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Statistical mechanical model for crack growth
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Analytic relations that describe crack growth are vital for modeling experiments and building a theoretical
understanding of fracture. Upon constructing an idealized model system for the crack and applying the principles
of statistical thermodynamics, it is possible to formulate the rate of thermally activated crack growth as a function
of load, but the result is analytically intractable. Here, an asymptotically correct theory is used to obtain analytic
approximations of the crack growth rate from the fundamental theoretical formulation. These crack growth
rate relations are compared to those that exist in the literature and are validated with respect to Monte Carlo
calculations and experiments. The success of this approach is encouraging for future modeling endeavors that
might consider more complicated fracture mechanisms, such as inhomogeneity or a reactive environment.
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I. INTRODUCTION

Fracture is a direct result of breaking atomic bonds, and it
is therefore critical to include microscopic physics in macro-
scopic models for crack growth. Though the fundamental
theory of fracture mechanics, formulated using continuum
thermodynamics [1], is quite successful, the theory cannot
explain why fracture occurs by relating it to atomic properties
[2]. This shortcoming prevents continuum fracture mechanics
models from addressing the significant impacts of the dis-
crete microstructure [3—6], thermal energy and kinetic effects
[7-10], chemical interaction [11-13], or unstable dynamic
propagation [14-17].

To accurately model and investigate these atomistic mech-
anisms, a substantial amount of work has been accomplished
over the past half century using both analytic models [18]
and fully atomistic simulations [19]. Starting with the model
of Thomson et al. [3], several existing models use a quasi-
one-dimensional discrete arrangement of particles to represent
crack faces, which are then treated mechanically [3—6]. Since
thermal energy and the related kinetic effects are important,
especially in the subcritical regime [20-22], these and other
models have been augmented by assuming an Arrhenius [23],
Eyring [24], or Kramers [25] rate [2,6,10-13,26-31]. Similar
models have been applied to interfaces [32-37]. To properly
include temperature effects and the associated kinetics, it
would be better to incorporate statistical thermodynamics in
the model from the start. Several models have used statistical
physics [38-42], some even modeling fracture as a phase
transition [43—45], but they do not compute the partition func-
tion necessary for statistical thermodynamics. Simulations
like molecular dynamics use a complete atomistic description
of fracture [46—49] and can even explicitly model chemical
reactions [50-52] or run concurrently in a multiscale approach
[53,54], but they lack analytic interpretability.
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Although considerable progress has been made in the
atomic scale modeling of crack growth, further progress is
necessary in the area of analytic model development. While
the principles of statistical thermodynamics have been utilized
to analytically model crack growth, they have not been rigor-
ously applied to the atomistic model systems that were only
treated mechanically [2-6,11]. Such a treatment, as accom-
plished here, is vital for incorporating the simultaneity of both
mechanical and thermal effects, especially in subcritical crack
growth regimes. Beginning from the definition of the crack
model system via the Hamiltonian, the partition function is
formulated. Analytic relations are obtained for the rate of
crack growth which are asymptotically valid for steep bonded
potentials ahead of the crack tip [55,56], and are numerically
verified using Monte Carlo calculations. Both the isometric
and isotensional thermodynamic ensembles are considered,
and the thermodynamic limit of large system size. This
model and its applications are distinctly different from cohe-
sive zone models [57-60], and unlike the model of Marder
[38,39], it does not support steady state crack growth. Ulti-
mately, an asymptotic relation for the subcritical crack growth
velocity is obtained,

bwy FAXY — Aut\ Rb?
v~ — exp| ——————)sinh [ — ), (1)
T kT 2kT

where b is the atom spacing, wy is the attempt frequency, Au¥
is the potential energy barrier to the transition state for break-
ing a bond, R is the energy release rate, k is the Boltzmann
constant, and 7 is the temperature. The key difference here be-
tween Eq. (1) and many past relations [9,10,12,13,26,27,29—
31]is an emergent Bell [61] term ¢/2*" similar to Marder [39],
where f = v REB is the force, E is the elastic modulus, and
Ax* is the transition state bond displacement. Equation (1)
is verified numerically and with respect to subcritical crack
growth experiments.
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FIG. 1. The crack model system. The statistical mechanical en-
semble is characterized by the number of repeat units behind the
crack tip N, the number ahead of and including the crack tip M,
either the (massless) end separation V = ¢ or force P, and the tem-
perature 7. With symmetry, the 2L system degrees of freedom (L =
N + M) are the L crack face separations g; and the L corresponding
momenta p;.

II. MODEL SYSTEM

The crack is represented by a discrete set of particles, con-
nected along the crack faces by bending elements and, ahead
of the crack tip, connected across the crack plane by bond
elements [3,11]. On either crack face, let there be N particles
behind the crack tip, and M particles ahead of and including
the crack tip, for L = N + M total particle pairs; see Fig. 1.
Assuming that the system remains symmetric about the crack
plane, the relevant degrees of freedom are the crack face sep-
arations ¢; and the corresponding momenta p; = mq;, where
m is the reduced mass. The Hamiltonian of the system is then

L 2
pA

Hp,q) =) — +U(q), 2
; 2m

where U (q) = Uy(q) + U;(q) is the system potential energy.
The system potential energy from bending is

L
c
Uo(@) =) 5@i2 = 2gi-1 + @), 3)
=

where c is the bending element stiffness. This term can be
thought of as representing the coupling to a linear elastic
bulk [11]. Note that V = ¢ is fixed when the end separation
V is prescribed (isometric), but not when the end force P is
prescribed (isotensional). The system potential energy from
stretching bonds is

L M

Uil = Y ulg) =Y ulg)), )

i=N+1 j=1

where u(q) is the potential energy function for a bond. Here
the Morse potential [62] is used, given by

u(q) = uo[l — e @2, (5)

where 1 is the bond energy, b is the equilibrium bond length,
and a is the Morse parameter. Note that this system resembles
some describing other physical phenomena, notably the
unzipping of macromolecules [63-74].

A. Isometric ensemble

The isometric ensemble partition function is given by

1
Q(N’ M7 V, T): h_L/dp/dq e—ﬁH(Pﬁq)’ (6)

where & is the Planck constant and 8 = 1/kT, where T is
the temperature and k is the Boltzmann constant [75]. Equa-
tion (6) can be decomposed as a product Q = QmomQcon,
where the momentum integral evaluates to

2mm\*?
mom N, M, T) = — , 7
Oom (N, M. T) ( o ) ™
and where the configuration integral is given by
Ocon(N,M,V,T) = qu e*ﬁU(q)_ 8)

Dependence on (N, M, V, T') is implicit in the following. The
Helmholtz free energy A and expected end force P are, respec-
tively, given by

A=—Ltmo p=94 ©)
B e VA

Applying transition state theory [76], if ¢* is the transition
state length of the crack tip bond, then the rate of breaking the
crack tip bond to advance the crack is given by

T
P | L Geon (10)
2rmpB Qcon

where the transition state configuration integral is

Qion = f dq (g1 — ") e . (1)

Here 6 is the Dirac § function, and the transition state location
g* is chosen to correspond to the maximum force for the
Morse potential [77], which is ¢* = b + In(2)/a.

B. Isotensional ensemble

The isotensional ensemble partition function is given by
Z = ZmomZcon, Where Ziom = Qmom and

Zeon(N,M,P, T) = / dv / dge P10 (12)

where I1 = U — PV is the system total potential energy. De-
pendence on (N, M, P, T) is implicit in the following. The
Gibbs free energy G and expected end position V are respec-
tively given by

G

1
G=——InZ, V=—-——. (13)
B opP
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TABLE I. Nondimensional variables for the crack model system
presented in Sec. II. The nondimensional transition state stretch and
Morse parameter are related via A¥ = 1 + In(2)/a.

Dimensional Nondimensional

Crack face separations qi si =q;/b
Bond lengths q; Aj = Sn4j
Bending stiffness c K = Bcb?
Bond energy U & = Buy

Morse parameter a a=ab

End separation Vv v=V/b
End force P p = BPb

Again applying transition state theory [76], the rate of break-
ing the crack tip bond to advance the crack is

kK = ! @ (14)
277m/3 Zcon ’

where the transition state configuration integral is

Zg:on = /dV/dq S(gn+1 — qi)e—ﬂH(V,q)‘ (15)

C. Thermodynamic limit

Generally, results in either the isometric or isotensional en-
sembles will differ, such as the expected mechanical response
or the rate of breaking the crack tip bond. Upon referenc-
ing other systems [75,78-81], it is reasonable to expect that
these differences will vanish as the system becomes large.
For example, the Legendre transformation is likely valid for
many repeat units both behind and ahead of the crack tip and
appreciable loads,

G~A—-PV forN,M> 1. (16)

This limit of large system size, in which the results of either
thermodynamic ensemble asymptotically become equivalent,
is referred to as the thermodynamic limit.

III. ASYMPTOTIC APPROACH

Since the configuration integrals in the previous sec-
tion cannot be evaluated with any ease, accurate asymptotic
approximations are now developed. These asymptotic re-
lations are entirely analytic and closed-form and therefore
maintain both efficiency and interpretability in contrast to
simulation or numerical integration approaches. Essentially,
the asymptotic approach approximates the statistical thermo-
dynamics of the full system by building upon an analytically
tractable reference system, where the approximation error
vanishes as the relevant potentials become steep [55,56]. To
begin, the variables for the crack model system are nondi-
mensionalized in Table I. Applying these nondimensional
variables to Eq. (3), the nondimensional potential energy from
bending the crack faces is given by

L
BUNS) = Y 5512 = 2511 + 510" (17)
(=2

Applying the set of nondimensional variables in Table I to
Egs. (4) and (5), the nondimensional potential energy from
stretching bonds ahead of and including the crack tip is given
by
M
BUI(A) = e[l — e W DR, (18)

j=1

In the following subsections, it becomes useful to split
Eq. (17) into two separate contributions, Uy = Uyy + Up;.
Crucially, this split allows the separation of the system po-
tential energy ahead of and including the crack tip (Uy; + U))
from the potential energy governing the reference system
(Uno)- Note that Uy is the potential energy function for the
discrete representation of a linear elastic slender beam in
bending, where fixing sy4+; = A and sy42 = X, would then
specify the boundary conditions. The contribution from bend-
ing the crack faces behind and including the crack tip is

N
K
BUn(s) = ) (5 = 25111 + si42)%, (19)
i=0

and the contribution from bending the crack faces ahead of the
crack tip is

M
BUn(A) = Zg(x,_z 2 +a)h (0)
=3

A. Isometric ensemble

The isometric configuration integral for the full system in
Eq. (8) can be rewritten as

Oeon(v) = / dh Qoeon(v, M) e PI® (21

where the configuration integral for the reference system is,
using Egs. (19)—(20), defined as

Q(),con(va )‘) = eiﬁUm(M / dSl et dSN €7ﬂU00(S). (22)

The reference system here is the statistical mechanical treat-
ment of the discrete representation of a linear elastic slender
beam with a fixed end displacement Av = v — 1. Choosing
the fixed bond stretches A effectively specifies the boundary
conditions (via A; and X,) and translates the potential energy
level. As shown in Appendix A 1, the integrals in Eq. (22) can
be computed analytically. The result is

[Qr)N Ly
QO,con(Ua A) = % ngT'H '-g—f~BUo i (23)

where H is the Hessian of BUy, with respect to the set of
variables {si, ..., sy}, which has the components

Hy = (60" — 8787 — 48" " +87""), (24
and where g and f are given by

g(vv )"lv )"2) = K(2U, -, O’ ceey Ov _)‘-17 4)‘11 - )"Z)Ts

F A1 ) = g[v2+x%+<2m —22)?] (25)
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The reference system configuration integral Qg con(v, ) is
now known analytically via Eqgs. (23)—(25), but the full sys-
tem configuration integral Qcon(v) in Eq. (21) still cannot be
computed analytically. Alternatively, the asymptotic approach
of Buche [55] is readily applicable to the form of Q.o (v) in
Eq. (21) and will produce an analytic approximation [55,56].
Assuming that the bonded potentials u constituting U are all
steep (¢ > 1), the configuration integral for the full system
may be asymptotically related to that for the reference system
as

Qcon(v) ~ e P (26)

Qo.con(v, x)]‘[ ,,(A :

where the bond stretches A are from minimizing U with
respect to {sy, ..., sy }. To approximate the full system (Qcon),
the asymptotic approach essentially combines the results of
the analytically solvable reference system (Qgcon) and the
mechanical treatment of the full system (minimizing BU).
The athermal rigid constraints (A) of the reference system are
replaced by asymptotically correct approximations for ther-
mal fluctuations encountered by the steep potentials (¢ > 1)
in the full system, provided by Laplace’s method [82,83]
about the potential energy minimum (1). In the limit that the
relevant potentials become infinitely steep (¢ — 00), these
thermal fluctuations become negligible and the full system
behaves as the reference system.

If AA=A(v)— A(l), then Eq. (9) is nondimensionalized
as

27)

con(1 IBAA
ﬂAA(v)=ln[Q ()] p(v) = —— i

Qcon(v) |’ v

which become asymptotic approximations when Eq. (26) is
utilized. Equation (10) can similarly be used to obtain an
asymptotic relation for k', where the asymptotic relation for
QC(m takes the same form as Eq. (26), with the following
changes. BU must be minimized with A; fixed at A*, generally
resulting in a different &, and the j = 1 frequency term in the
product must then be removed.

B. Isotensional ensemble

The isotensional configuration integral for the full system
in Eq. (12) can be rewritten as

Zeon(p) = / d) Zo.con(p, ) e PUID), (28)

where the configuration integral for the reference system is,
using Egs. (19)-(20) and BI1yy = BUy — pso, is

Zp.con(p A) = e P / dso -+ -dsy e PTw®, (29)

The reference system here is the statistical mechanical treat-
ment of the discrete representation of a linear elastic slender
beam with a fixed end force p. Choosing the fixed bond
stretches A effectively specifies the boundary conditions (via
A1 and X;) and translates the total potential energy level.
As shown in Appendix A 2, the integrals in Eq. (29) can be

computed analytically. The result is

27 )N+ 1 B X
ZO,con(Pv A) = /% eng‘H l.g—f—ﬂUm’ (30)
e

where H is the Hessian of B8I1y, with respect to the set of
variables {so, ..., sy}, which has the components

Hyy = 1c(68" — 58787 — 8382
+ 28788 4+ 28081 + sbm ), (1)

|m—n|
— 45!

and where g and f are given by
g(p, A1, A2) =k(p/k,0, ...

SO, k) = [?»2 + (2A1 —

L0, —=Ap, 4h — A)T,

(32)
).
Assuming that the bonded potentials u constituting U, are all
steep (¢ > 1), the configuration integral for the full system
may be asymptotically related to that for the reference system
as

eI (33)

Zeon(p) ~ 2y, con(Ps A') l—[ ”()» )

where the bond stretches A are from minimizing ATT with
respect to {so, ..., s.}. If AG = G(p) — G(0), then Eq. (13)
is nondimensionalized as

Zcon(o) _ _8,BAG
tn |:Zcon(v):|, U(p) B ap ’ (34)

which become asymptotic approximations when Eq. (33) is
utilized. Equation (14) can similarly be used to obtain an
asymptotic relation for k', where the asymptotic relation for

Z:  takes the same form as Eq. (33), with the follwing
changes. BIT must be minimized with A| fixed at A*, generally
resulting in a different A, and the j = 1 frequency term in the
product must then be removed.

BAG(p) =

C. Thermodynamic limit

In the thermodynamic limit of large system size, the results
of the asymptotic approach applied to either thermodynamic
ensemble should be asymptotically equivalent. To be clear,
two asymptotic limits are considered: steep potentials (¢ >> 1)
and a large system (N, M >> 1). For any finite (albeit large)
system size, it is true that increasing applied loads can eventu-
ally cause large-system approximations to become inaccurate
[81]. Therefore, the thermodynamic limit of large system size
considered here also includes the notion of comparably small
displacements or forces. For example, the nondimensional
displacement Av = v — 1 applied in the isometric ensemble
must be small compared to the nondimensional length N for
the large-system approximation of the mechanical response
p(v) to be accurate.

Applying the thermodynamic limit (N, M > 1) to the
asymptotic relations (¢ 3> 1) obtained in Sec. IIT A for the
isometric ensemble, as shown in Appendix B 1,

3 3
BAA() ~ 2—]\1;3(Av)2, () ~ ]7'2 Av.  (35)
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Applying the same limit to the relations in Sec. III B for the
isotensional ensemble, as shown in Appendix B 2,

3 3

N N
BAG(p) ~ == pPP—p, v(p)~1+—p  (36)
K 3k

Note that the asymptotic relations for p(v) and v(p) are equiv-
alent, and that the Legendre transformation from Eq. (16)
holds true, as expected:

BAG ~ BAA—pv forN,M > 1. (37)

Also, note that these results also match that of the mechan-
ically treated system under small applied loads. To arrive at
similar asymptotic relations for k', an additional approxima-
tion must be made. Specifically, the incremental transition
state stretch AA* = A* — 1 is assumed to be small. For the
Morse potential, the nondimensional Morse parameter o =
In(2)/AA* is then assumed to be relatively large. In the iso-
metric ensemble, the asymptotic relation is

K (v) ~ wo e—Asi-&-SKAUA)F/NZ’ (38)

where wo = ,/uj/m is the harmonic vibration frequency,
ie., the attempt frequency, and As* is the nondimen-
sional potential energy barrier to the transition state.
Detailed steps are shown in Appendix B. For the
specific case of the Morse potential, uj = 24%uy and
Ast =g/4. In the isotensional ensemble, the asymptotic
relation is

k/(p) ~ ;0_0 e—A8i+NpA)Li. (39)
T

Note that Eqgs. (38) and (39) are equivalent, as shown by
substituting in the asymptotic relations for p(v) or v(p) from
Egs. (35) and (36). Since these relations only depend on the
shape of the potential bottom and the location of the transition
state (bond break), they are generalizable to many differ-
ent potentials, including the ideal brittle potential [38,39].
Notably, these simplified asymptotic relations for £’ are analo-
gous to Bell’s model [61]. Equation (39) is of the form k'(f) o
ePIAY where f = NP is the effective force and Ax* = ¢* — b
is the effective distance to the transition state, which is the
form often attributed to Bell [84-87]. Alternatively, when
proporting the effective force f to the material stress [88], the
form of Eq. (39) matches the model of Zhurkov [8]. Finally,
Eq. (39) as a function of stress also bears a resemblance to
the model of Argon [89], which was formulated to capture
viscoplastic flow in glassy polymers [90-94].
The net rate of crack growth is defined as

k() = K (v) — K" (v), (40)

where the rate of reforming the bond behind the crack tip
k" is given by Eq. (10), after replacing gy with gy in the
transition state configuration integral Q%  in Eq. (11). In the
isometric ensemble (see Appendix B 1),

4N*
and in the isotensional ensemble (see Appendix B 2),

N2p2
7 ) . 42)

K

2
ket (v) ~ @0 At 43 AvAN N o [9K(AU) :|7 @1
b

WO _ At [
knet(p) ~ =" Ae*+NpAi sinh <
T

Note that Egs. (41) and (42) are again equivalent, as a result of
invoking the thermodynamic limit, verified via Egs. (35) and
(36). Also note that the net rates in Eqs. (41) and (42) contain
the same Bell term obtained previously for the forward rates
in Egs. (38) and (39). In certain cases, such as a vanishingly
small transition state displacement at a fixed nondimensional
bending stiffness (AA* — 0), the net rate in Eq. (42) is

approximated as
NZ p2
. 43
4k ) )

Through calculating the energy release rate R for the dis-
crete system, it is possible to relate the net rate of crack growth
k" to continuum theories for crack growth. In the thermody-
namic limit, the resulting linear asymptotic relation for p(v)
in Eq. (36) allows the compliance method to be utilized when
obtaining the energy release rate [95]. If ds = h?dN is the
differential increase in area as the crack advances, then the
energy release rate R is

K"(p) ~ % ¢~ ginh (

P23 (AV P29 (AV
R=——|—)=———). (44)
2 s\ P 202N\ P
The nondimensional energy release rate SRb? is then
2 9 A N2 2
R =2 2 (22 (45)
20N\ p 2K

It then becomes convenient to define the generalized force
f = NP = ~/2Rcb?, which appears in Eq. (42), and then de-
fine Ax* = bAA*. Combining Egs. (45) and f = NP, Eq. (42)
becomes

Axt — Au? RD?
ket ~ % exp (ka—T“) sinh (ﬁ) (46)

Note that multiplying the net rate of crack growth k™ by the
atomic spacing b gives the crack growth velocity, i.e., Eq. (1).
The only macroscopic parameters in Eq. (46) are the energy
release rate R and the temperature 7. The atomic parameters
in Eq. (46) are the attempt frequency wy, atomic spacing and
bond length b, atomic bending stiffness c, potential energy
barrier Au*, and transition state bond displacement Ax¥. As
such, Eq. (46) constitutes a useful physically based relation
for modeling subcritical crack growth experiments [96-98].
Equation (46) matches the form obtained by Marder [39]
for small Av. The atomic parameters in Eq. (46) could be
determined with electronic structure calculations, but it may
also be possible to calibrate a subset of the parameters using
experimental results to examine microscopic properties.

A simpler relation for the net rate of crack growth in
Eq. (46) is obtained by neglecting the Bell term, yielding

Aut Rb?
et ~ 20 exp <— —k; ) sinh <_2kT>' 47)
T

Forms of this relation, as well as equivalent forms, have been
obtained previously and successfully used in modeling sub-
critical crack growth experiments [9,10,12,13,26,27,29-31].
One key difference between Eq. (47) and past relations is
wop /7 instead of 2kT /h, though the former is correct. Observ-
able results from classical formulations cannot depend on the
Planck constant £, and its presence in the classical formulation
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of statistical thermodynamics is merely cosmetic and meant to
nondimensionalize partition functions [75,76]. Though a pref-
actor of kT /h appears when computing transition state theory
rates, h always factors out [76]. In any case, the more rigorous
approach demonstrated here leading to Eq. (46) or Eq. (47)
validates the general form of similar relations obtained previ-
ously. Further, the systematic set of simplifying assumptions
made in the process confirms the validity of these relations
in the subcritical regime. Finally, note that Eq. (47) bears a
striking resemblance to models for viscoplastic flow in some
polymers [86,99-104] and bulk metallic glasses [105-109].
This resemblance suggests that subcritical crack growth and
viscoplasticity could involve common mechanisms [31].

The net rate of crack growth is recast in terms of nondi-
mensional variables for proper parametric study. Since the
atomic bending stiffness included in the model represents
effects from the bulk material, the nondimensional bending
stiffness k may be considered a proxy for the nondimensional
modulus BEb®. After defining the nondimensional energy re-
lease rate E = BRL* = N?p? /2« and the reference rate kof =
(wo/m)e P2 Eq. (46) becomes

KU (E) ~ ket € V2E sinh (%) (48)
and Eq. (47) is similarly nondimensionalized as
K™ () ~ ket sinh (%) (49)

Note that while E and « have both microscopic and
macroscopic interpretations, AA* has only a microscopic in-
terpretation (transition state bond stretch increment).

IV. NUMERICAL RESULTS

The asymptotic approach of evaluating the crack model
system is now demonstrated. In either thermodynamic ensem-
ble, the rate of breaking the crack tip bond &’ is calculated as
a function of load using the asymptotic approach developed
in Sec. IIl. These calculations are repeated for increasing
nondimensional bond energy ¢ and compared with the results
of Monte Carlo calculations (details in Appendix C). The L,
norm is utilized to compute the relative error e between the
asymptotic and Monte Carlo approaches while varying the
nondimensional bond energy ¢. Since the scale of k" increases
many orders of magnitude while increasing &, the logarithm
of k' is considered when computing the relative error e rather
than k" directly. Afterwards, the rate of breaking the crack tip
bond k' and the net rate of crack growth k"' are computed
via the asymptotic approach while increasing the system size.
In both cases, the results are compared with the simplified
analytic relations obtained in the thermodynamic limit in
Sec. III C. The base parameters for the crack model system are
N=8,M=28, « =1 (which is AA* =1In2), & = 100, and
k = 100. All calculations were completed using the Python
package statMechCrack [110], which acknowledges support
from several other Python packages [111-113].

1011

108

10°

k' (v) /K (1)

102

10~1!

0 2 4 6 8 10

FIG. 2. The relative rate of breaking the crack tip bond as a func-
tion of the nondimensional end displacement, using the asymptotic
approach (solid) and Monte Carlo calculations (dotted), for varying
nondimensional bond energy ¢.

A. Isometric ensemble

In Fig. 2, the rate of breaking the crack tip bond k’'(v)
given by Eq. (10) is plotted relative to k'(1) as a function
of the nondimensional applied end displacement Av. The
configuration integrals in Eq. (10) are asymptotically approx-
imated in Sec. IIT A to analytically calculate k'(v). The Monte
Carlo approach was also used to calculate k'(v), as detailed
in Appendix C 1, and is additionally plotted in Fig. 2. Both
the asymptotic and Monte Carlo calculations were repeated
while increasing the nondimensional bond energy ¢, as shown
in Fig. 2. For lower values of ¢ (such as 10), the asymptotic ap-
proach tends to underestimate k’ significantly. As & increases
slightly (to 25), it appears to provide an excellent approxi-
mation, but this result is merely a coincidence of the curves
passing over one another. The is evident after ¢ increases more
(such as to 100), where the asymptotic approach then tends
to overestimate k’. When ¢ becomes large (such as 1000),
the asymptotic approach still overestimates k', but the gap
shrinks as ¢ grows. As ¢ — 0o, both the asymptotic and
Monte Carlo approaches of calculating k" begin to match
the asymptotic approach for k" calculated using the reference
system (A = 1).

To make a more quantitative evaluation of the asymptotic
approach of obtaining k’(v), the relative error e with respect
to the Monte Carlo approach is calculated,

I 0 k() ke ()P
S0 e (0)1 d

e(e) = (50)

where k,, is the result of the Monte Carlo calculations. As
shown in Fig. 4, the relative error e tends to decrease as
the nondimensional bond energy ¢ increases, apart from the
region where the two approaches happen to overlap. For large
values of ¢, the relative error steadily decreases at a log-log
slope appearing to near —1, which supports the theory that
the asymptotic approach becomes accurate for ¢ > 1.
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1071
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FIG. 3. The relative rate of breaking the crack tip bond as a func-
tion of the rescaled nondimensional end force, using the asymptotic
approach (solid) and Monte Carlo calculations (dotted), for varying
nondimensional bond energy €.

B. Isotensional ensemble

In Fig. 3, the rate of breaking the crack tip bond k'(p)
given by Eq. (14) is plotted relative to £'(0) as a function
of the rescaled nondimensional applied force N°p/3«. The
configuration integrals in Eq. (14) are asymptotically approx-
imated in Sec. III B to analytically calculate k’'(p). The Monte
Carlo approach was also used to calculate k'(p), as detailed
in Appendix C2, and is additionally plotted in Fig. 3. Both
the asymptotic and Monte Carlo calculations were repeated
while increasing the nondimensional bond energy ¢, as shown
in Fig. 3. For lower values of ¢ (such as 10), the asymp-
totic approach tends to underestimate k' significantly. As ¢
increases slightly (to 25), it appears to provide an excellent

100 T 171
—o— isometric
isotensional
~
W oqn—1 1
= 10 "
N
Q
\ "
10—2 I L1l
10* 102 10°

3

FIG. 4. The relative error ¢ when computing k" using the asymp-
totic approach, as a function of the nondimensional bond energy ¢,
in either thermodynamic ensemble.

4 —N,M =4 .’
10% 1 N,M =38 E
+:<<1 — N, M =16
C&‘; 103: —N,M:64 =
g L [--- N,M — o0 1
§ 102, B
2 B f
~
N
e 10° F |
100 | E
0 2 4 6 8 10
Av

FIG. 5. The rescaled relative rate of breaking the crack tip bond
as a function of the nondimensional end displacement, using the
asymptotic approach, for increasing system size.

approximation, but this result is merely a coincidence of the
curves passing over one another. This is evident after ¢ in-
creases more (such as to 100), where the asymptotic approach
then tends to overestimate k’. When & becomes large (such
as 1000), the asymptotic approach still overestimates k', but
the gap shrinks as ¢ grows. As ¢ — 00, both the asymptotic
and Monte Carlo approaches of calculating k" begin to match
the asymptotic approach for k" calculated using the reference
system (A = 1).

20 1n [k(p) /km(p)1Pdp
00 [k (p)1* dp

where k,, is the result of the Monte Carlo calculations. As
shown in Fig. 4, the relative error e tends to decrease as
the nondimensional bond energy ¢ increases, apart from the
region where the two approaches happen to overlap. For large
values of ¢, the relative error steadily decreases at a log-log
slope appearing to near —1, which supports the theory that
the asymptotic approach becomes accurate for € > 1.

e(e) = (51

C. Thermodynamic limit

The rescaled rate of breaking the crack tip bond is plotted
in Fig. 5 as a function of the nondimensional applied end dis-
placement Av, calculated using the asymptotic approach and
repeated as the system size (N, M) increases. The rescaling
of k'(v) in Fig. 5 corresponds to the simplified relation for
k’(v) obtained in the thermodynamic limit, given by Eq. (38)
or equivalently given by Eq. (39). Since obtaining these re-
lations for k’(v) involved making approximations based on
small AA¥, from here on the model uses AA¥ = 0.1 (which
is @ = 101n 2) in addition to previously incorporated assump-
tions (¢ > 1 and N, M > 1). As shown in Fig. 5, as the
system becomes large the rate of breaking the crack tip bond
k' approaches the simpler relation in Eq. (38). To reiterate,
Eq. (38) would not necessarily succeed if the crack tip bond
potential was not steep or if the displacement required to break
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FIG. 6. The rescaled relative rates of breaking the crack tip
(solid) and reforming behind the crack tip (dotted) as a function of the
nondimensional end displacement, calculated using the asymptotic
approach, for increasing system size.

the bond was not small. As the applied load becomes large, &’
predictably diverges from Eq. (38), even for large system sizes
[81]. Note that the same results in Fig. 5 were calculated in the
isotensional ensemble, but these curves exactly matched those
from the isometric ensemble. Though not apparent at the out-
set, this match could mean that certain results of the reference
system—when governed by purely harmonic potentials—can
be treated independent of the thermodynamic ensemble. This
effect is also somewhat evident in Fig. 4, where the perfor-
mance of the asymptotic approach becomes independent of
ensemble as ¢ increases.

The rescaled rate of breaking the crack tip bond k' is
plotted again in Fig. 6 along with the rate of reforming the
bond behind the crack tip k”. As the nondimensional applied
end displacement Av increases, the forward rate k’ eventually
dominates the reverse rate k”, producing a net rate of crack
growth k"' =k’ — k”. As the system size (N, M) increases,
this domination appears to diminsh, but this is simply a result
of the rescaling necessary to fit each curve in Fig. 6. As will be
demonstrated shortly, the net rate of crack growth does indeed
converge to a nontrivial curve as the system size becomes
large.

The relative net rate of crack growth k™" is plotted in Fig. 7
relative to the reference rate kyof = (wp /n)e*fm”? as a func-
tion of the nondimensional energy release rate & = N°p?/2«,
calculated using the asymptotic approach and repeated as
the system size (N, M) increases. Note that the black dashed
line represents Eq. (46), and the black dotted line represents
Eq. (47). Figure 7 shows that the net rate of crack growth
k" approaches the simplified relation given by Eq. (46) as
the system becomes large. In a similar way as before, this
asymptotic behavior will eventually no longer hold when the
applied load becomes large enough. For intermediate to large
nondimensional energy release rates E, the asymptotic ap-
proach for k™' will diverge from Eq. (46). This divergence
means that Eq. (46) is typically valid only for relatively small
energy release rates, i.e., subcritical crack growth, which is

1071 L

)/kref

—_
—
—
T

1072

knet(

1073 |

0.00 0.05 0.10 0.15

—_
—
—

FIG. 7. The relative net rate of crack growth as a function of the
nondimensional energy release rate, calculated using the asymptotic
approach, for increasing system size.

primarily due to the small bond stretch assumption necessary
to arive at Eq. (46). Figure 7 further shows that for nonzero
albeit small A)A¥, the Bell-like term differentiating Eq. (46)
from Eq. (47) contributes significantly to k"' and allows the
correct thermodynamic limit relation for k™ to be obtained.
It is then more accurate to use the relation for the net rate of
crack growth k™" in Eq. (46) than the the simpler relation in
Eq. (47) used previously [9,10,12,13,26,27,29-31].

D. Subcritical crack growth experiments

Equation (46) is now used to model subcritical crack
growth experiments from Wiederhorn and Bolz [114] involv-
ing soda-lime silicate glass in water at varying temperature.
A mode-I stress intensity factor K; = +/RE is applied, where
the modulus is E = 73 GPa [31]. The crack growth velocity is
given by the rate k™' multiplied by the length b, i.e., Eq. (1).
The attempt frequency wo = 3.3 x 10'*s~! is obtained from
the median wave number (1100 cm™!) of the Si-O-Si stretch-
ing mode in silicate glasses via infrared spectroscopy [115].
The bond length b= 1.6 A and crack tip bond transition
state energy Au* = 1.22 x 10712 J are from existing calibra-
tions for soda-lime silicate glass in water [31]. The transition
state bond displacement is then calibrated to be Axt = 0.04b,
which is realistic compared to reactive molecular dynamics
calculations that estimate Ax [116,117]. The calibration of
the transition state bond displacement Ax* to the experimental
data demonstrates how macroscopic experiments may be used
with this approach to examine microscopic properties. The
results are shown in Fig. 8, where the subcritical crack growth
velocities given by Eq. (1) provide reasonable predictions
of the experimentally measured velocities over the range of
applied stress intensity factors and several temperatures. Note
that Eq. (1) underestimates the stress intensity needed to reach
higher velocities, due to it not including the inhibiting effects
of finite water diffusion rates [31]. Also note that Eq. (1) over-
predicts the velocity for small stress intensity since it does not
account for the threshold effects within this material [31,118].
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FIG. 8. The crack growth velocity as a function of the stress
intensity factor, calculated using the simplified asymptotic relation
(solid), and the experimental measurements (circles) from SLS glass
in water [114], for increasing temperature.

V. CONCLUSION

The principles of statistical thermodynamics have been
applied to an idealized particle-based model of a crack under
an applied load. In both the isometric and isotensional en-
sembles, the partition function was formulated for the model
system to derive thermodynamic quantities, such as the free
energy, and the kinetic rate of breaking the crack tip bond. An
asymptotic approach was utilized to obtain analytic relations
for the rate of breaking the crack tip bond, valid in the limit
that the bond potentials ahead of and including the crack tip
are steep. These asymptotic relations were developed in either
thermodynamic ensemble, before being verified numerically
with respect to Monte Carlo calculations. Simplified analytic
relations were obtained and verified for the rate of breaking
the crack tip bond and the net rate of crack growth, valid in
the thermodynamic limit of large system size and the sub-
critical regime. The analytic relation for the net rate of crack
growth ultimately obtained here offers an effective, practical,
and physical method for modeling subcritical crack growth
experiments, which was explicitly demonstrated by modeling
subcritical crack growth in soda-lime silicate glass. In future
work, it would be useful to calculate the rate of breaking con-
secutive bonds ahead of the crack tip and model the subcritical
to critical crack growth transition. To account for different
regimes of subcritical crack growth, future work should also
consider generalizing the model system to include chemical
interactions at the crack tip. Finally, it could be important in
future work to include inhomgeneity in the system to model
start-stop behavior and related phenomena.
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APPENDIX A: REFERENCE SYSTEM CALCULATIONS

In Secs. III A and IIIB, the statistical thermodynamics
of the full model system are asymptotically approximated
in terms of the reference system. The reference system is
equivalent to the statistical mechanical treatment of the dis-
crete representation of a linear elastic slender beam with a
fixed end displacement (isometric) or end force (isotensional).
The configuration integral for this reference system can be
computed analytically in either thermodynamic ensemble, as
shown here.

1. Isometric ensemble

Here the integral in Eq. (22), defined as
I(v,A) = /dsl --dsy e—ﬁUoo(S)’ (A1)

will be computed analytically. Uy is given by Eq. (19), and
can be rewritten in the quadratic form

BUw(s)=3s" -H-s—g' s+ f, (A2)

where the Hessian H is given by Eq. (24), and g and f are
given by Eq. (25). The integral is now

l 7 T
I(v,A) = e*f/dsl coodsy e 28 HsTES (A3)

which takes the same form as the path integral in free-scalar
relativistic quantum field theory [119], from which we have
the exact result

27W L
I(v,A) = ,/% e28 Hihes (A4)
(&)

which leads directly to Qg con(v, A) in Eq. (23).

2. Isotensional ensemble

Here the integral in Eq. (29), defined as
I(p,r) = /dSO"'dSN e—ﬂnoo(s)7 (A5)

will be computed analytically. SI1og = BUyy — pso can be
rewritten in the quadratic form

BTlp(s) =1s" -H-s—g' s+ f, (A6)
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where the Hessian H is given by Eq. (31), and g and f are
given by Eq. (32). The integral is now

Lo
I(p,A)=e/ f dsg---dsy e 2% Hste's (A7)

which has the exact result

27 )N+ 1 _
Iy = ZL0 d”t)H 28 WS (A8)
c

which leads directly to Zy con(p, A) in Eq. (30).

APPENDIX B: THERMODYNAMIC LIMIT
CALCULATIONS

The analytic and asymptotically correct (for € >> 1) rela-
tions obtained in Sec. IIT A and Sec. III B are reconsidered in
the thermodynamic limit of large system size (N, M > 1) to
obtain the relations in Sec. III C. For the rate of breaking the
crack tip bond and the net rate of crack growth, additional
approximations are made when the incremental transition
state stretch is small (AL* < 1). Though the results in either
ensemble are equivalent due to the thermodynamic limit, the
analysis is repeated in both ensembles for completeness.

1. Isometric ensemble

As the system becomes large and the applied nondimen-
sional displacement Av remains comparably small, bond
stretching ahead of the crack tip becomes negligible ()ALj ~1).
In this case (¢ > 1 and N, M > 1), the asymptotic relation
for Qcon in Eq. (26) becomes

Qeon (V) ~ Qo.con(v, 1, 1>H ,,(1) (B1)

When computing SAA(v) using Eq. (27), the product term
above cancels, leaving only the reference system configura-
tion integral Qg con for A = A, = 1. Using Egs. (23)—(25), in
this case the reference system configuration integral is

(27T)N —IK v -
Qo.con(v, 1, 1) = y/ detH eI (BV /2N, (B2)

Using Eq. (27), the nondimensional relative Helmholtz free
energy and the nondimensional force have the asymptotic
relations, valid for e > 1 and N, M > 1,

BAAW) ~ S (M0P. po) ~ = Av. (B3)

v) ~ —(Av)7, v) ~ — Av,
2N E

which is Eq. (35). The rate of breaking the crack tip bond &’
is given by Eq. (10), where the transition state configuration
integral QCOn is asymptotically given by Eq. (26) with A; = A*.
For AA* « 1, in addition to the previously invoked conditions
(¢e>1 and N,M > 1), only the crack tip bond stretch is

nonnegligible and Q= can be asymptotically approximated
similar to Qo in Eq. (B1),

Q0.con(v, ¥, 1) ™2 H il (B4)

+
QCOH(U) //(1)

= Bu(rA*) — Bu(1). Equation (10) then yields

ﬂ e,Aai QO,con(v’ )\vi’ 1)
27 Qo,con(v, 1, 1) '

where wy = /u”(1)/m. When AA* is small, squares and
higher powers of AA¥ are negligible, so the reference system
transition state configuration integral, using Eqs. (23)—(25)
with A; = A¥ and A, = 1, becomes

[2m)N s
QO,Con(Uv )\,i, 1) ~ (de]tri-l e—3KAv(Av—2A}v)/2N3. (B6)

Combining Egs. (B2), (BS), and (B6), the rate of breaking the
crack tip bond has the asymptotic relation, valid for ¢ > 1,
N,M > 1,and AM* <« 1,

where Ag*

K (v) ~ (BS)

K (v) ~ ;0_08_Asi+3mumi/1v2’ (B7)
b4

which is Eq. (38). To compute the net rate of crack growth in
Eq. (40), first the reverse rate must be written using Eq. (10),
which is

k”(N,M) — Qcon(N B 1,M + 1) (BS)
27 m,B OQcon(N, M)

As the system becomes large, the rate of breaking the crack
tip bond is approximately the same as subsequently breaking
the next bond. The same holds for the rate of reforming the
bond behind the crack tip, so k"(N,M) ~k"(N +1,M — 1)
for N, M > 1, which then means

QN —1LM+1)  OF,(N.M)
Qcon(NaM) Qcon(N+ LM - 1).

Additionally, M — 1 ~ M for M > 1, so Eq. (40) can now be
approximated using Egs. (10), (B8), and (B9) as

(B9)

net QCOH(N) ( l l ) (BIO)
V2ZEmB\ QeonN)  Qeon(N+1) )"

The configuration integral is related to the Helmholtz free
energy A via Eq. (9). Using the asymptotic relations for SAA
in Eq. (35) under N > 1,

2
BANN) — BANN + 1) ~ g(ﬁ) ,

N2 (B11)
BA(N) + BA(N + 1) ~ 2BA(N),
which then allows Eq. (B10) to be rewritten as
i A 2
ket~ Qeon ) oy | A7) g
b4 Mﬂ Ocon(NV) 4N4

Looking back to Eq. (10), the terms outside the hyperbolic
sine amount to 2k’, where k' is given by Eq. (B7). Therefore
the net rate of crack growth has the asymptotic relation, valid
fore > 1,N,M > 1,and AL « 1,
et~ L0 At H3cAvAR N |:9/<(Av)2]’ (B13)
7 4N*4

which is Eq. (41).
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2. Isotensional ensemble

As the system becomes large and the applied nondimen-
sional force p remains comparably small, bond stretching
ahead of the crack tip becomes negligible (A ;i ~ 1). In this
case (¢ > 1 and N, M > 1), the asymptotic relation for Z,,
in Eq. (33) becomes

Zeon(P) ~ Zocon(p: 1. 1) H (B14)

ﬁu”(l)

When computing BAG(p) using Eq. (34), the product term
above cancels, leaving only the reference system configura-
tion integral Zy con for A; = A, = 1. Using Eqgs. (30)—(32), in
this case the reference system configuration integral is

ZO,con(p, 1, 1) = % €N3p2/6K+p.
€

Using Eq. (34), the nondimensional relative Helmholtz free
energy and the nondimensional force have the asymptotic
relations, valid fore > 1 and N, M > 1,

N? N?
BAG(p) ~ ——p* —p, v(p)~1+—p,
6k 3k

which is Eq. (36). The rate of breaking the crack tip bond &’
is given by Eq. (14), where the transition state configuration
integral Z]  is asymptotically given by Eq. (33) with A; = A*.
For AA* « 1, in addition to the previously invoked conditions
(¢e>1 and N.M >> 1), only the crack tip bond stretch is
nonnegligible and Z, Con can be asymptotically approximated
similar to Z,, in Eq. (B14),

(B15)

(B16)

i 7Asjf
Z5A(P) ~ Zocon(p, 1, H - (1 (B17)
where Ae* = Bu(A*) — Bu(1). Equation (14) then yields
v/ JAE
k/(p) ~ ﬂ e—Ag- 0,con(p )’ (BIS)
2w Zycon(p, 1, 1)
where wy = /u’(1)/m. When AA¥ is small, squares and

higher powers of AA* are negligible, so the reference system
transition state configuration integral, using Egs. (30)—(32)
with & = A% and A, = 1, becomes

(2 )N+ 2 16k G
Zocon(p. 1, 1)~y S NP0 (B19)

Combining Eqgs. (B15), (B18), and (B19), the rate of breaking
the crack tip bond has the asymptotic relation, valid for ¢ > 1,
N,M > 1,and AMF <K 1,

kK'(p) ~

which is Eq. (39). To compute the net rate of crack growth,
first the reverse rate must be written using Eq. (14), which is

W0 _AgtpNpALE
— e .

(B20)

1 Z: (N—
k//(N’ M) — COI’I(
2nmpB

1I,M+1)
Zen(N.M)

(B21)

As the system becomes large, the rate of breaking the crack
tip bond is approximately the same as subsequently breaking
the next bond. The same holds for the rate of reforming the

bond behind the crack tip, so k"(N,M) ~k"(N +1,M — 1)
for N, M > 1, which then means

ZEO"(N LM+ 1) ~ C°“ . (B22)
con(NaM) Zcon(N‘l'l’M_l)

Additionally, M — 1 ~ M for M > 1, so k"' can now be
approximated using Egs. (14), (B21), and (B22) as

(N, M)

(N) ( 1 1 )

knet C()I'l _ . B23

VB \Zn®™)  ZemviD) P

The configuration integral is related to the Gibbs free energy

G via Eq. (13). Using the asymptotic relations for SAG in
Eq. (36) under N > 1,

N2p2
G(N)—BG(N +1) ~ ,
BG(N) — BG(N + 1) P (B24)
BG(N)+ BG(N + 1) ~2BG(N),
which then allows Eq. (B23) to be rewritten as
N N2 2
et ~ Zon M) o (NP (B25)
erﬁ Zeon(N) 4k

Looking back to Eq. (14), the terms outside the hyperbolic
sine amount to 2k’, where k' is given by Eq. (B20). Therefore,
the net rate of crack growth has the asymptotic relation, valid
fore > 1, N,M > 1,and AM* < 1,
N2 p2
4k >’

knet @ e—As¢+NpAﬂ sinh (
APPENDIX C: MONTE CARLO CALCULATIONS

(B26)
b4

which is Eq. (42).

Metropolis-Hastings Markov chain Monte Carlo calcula-
tions [120] were performed [110] to verify the results (shown
in Sec. IV) of the asymptotic approach. Any ensemble average
involved with this Monte Carlo approach can only calculate
free energies and transition state theory reaction rates relative
to a reference value. Since all quantities of interest can be cal-
culated using only configurational partition functions, these
Monte Carlo calculations were mass-independent and consid-
ered only configurational ensemble averages. In each case, a
specialized ensemble average involving only the degrees of
freedom ahead of the crack tip was utilized, which is exact
and allows for greater efficiency.

1. Isometric ensemble

The isometric ensemble configurational integral from
Eq. (21) can be rewriten in terms of the Helmholtz free energy
of the reference system using Eq. (9) as

Ocon(v) = /d)» e PA.L) ,—BUI) (C1)

Scaling by the configuration integral at v = 1 yields
Ocon(v) [ d e PAo:X) g=pUID)
Ocon(1) [ dx e=PALd) =BUIG)
[ d e PrAo@d) g=pA.G)
T JdrefAm

(C2)
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where AAg(v,A) =Ag(v, L) —Ap(1,L) 1is the relative
Helmholtz free energy of the reference system, and where
A A)=Ao(1,A)+U;(A) is a convenient free energy.
Defining the specialized ensemble average

@), = fd)» e‘ﬁA*()‘)qﬁ()‘)
T fd)» e BA) 7

Eq. (27) is then used to write the relative nondimensional
Helmholtz free energy of the full system as

(C3)

BAA(v) = — In(e P20y, (C4)
Computing d/dv then yields the nondimensional force
p() = 44 (pg e Fih),, (C5)

where py = 0BAAp/dv is the nondimensional force of the
reference system in the isometric ensemble. Equation (9) is
used to rewrite Eq. (10) as

k/(l)) — ngn(v) Qcon(l) — e,ﬁAAi(v)eﬁAA(v)
K1) Qfn(1) Qeon(v) ’

where AA*(v) = A*(v) — A*(1, 1) is the relative Helmholtz
free energy of the full system with the crack tip bond fixed at
its transition state. The relative rate of breaking the crack tip
bond is then

(C6)

K(v) (e P
k(1) (e Fdd),’

(C7)

where the special transition state ensemble average (¢)* uses
Af = A,|;,—: and integrates over {A, ... Ay}

2. Isotensional ensemble

The isotensional ensemble configurational integral from
Eq. (28) can be rewritten in terms of the Gibbs free energy
of the reference system using Eq. (13) as

Zeon(p) = /d)\ e_ﬂGO(p’)‘) e_ﬁUl (X)' (C8)

Scaling by the configuration integral at p = 0 yields
Zeon(p) [ dh e7 PGP g=PUIX)
Zeon(0) B fdk e—BGo(01) p—BUI(X)
[ dp e PAGPA) p=pG.)
[ dx ePGC.3) :

where AGy(p, A) = Go(p, A) — Go(0, L) is the relative Gibbs
free energy of the reference system, and where G,(A) =
Go(0,A) + U;(X) is a convenient free energy. Defining the
specialized ensemble average

[ dxr e BG® g()

0= am

Eq. (34) is then used to write the relative nondimensional
Gibbs free energy of the full system as

BAG(p) = —In(e PA%),.

(€9

(C10)

(C11)

Computing —d/d p then yields the nondimensional end sepa-
ration

ﬁAG( —/3AGO>*

v(p)=e Vo € s (C12)

where vy = —dBAGy/dp is the nondimensional end sepa-
ration of the reference system in the isotensional ensemble.
Equation (13) is used to rewrite Eq. (14) as

k/(P) — Zcion(l’) Zcon(o) — e_ﬂA(;i(p)eﬁAG(p)
k(0)  Z&En(0) Zoon(p) ’

where AG*(p) = G*(p) — G¥(0, 1) is the relative Gibbs free
energy of the full system with the crack tip bond fixed at its
transition state. The relative rate of breaking the crack tip bond
is then

(C13)

K(p) _ (e P2%)]
K(O0) ~ (era),

(C14)

where the special transition state ensemble average (¢)* uses
G: = G,|;,=;: and integrates over {5, ... Ay}
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