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Energy dissipation of a sphere rolling up a granular slope:
Slip and deformation of the granular surface
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We experimentally investigate the dynamics of a sphere rolling up a granular slope. During the rolling-up
motion, the sphere experiences slipping and penetration (groove formation) on the surface of the granular layer.
The former relates to the stuck motion of the rolling sphere, and the latter causes energy dissipation due to
the deformation of the granular surface. To characterize these phenomena, we measured the motion of a sphere
rolling up a granular slope of angle α. The initial velocity v0, initial angular velocity ω0, angle of slope α, and
density of the sphere ρs were varied. As a result, the penetration depth can be scaled solely by the density ratio
between the sphere and granular layer. By considering the rotational equation of motion, we estimate the friction
due to the slips. Besides, by considering energy conservation, we define and estimate the friction due to groove
formation. Moreover, the translational friction is proportional to the penetration depth. Using these results, we
can quantitatively predict the sphere’s motion including stuck behavior.

DOI: 10.1103/PhysRevE.109.014903

I. INTRODUCTION

In general, granular bed is so deformable that various phe-
nomena such as impact cratering [1] and wedge formation by
plowing [2] can be induced. Granular deformability enables
us to draw even sand art [3]. We focus on a certain type of
deformation and related frictional phenomenon occurring on
the granular surface. Specifically, on loose sand surfaces, ve-
hicles might be stuck by the wheels spinning out. Preventing
such stuck behavior is a key of efficient vehicle design. The
wheel-stuck phenomena can induce severe malfunction of the
planetary explorator as well. For example, the Mars rover,
Spirit, was stuck on the surface of Mars. After that, Spirit
could not continue the exploration of the Martian environment
[4]. Efficient vehicle design is the main topic in the field
of terramechanics research. Particularly, the slip ratio of the
rover’s wheel that depends on the shape and driving conditions
of the rover has been studied extensively [5,6]. The principal
goal of these terramechanics researches is developing high-
performance rovers. Thus, the specific geometry and setup of
the rover have been studied.

However, a fundamental understanding of the relationship
between a granular surface and a simple object (such as a
sphere) has not been sufficient. Investigation of such a fun-
damental relation could also relate to the ecology of antlions
that use the stuck phenomena to prey on ants [7,8]. It would
also relate to groove formation on planetary granular surfaces.
For example, traces of boulder falls on the regolith layer have
been found [9,10]. To discuss the mechanics of such boulder-
fall traces, the interaction between a granular surface and a
macroscopic object must be revealed. Namely, while the setup
we consider—rolling sphere on a granular slope—is quite
simple, it relates to various phenomena such as vehicle de-
sign (engineering), ecology of antlions, and planetary surface
processes.

For a proper understanding of the interaction between
a solid object and a granular surface, frictional property
is the most important factor. Since granular frictional be-
haviors are quite diverse and complex, various efforts have
been made to reveal the constitutive law of granular friction
(e.g., Refs. [11–13]). Regarding the interaction between gran-
ular matter and objects, various friction-related phenomena
have also been investigated (e.g., friction during plowing [2],
penetration [14], and withdrawing [15]). Through these stud-
ies, our understanding of granular friction has been developed.
However, these researches have not analyzed the combination
of translational and rotational friction.

In addition, some researchers examined frictional drag
force exerting on an intruder in a granular bed [16–19]. These
researches clarified the friction (drag force) of translational
and rolling motion. However, they focused on the drag force
within a bulk granular bed. Thus, the details of drag force ex-
erting on an object (sphere) rolling on a granular free surface
have not been revealed by these studies.

Some experiments rolling a sphere on a granular sur-
face have been carried out. For example, the dynamics of a
sphere rolling down on an inclined rough surface on which
grains were glued has been examined [20–22]. Measurement
of the friction coefficient has also been performed for the
sphere rolling down on a free granular surface. According to
Ref. [23], the friction coefficient characterizing energy dissi-
pation is mainly dependent on the sphere’s density and almost
independent of the motion velocity. This research revealed
that the energy dissipation is mainly caused by the sinking
of the sphere object. However, a quantitative evaluation of
energy dissipation due to the sinking and slipping during
the motion has not been carried out. When a basketball or
a medicine ball rolls on the granular surface, the friction
coefficient characterizing the rolling resistance was estimated
by experiments and numerical simulations [24]. However, this
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FIG. 1. Experimental setup. By rolling down the slope of the rail
made of aluminium, the sphere obtains initial translational velocity
v0 and angular velocity ω0 when it enters the granular slope at X = 0.
The sphere rolls up the granular slope from t = 0 to t = tstop (and
X = L). The X axis is defined along the slope surface. The slope
angle is varied from α � 0◦ to 20◦.

research was conducted under the no-slip situation, so the
stuck phenomenon could not be captured. Recently, Texier
et al. studied the motion of a sphere rolling down on an
inclined granular surface [25]. When a sphere was placed
on a granular slope, the sphere’s behavior depended on the
slope angle and density ratio between the sphere and granular
matter. They mainly focused on the accelerative motion of the
sphere. However, the deceleration of the sphere rolling up a
granular slope has not been studied. While the motivation and
setup of this study are quite simple, any systematic experiment
on the motion of the sphere rolling up a granular slope has not
been performed.

Here, we experimentally examine the sphere rolling up a
free granular slope to characterize the decelerative motion
and to quantify energy dissipation caused by slip motion and
groove deformation. To simply discuss energy conservation,
rolling-up motion without external driving force is investi-
gated. Although this setup is different from the actual wheel
driving situation, the stuck phenomenon, which is character-
ized by sphere spinning without translational motion, can be
mimicked by this simple setup. Using this setup, we charac-
terize the passive (without driving force) stuck motion. We
distinguish the friction due to the slipping and shallow sink-
ing (groove formation) of the sphere. And finally, the form
to predict rolling-up dynamics is obtained based on energy
conservation.

In the next section, the experimental setup, parameters, and
other conditions are described. Then, the experimental results
(dynamics of the sphere rolling up the slope) are presented in
Sec. III and analyzed in Sec. IV. After discussing the physical
meaning of the obtained results in Sec. V, the conclusion is
provided in Sec. VI.

II. EXPERIMENT

To measure the dynamics of a sphere rolling up a granular
slope, we build an experimental apparatus as schematically
shown in Fig. 1. A sphere is released at a certain height
(160, 180, 200, or 215 mm from the base level) on the rail
made of aluminum (rail width: 10 mm). The spheres used in
this experiment are made of polyethylene, polyacetal, glass,
alumina ceramic, and stainless steel. All these spheres have an

identical radius, R = 6.35 mm. Their densities are ρs = 930,
1400, 2600, 3900, and 7900 kg/m3, respectively. After rolling
down/up the rail, the sphere enters into a glass-beads layer at
X = 0 at time t = 0. The X axis is taken along the surface of
the granular layer. The inclination angle α is constant in the
region of X � −80 mm. The sphere enters the granular layer
with an initial translational velocity v0(= dX/dt at t = 0)
and initial angular velocity ω0. Typical diameter of the glass
beads used in this experiment is 0.8 mm (770 µm − 910 µm,
AS-One, BZ-08) and the thickness of the granular layer is
50 mm. Granular bulk density in this experiment is estimated
as ρg = 1560 ± 20 kg/m3 which corresponds to the pack-
ing fraction of ϕ = 0.64 ± 0.01. The inclination angle of the
granular slope α is varied as α � 0◦, 5◦, 10◦, 15◦, and 20◦. By
varying α, the effect of gravity on the motion of the sphere
changes. The effect of α on translational and rotational slip
motions has not been revealed in previous studies. To predict
the rolling deceleration under various α conditions, systematic
experiments are necessary. Through the systematic experi-
ments conducted in this study, the degree of stuck motion can
be characterized.

By varying the releasing position of the sphere, v0 (and
ω0) can be controlled. Experimental runs with identical con-
ditions are repeated five times to check the reproducibility.
Before each experimental run, the granular layer is completely
refreshed to ensure the homogeneously flat initial condition.
In specific, we remove all glass beads from the box after
each experimental run and pour them again. Then, the flat
surface is maintained. The mass of glass beads in the box
is 1.68 ± 0.02 kg, resulting in ϕ = 0.64 ± 0.01. The dy-
namics of the sphere’s motion during the rolling-up process
was captured by a high-speed camera (Omron Sentech, STC-
MBS163U3V) with 200 fps and 0.21 mm/pixel resolution
(image size: 1080 × 1440 pixels). From the acquired images,
we measure the instantaneous position and rolling posture of
the sphere, the maximum travel distance L, and penetration
depth δ.

III. RESULTS

Figure 2 shows the images of the sphere rolling up a gran-
ular slope (actual movies can be found in the Supplemental
Material [26]). By detecting the center of the moving sphere,
kinematic data (instantaneous centroid position of the sphere)
can be measured. The precise value of the slope angle α

is also measured by the sphere’s motion. Specifically, α is
measured by the slope of the fitting line of positions of the
sphere’s motion (in the range of X < 0). The maximum travel
distance L is defined as the distance between X = 0 and the
position at which the sphere’s translational velocity becomes
zero. The penetration depth δ is defined by the vertical sinking
distance at the final state. We also measure the dynamics of the
rolling motion of the sphere. The half of the sphere is colored
as shown in Fig. 3. The rolling posture θ (θ = 0 at t = 0)
of the colored hemisphere is measured with a resolution of
0.017 rad. This measurement resolution is smaller than other
error factors. By simply differentiate θ (t ) data, we measure
the angular velocity ω = dθ/dt .

When the stainless steel sphere enters the granular layer,
it shows significant penetration. The resultant prominent
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FIG. 2. The acquired images of the sphere’s motions.
(a) Polyethylene sphere case: α = 10.0◦, v0 = 0.52 m/s,
L = 6.0 cm, and δ = 1.01 mm. (b) Glass sphere case: α = 9.72◦,
v0 = 0.43 m/s, L = 4.6 cm, and δ = 3.68 mm. (c) Stainless
steel sphere case: α = 9.60◦, v0 = 0.53 m/s, L = 4.0 cm, and
δ = 11.7 mm. Yellow circles indicate the circular components
identified by the image analysis at t = 0 and t = tstop. The green
dots indicate the centroid position of the sphere motion every 25 ms.

splashing prevents us from the precise identification of the
sphere’s position as shown Fig. 2(c). Therefore, we cannot
analyze the time-resolved dynamics for the stainless steel
sphere. In the dynamic analysis, we use the data except for
the stainless steel sphere.

A. Penetration depth

First, we characterize the penetration depth of the sphere.
By the image analysis of the sphere’s motion, final penetration
depth δ can be extracted even for the stainless steel sphere

FIG. 3. The snapshot images of polyethylene sphere rolling up a
slope of α � 20◦. The hemispherical part of the sphere is colored in
red to measure the rolling posture. The temporal difference between
panels (a) and (b) is 5 ms.

FIG. 4. The relation between penetration depth δ and inclination
angle α. Error bars indicate the standard deviation of various initial
velocity cases and five times repeated experimental runs. One can
confirm that δ does not show clear dependence on α. The v0 depen-
dence is also limited in the range of error bars. The penetration depth
mainly depends on the density ratio ρs/ρg.

case (as long as the sphere can be detected in the image). The
measured δ values for various spheres are plotted in Fig. 4.
As seen in Fig. 4, δ value is almost independent of α (and
v0) at least in the range of our experimental conditions. The
variation of δ seems to originate from the density difference.
Actually, density-dependent penetration depth of a sphere
into a granular layer has been investigated in previous works
[25,27]. In these studies, the penetration depth of a sphere
into a horizontal or inclined granular surface with zero impact
velocity was systematically measured. They experimentally
found that δ was scaled by the density ratio between sphere
and granular layer, ρs/ρg. Specifically, they proposed a scaling
relation,

δ

R
= Cρ

(
ρs

ρg

)3/4

, (1)

where Cρ is a dimensionless constant. The value of Cρ was
estimated as 0.51 for the penetration into a horizontal gran-
ular surface [27] while Cρ = 0.61 was obtained when the
sphere was rolling down the granular slope [25]. To check
the applicability of this scaling [Eq. (1)] to the case of sphere
rolling up a granular slope, the relation between δ/R and
ρs/ρg obtained in this study is plotted in Fig. 5. As expected,
the data obtained in this experiment follows the scaling of
Eq. (1) with Cρ = 0.46. The data agrees well with the scaling
relation. Therefore, we consider that the vertical penetration
depth is independent of the surface inclination angle α and
the motion in X direction. Although this δ behavior is natural,
how this δ scaling affects the entire rolling-up motion is not a
trivial problem. Thus, we carefully analyze translational and
rotational motions as well.

B. Translational motion

Next, we analyze the translational motion of the sphere
rolling up a granular slope. In Fig. 6, the instantaneous po-
sition in X direction, X (t ), for (a) polyethylene sphere and
(b) glass sphere are displayed. Note that X (t ) of the stain-
less steel spheres cannot be measured in many cases due
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FIG. 5. The double logarithm plot of δ/R vs ρs/ρg. The solid line
indicates the scaling relation [Eq. (1)] with Cρ = 0.46. The value of
Cρ is computed by the least-square fitting. Error bars indicate the
standard deviation of all the same ρs/ρg data (with various v0 and α

cases).

to the deep penetration. Therefore, we analyze the data of
polyethylene, polyacetal, glass, and alumina ceramic spheres
in the following analysis. And, the data of polyethylene and
glass are mainly plotted as representative examples. Although
the data of polyacetal and alumina ceramic spheres are not
shown in Fig. 6, they also show the similar tendency. As
clearly seen in Figs. 6(a) and 6(b), X (t ) seems to approach the
asymptotic value (maximum travel distance) L. Obviously, L
is a decreasing function of inclination angle α.

To characterize the deceleration dynamics, instantaneous
velocity vX (t ) is computed by differentiating X (t ) data. Typ-
ical examples of the vX (t ) data are shown in Figs. 7(a) and
7(b). As observed in Figs. 7(a) and 7(b), constant decelera-
tion can be confirmed both in polyethylene sphere and glass
sphere. From the least-square fitting of these data to the lin-
ear function, we estimate the average acceleration aX . The
linear trend in vX (t ) behavior can be observed also in all
other experimental data. Therefore, we simply assume aX is
constant during the rolling-up process. Actually, more or less
similar constant-acceleration behavior was confirmed also in
the rolling down experiment [25]. As far as the penetration
depth is shallow, the constant acceleration/deceleration seems
to be a reasonable approximation to analyze the sphere’s mo-
tion on the granular slope. However, physical understanding
of the constant aX has not been provided so far and the
origin of this constant aX is still unknown. Although the
microscopic (grain-scale) origin of the constant aX cannot be
easily answered, it can be phenomenologically understood on
a macroscopic scale. The constant aX implies that the force
exerting on the sphere is constant. To consider the specific
energy balance that determines the constant aX value, we
discuss on friction in Sec. IV.

C. Rolling motion

Finally, we analyze the rolling motion. In Figs. 6(c) and
6(d), instantaneous rolling posture θ (t ) is displayed. Here, the
posture θ (t ) indicates the inclination of boundary (shown in
Fig. 3) driven by rotation in clockwise direction. To character-
ize the deceleration dynamics of rotation, instantaneous ω(t )
is computed by differentiating θ (t ) data. Typical examples of
ω(t ) are shown in Figs. 7(c) and 7(d). From the least-square

fitting of these data to the linear function (from t = 0 to tstop),
we estimate the average angular acceleration ω̇, where tstop

is time at which vX = 0. Similar to the translational motion,
constant ω̇ tendency can be confirmed in all experimental
data.

By careful inspection of the measured rolling-up movies,
we realize that the translational and rolling motions do not
halt simultaneously (see the movies in the Supplemental Ma-
terial [26]). This behavior can be clearly confirmed also in
Figs. 7(c) and 7(d). In some cases, rolling motion lasts longer
than translational motion. We define this behavior as a stuck
phenomenon. Indeed, ωstop = ω(tstop) is not zero in Fig. 7(d).
To clearly show this trend, ωstop/ω0 is measured and plotted
in Fig. 8. One can confirm that ωstop/ω0 shows an increasing
trend with α. We consider ωstop/ω0 is an indicator character-
izing the degree of stuck phenomenon.

According to Ref. [28], when light cylinders rolled on
a flat granular bed, the cylinders tended to roll backwards
before they completely stopped. In general, translational and
rolling motions on granular surfaces do not halt simultane-
ously. In this experiment, we also observe a time lag between
translational and rotational cessations. Both the positive and
negative ωstop/ω0 can be confirmed. The former indicates
stuck phenomenon and the latter corresponds to the rolling
back motion. To understand these peculiar behaviors, en-
ergy dissipation due to friction is considered in the next
section.

IV. ANALYSIS

To quantitatively characterize the observed behaviors, we
consider two types of energy dissipation models: (i) energy
dissipation by granular deformation during translational mo-
tion and (ii) energy dissipation due to the slipping friction
during rolling motion.

A. Energy dissipation due to deformation of the granular layer

To evaluate energy dissipation due to granular deformation
by translational motion of the sphere, energy balance should
be considered. Here, we consider a simple energy conser-
vation law between two states: X = 0 and L. The energy
conservation can be written as

1
2 Mv2

0 = Mg(L sin α − δ) + Fd L, (2)

where the first term of the right-hand side represents the
potential energy. To balance the energy budget, the general
dissipative term is introduced in the second term of the right-
hand side. For the energy dissipation, we simply assume a
constant dissipative force Fd . Moreover, Fd can be expressed
by the form

Fd = μdMgcos α, (3)

with an effective friction coefficient μd. For the sake of sim-
plicity, we assume μd is constant in this study. Note that this
μd includes the energy dissipation effects such as deformation
of the granular surface.
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FIG. 6. [(a), (b)] The translational X position and [(c), (d)] the rotational posture θ of the sphere rolling up granular slopes are shown as
functions of time. Panels (a) and (c) correspond to polyethylene sphere data and panels (b) and (d) correspond to glass sphere data. The initial
velocity for all data shown in this plot is v0 � 0.45 m/s.

From Eqs. (2) and (3), a simple form to estimate the maxi-
mum travel distance L can be obtained as

L = v2
0 + 2gδ

2g(sin α + μd cos α)
. (4)

Figure 9 shows the experimental result of the relation be-
tween L and v2

0 for polyethylene and glass spheres at α � 5◦
and 10◦. As can be seen, data are consistent with Eq. (4). Solid

lines in Fig. 9 indicate the fitting to Eq. (4). In the fitting,
Eq. (1) is substituted into Eq. (4). Then, the intercept of the
fitting line is fixed [(v2

0, L) = (−2gδ, 0)]. The linear relation
between L and v2

0 supports that the sole fitting parameter in
this energy conservation equation, μd, can be regarded as a
constant that is independent of v0 (and ω0). This linear trend
is confirmed also in all other experimental results. From the
fitting of all L(v2

0 ) data (with various α and ρs cases), we
compute μd values. The obtained relation between μd and α

is shown in Fig. 10(a). μd is an almost constant value on α.

FIG. 7. [(a), (b)] The translational velocity vX as a function of time t at α � 15◦ [(a) polyethylene sphere and (b) glass sphere]. By the
least-square fitting to the linear deceleration [from t = 0 to the stopping time tstop at which vX (tstop) = 0], almost constant deceleration aX

can be obtained. [(c), (d)] The angular velocity ω(t ) as a function of time t at α � 15◦ [(c) polyethylene sphere and (d) glass sphere]. By the
least-square fitting to the linear deceleration (from t = 0 to the stopping time tstop), almost constant deceleration ω̇ can be obtained.
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FIG. 8. Measured ωstop/ω0 is plotted as a function of slope angle
α. Error bars indicate the standard deviation of the data with various
v0 cases. ωstop/ω0 < 0 means the sphere’s rotation originating from
the backward translational motion after rotational cessation.

B. Energy dissipation due to the rolling motion

To evaluate dissipation by slipping, a simple rotational
equation of motion is considered,

Iω̇ = −RμsMgcos α, (5)

where I = (2/5)MR2 is the moment of inertia of the homoge-
neous sphere of mass M and radius R, and μs is the slipping
friction coefficient. Namely, we assume that the deceleration
of the rolling motion can be modeled by the simple slipping
torque characterized by the constant friction coefficient μs.
Then, the value of μs can be computed by Eq. (5) and mea-
sured ω̇ (other parameters are known). The obtained relation
between μs and α is shown in Fig. 10(b) and the relation
between μs and ρs/ρg is shown in the inset of Fig. 10(b).
It seems that μs is independent of α and ρs/ρg. From the
obtained data, typical value of μs is computed as μs =
0.26 ± 0.04.

V. DISCUSSION

In Fig. 10(a), we can confirm μd is an increasing function
of ρs/ρg. This tendency is similar to the relation between δ/R
and ρs/ρg shown in Fig. 5. As a result, we find a proportional
relation,

μd = Cd
δ

R
, (6)

where Cd = 0.49 is a fitting parameter (Fig. 11). Since δ/R
is scaled by (ρs/ρg)3/4 [Eq. (1)], this relation is equivalent to
μd ∼ (ρs/ρg)3/4 shown in the inset of Fig. 11. In general, drag
force can be proportional to the contacting or cross-sectional
area of the moving object. For example, Pacheco-Vázquez
and Ruiz-Suárez revealed the linear relation between the drag
force of an intruder into a granular medium and a cross-
sectional area [16]. In this regard, Eq. (6) probably means the
dissipative granular drag force is proportional to the contact
area (∼δR) in the current experimental setup. In the transla-
tional motion, grains of contacting cross-sectional region have
to be removed. Therefore, we consider μd ∝ δ. (R is constant
in this study.) However, μs is independent of δ, and the actual
slipping surface could be independent of δ. To further discuss
the issue, precise measurements of the contacting area and
deformed groove are necessary.

When the sphere’s density is very large, deep penetration
will be observed and the precise measurement of the sphere’s

motion becomes quite difficult. In such a situation, even the
qualitative behavior might show intrinsically different ten-
dency. In this sense, the frictional characterization discussed
so far can be applicable only to the shallow penetration case.

Furthermore, the measured friction coefficients cannot be
directly compared with the bulk friction coefficients (as ma-
terial properties) that are based on the Amontons-Coulomb
law (e.g., Ref. [29]). Of course, we consider that the granular
friction defined and measured in this study must be different
from such conventional ones although all the friction coeffi-
cients can be regarded as certain constants under the current
experimental conditions. Much more systematic comparison
should be performed in the future study.

In addition, there are some restrictions in the current
experiment. For example, we do not vary the surface
frictional property of the sphere. The experiment with rough-
(frictional)-surface spheres is an interesting future problem.
Variations of surface property could affect the value of μd and
μs. Besides, since the sphere is accelerated by rolling over
the rail, v0 and ω0 are not independent in this experiment. To
fully characterize the general stuck phenomena, experiments
with independently controlled v0 and ω0 should be performed.
The shape parameter is also a possible key parameter. Es-
pinosa et al. revealed that an imperfect body induces nontrivial
motion [30]. The actual surface of the vehicles wheel is not
perfectly smooth unlike our research. This point is also a
crucial future issue.

Extension of this type of research to the case of the ex-
ternally driven object (like vehicle wheeling case) would also
be important for the practical application to the terramechan-
ics issues. Terramechanics model mainly considers steady
motion (without deceleration) although the stuck frequently
occurres in actual driving scenes. Therefore, we believe
our experimental findings based on changing v(t ), ω(t ) are
crucial.

Finally, we briefly discuss the application of the current
result to the prevention of stuck phenomena related to fric-
tion. Since the current experimental system is not driven
by torque and normal loading, it is difficult to directly ap-
ply our findings to actual stuck problem in vehicle driving.
However, according to Fig. 8, the degree of slipping rotation
after the translational cessation increases as the α increases.
This means that the risk of stuck occurrence (without any
driving accelerator) increases when the sphere tries to roll up
the steeper slope. To reduce the degree of stuck, α should
be small. In this study, the degree of stuck motion for the
passively rolling sphere is quantitatively measured for the first
time.

Besides, by using the empirical law, μd = 0.49(δ/R), we
can predict sphere motion at any time. In specific, we can pre-
dict the maximum travel distance L by using Eqs. (1) and (4)
in arbitrary initial conditions. As discussed so far, the sphere
is rolling up with a constant deceleration aX , until t = tstop,

satisfying v(t ) = v0 − v2
0

2L t . Regarding the rotational motion,
ω(t ) can be computed by Eq. (5) with μs(� 0.26 ± 0.04).
Then, the sphere’s motion both in translational and rotational
directions can be completely computed. That is, in this study,
we find some useful relations for the sphere’s motion on a
granular slope by obtaining parameters μd and μs.
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FIG. 9. The relations between L and v2
0 are plotted. The solid lines denote the fitting through the fixed point (v2

0, L) = (−2gδ, 0). The value
of δ is computed based on Eq. (1). The positive L value at v0 = 0 comes from the effect of inclination and the definition. (a) 5◦ polyethylene
sphere, (b) 5◦ glass sphere, (c) 10◦ polyethylene sphere, and (d) 10◦ glass sphere. From the gradient of the fitting line, μd can be estimated
using Eq. (4).

VI. CONCLUSION

This study reveals the dynamics of a sphere rolling up a
granular slope. By systematically varying the initial velocity

FIG. 10. (a) Friction coefficient characterizing translational en-
ergy dissipation μd and (b) friction coefficient due to the slipping μs

are plotted vs α. Error bars indicate the standard deviation of the data
with various v0 cases and repeated experiments. In the inset of panel
(b), μs are plotted vs ρs/ρg. Error bars indicate the standard deviation
of the all the same ρs/ρg data (with various v0 and α cases).

v0 (and initial angular velocity ω0), angle of slope α, and
density ratio between the sphere and granular layer ρs/ρg,
the sphere’s motion was measured and analyzed. First, the
penetration depth of the sphere during the rolling-up process
was measured and scaled as δ/R = Cρ (ρs/ρg)3/4. This scaling
is consistent with previous studies of the sphere penetra-
tion into a granular layer. Next, translational and rotational

FIG. 11. The relation between μd and δ/R is plotted. By the
least-square fitting, the proportional relation between μd and δ/R is
obtained. Error bars indicate the standard deviation of all the same
ρs/ρg data (with various v0 and α cases). In the inset, the double
logarithm plot of μd vs ρs/ρg is shown. The solid line indicates
scaling relation.
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motions of the rolling-up sphere are measured and character-
ized as constant deceleration dynamics. Then, we reveal that
ωstop increases with α. To characterize the sphere’s motion,
we consider two kinds of friction coefficients, μd and μs.
The former and latter represent friction due to the deforma-
tion of granular layer and slipping friction, respectively. We
obtain the relation, μd = 0.49(δ/R), meaning the contact area
between the sphere and granular layer is a key factor of trans-
lational energy dissipation. The μs is almost independent of α

and ρs/ρg, showing a constant value μs � 0.26 ± 0.04. From
the system parameters, ρs/ρg, R and α, we can estimate δ and
μd. Then, by considering constant μs and initial conditions v0

(ω0), we can completely predict the sphere’s rolling-up mo-
tion. Since the range of ρs/ρg variation is limited in this study,
more systematic experiments with wider parameter ranges are
crucial future problem.
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