 and u+ = −0.8; (d) region 6, u− = −0.1 and u+ = 0.8; (e) region
3, u− = 1.0 and u+ = −0.6; (f) region 7, u− = −1.0 and u+ = 0.6; (g) region 4, u− = 1.0 and u+ = 0.3; and (h) region 8, u− = −1.0 and
u+ = −0.3.
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must be positive. Hence, to realize such a structure the left
boundary must satisfy the additional condition

u− >
γ

3
√

α
. (85)

If this condition is not fulfilled, then a combined rarefaction
wave matched with a kink is formed (see the discussion of
such situations in Ref. [27]).

In region 6 with u− < 0 and u+ > 0 we get a structure with
a growing kink, so the intermediate plateau has the amplitude

u∗ = −u+ + γ

3
√

α
< u−, (86)

and such a structure is realized for

u− < − γ

3
√

α
. (87)

We compare analytical and numerical solutions for regions
2 and 6 in Figs. 5(c) and 5(d), respectively. Again, quite
satisfactory agreement is observed.

It is clear that when u− reaches the level u− = u∗, the
cnoidal bore disappears and the wave structure reduces to
a sole kink. After a further increase of u− we get into
region 3 where the left boundary u− is joined with the
plateau u∗ by a rarefaction wave (7). Its left edge propagates
with velocity V −

rw = −6αu2
− and its right edge propagates with

velocity V +
rw = −6αu2

∗, which must be smaller than the kink’s
velocity. This gives the condition

u+ < − 2γ

3
√

α
or 0 > u+ > − γ

6
√

α
(88)

for the realization of such a structure in region 3. A similar
structure in the symmetrical region 7 is realized for

u+ >
2γ

3
√

α
or 0 < u+ <

γ

6
√

α
. (89)

As one can see in Figs. 5(e) and 5(f), the analytical theory
agrees very well with the numerical solutions for these two
regions.

Finally, in regions 4 and 8 the boundary values u± have
the same signs, so they are connected by standard rarefac-
tion waves with negligible influence of the Burgers friction
[see Figs. 5(g) and 5(h)]. This completes the classification
of possible wave structures supported by different boundary
conditions in the theory of the mKdVB equation.

VI. WHITHAM EQUATIONS FOR CYLINDRICAL
AND SPHERICAL mKdV EQUATIONS

We obtained the Whitham modulation equations in a quite
general form (54) where the expression for the perturba-
tion term R in Eq. (33) was not specified. Therefore, this
universal form of the Whitham equations can be applied to
other problems of the dynamics of mKdV dispersive shock
waves. In particular, when we consider cylindrical or spherical
dispersive shock waves whose width is much smaller than
the radius of the whole wave structure, the curvature of the
shock can be treated as a small parameter of the theory and

Eq. (54) becomes applicable. Cylindrical or spherical mKdV
equations were derived, for example, in Ref. [37] and they can
be written in the form

ut − 6αu2u + uxxx = − d

2(t + t0)
u, (90)

where d = 1 or 2 for cylindrical or spherical geometry, re-
spectively. For a large enough time of evolution t0 � 1 the
perturbative right-hand side term is small, so the dispersive
shock wave solutions to this equation can be approximated by
periodic solutions of the standard mKdV equation with slowly
changing parameters, whose evolution is governed by Eq. (54)
with

〈R〉 = − d

2(t + t0)
k
∮

udu√
f (u)

,

〈uR〉 = − d

2(t + t0)
k
∮

u2du√
f (u)

. (91)

The integrals here can be expressed in terms of standard
Jacobi elliptic integrals of first, second, and third kinds, so we
arrive quite easily at the Whitham equations derived earlier
by different methods in Ref. [38] for cylindrical cases and in
Ref. [39] for spherical cases, respectively. Thus, the Whitham
equations (54) can find various applications besides consider-
ation of the effects of the small viscosity.

VII. CONCLUSION

The above theory confirms the general statement that
weak dissipative effects stabilize the expanding evolution of
dispersive shock waves, so after a long enough time, they
converge to stationary structures characterized by some finite
length, which is inversely proportional to the viscosity coef-
ficient. The appearance of the new parameter leads to some
limitations for the applicability of the Whitham method used
in the Gurevich-Pitaevskii approach to description of bores.
In particular, the condition that the size of the whole shock
is much greater than the typical wavelength inside the shock
demands that the jump between the boundary conditions is
large enough. Since the mKdV equation is not genuinely non-
linear, we get combined wave structures consisting of a kink
and a cnoidal bore or a rarefaction wave. Small viscosity leads
to modification of the kink solution found in Ref. [31] and
the condition that the two structural elements of a combined
structure propagate separately from each other also leads to
some limitations for boundary conditions. Although in the
case of small viscosity these restrictions are not essential, one
should keep in mind their existence in the practical application
of the theory.
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