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Granular solids transmit stress as two-phase composites
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A basic problem in the science of realistic granular matter is the plethora of heuristic models of the stress field
in the absence of a first-principles theory. Such a theory is formulated here, based on the idea that static granular
assemblies can be regarded as two-phase composites. A thought experiment is described, demonstrating that the
state of such materials can be varied continuously from marginal stability, via a two-phase granular assembly,
then porous structure, and finally be made perfectly elastic. For completeness, I review briefly the condition for
marginal stability in infinitely large assemblies. The general solution for the stress equations in d = 2 is reviewed
in detail and shown to be consistent with the two-phase idea. A method for identifying the phases of finite regions
in larger systems is constructed, providing a stability parameter that quantifies the “proximity” to the marginally
stable state. The difficulty involved in deriving stress fields in such composites is a unique constraint on the
boundary between phases, and, to highlight it, a simple case of a stack of plates of alternating phase is solved
explicitly. An effective medium approximation, which satisfies this constraint, is then developed and analyzed in
detail. This approach forms a basis for the extension of the stress theory to general granular solids that are not
marginally stable or at the yield threshold.
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I. INTRODUCTION

Granular matter (GM), whose ubiquity on Earth is second
only to water, is essential not only to human society but also
to most life on land. It is often regarded as a distinct form of
matter because of its rich behavior, which is dissimilar from
the conventional forms of matter. Of essential importance is
understanding and predicting how GM transmits stress. A
first-principles stress theory in these materials is essential in
a wide range of disciplines: civil, structural, and chemical
engineering; geology and earth sciences; and physics, as well
as in technological applications of powders, soils, foodstuff,
etc. It is also key to mitigation of hazards, from snow and soil
avalanches to deflecting rubble-pile asteroids.

The science of GM is at least 2200 years old. Indeed, what
is regarded today as the oldest existing scientific publication,
dating back to the third century BCE [1], involved GM. To an
extent, this is attestation of the significance of this field. In the
late 19th century [2] and in the early 20th century [3], work on
GM was motivated by practical applications and was mainly
done within the context of engineering. The last three decades
saw an explosion of fundamental theoretical research, follow-
ing the seminal work of Edwards [4–6]. Yet, in spite of this
uniquely long history and intensified recent research activity,
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no first-principles stress theory for such media exists. One of
the reasons is that, unlike any conventional continuum, GM
behaves as a combination of a solid and a fluid, and it trans-
mits stress very nonuniformly, often via stress chains [7–14].
Another reason is that there is a range of phenomenological
and empirical models, utilized in engineering, providing the
impression that one can get away without a fundamental the-
ory. This situation is unsatisfactory, and, indeed, subsidence
and collapses of buildings and structures provide evidence
that, while useful, empirical models have serious limitations.

It has been suggested that one of the hurdles to constructing
such a stress theory is that GM is regarded paradigmatically
as a continuum endowed with some constitutive properties,
for which stress equations need to be developed. Since this ap-
proach has not been fruitful for many decades, it was proposed
that general GM needs to be regarded rather as two-phase
composites, with each phase satisfying different stress field
equations [15]. It is this view that I intend to explore in the
following.

Specifically, several arguments are presented in support of
the two-phase-composite idea, and a simple case of such a
composite is solved. A method to derive the stress from first
principle in such media, using an effective medium approach,
is formulated. To alleviate a difficulty in distinguishing be-
tween the different phases visually, which is important for
the purpose of imposing boundary conditions on the phase
boundaries, a quantitative stability parameter is developed,
which can also be used as a phase field parameter. To make
this paper self-contained, I also review briefly (1) the method
of identifying marginally stable granular assemblies and (2)
the current isostaticity stress theory (IST) for the marginally
stable state of GM, with a specific solution in two dimensions
(d = 2).

2470-0045/2024/109(1)/014901(10) 014901-1 Published by the American Physical Society

https://orcid.org/0000-0001-7201-2164
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014901&domain=pdf&date_stamp=2024-01-04
https://doi.org/10.1103/PhysRevE.109.014901
https://creativecommons.org/licenses/by/4.0/


RAPHAEL BLUMENFELD PHYSICAL REVIEW E 109, 014901 (2024)

The structure of the paper is the following. In Sec. II the
state of marginal stability of GM is defined quantitatively in
terms of the particle-scale mean coordination number (MCN).
In Sec. III the existing stress theory for marginally stable GM
is reviewed briefly, with more details, including the general
solution in two-dimensional systems, given in the Supplemen-
tal Material [16]. In Sec. IV I discuss the role of the marginally
stable state as a critical point in the traditional sense, with
a proper diverging response length, which is reflected in the
increasing typical length of force chains. This state, which is
also the yield threshold, is often referred to as a critical state
in the engineering literature, albeit without the connotation
that this term usually carries in physics. A thought experi-
ment is then described, which illustrates clearly that GM is
a two-phase composite, with one phase isostatic and the other
elastic. The larger the concentration of the former phase the
longer the response length. In Sec. V the construction of a
general stress theory for such two-phase composites is dis-
cussed. An example of a simple case, in which alternate-phase
plates are arranged in series, is analyzed, solved exactly, and
used to illustrate a fundamental difficulty, which can be traced
back to the assumptions of isostaticity theory. Then a possible
extension by an effective medium method is described, and
the difficulties posed by a more general theory are discussed.
In Sec. VI a stability parameter is introduced, which makes
possible a local quantitative distinction between the phases in
finite granular regions. This parameter also enables a quanti-
tative determination of the “distance” from the critical point.
Finally, the results and some implications are discussed in the
concluding Sec. VII.

II. THE MARGINALLY STABLE STATE

At the macroscopic, many-particle level, the marginally
stable state is the (macro-)state at the yield threshold be-
tween the fluid and solid states. It is also known as critical,
marginally rigid, and isostatic state. The reason that this is the
yield threshold can be traced to the particle level, at which
the number of force-carrying interparticle contacts is such
that the number of equations to determine the interparticle
forces is exactly equal to the number of unknown force com-
ponents that require determination. When there are too few
such contacts, the medium is unstable and must rearrange
under external forces. This state is marginally stable because
any perturbation in the applied load or a particle’s position
gives rise to contact breaking and to local rearrangement. This
perturbs neighbor particles and so on. Thus, a perturbation
of one contact can lead to a rearrangement of a significant
portion of the granular assembly. Such a long-range response
to a perturbation is the hallmark of a critical point, as will be
discussed below.

The difference between the numbers of unknowns and bal-
ance equations to determine them is quantified by the mean
coordination number (MCN), z, which is defined as the num-
ber of force-carrying contacts per particle. The marginally
stable state corresponds to a “critical” value, zc, which de-
pends on the dimensionality, d , whether the particles are
frictional or are frictionless, and whether they are perfectly
circular, spherical, hyperspherical, or of other shapes. When
z < zc, the medium is fluid and when z > zc it is solid.

To determine zc, we need to consider d-dimensional many-
particle assemblies of N (� 1) rigid particles of convex
shapes. It is straightforward to extend the discussion to some
classes of nonconvex shapes and to compliant hard parti-
cles, but this would add very little insight and this issue
is better circumvented here. In the following analysis, only
fixed compressive boundary forces are presumed to act on the
granular assemblies—external force fields, including gravity,
are ignored. The justification for this is that given a static
structure of an assembly, the stress equations discussed below
are linear, which means that the effects of an external force
field can be superposed on the IST solution.

A. Frictional particles

Frictional particles experience d force components at each
contact point, which need to determined. Neglecting boundary
effects for very large assemblies, summing over the coor-
dination numbers around all particles, results in twice the
total number of contacts, Cd : Cd = Nz/2. There are therefore
dNz/2 unknowns. To be mechanically stable, each particle
must satisfy d conditions of force balance and one torque
balance condition for each of the d (d − 1)/2 axes of rotation.
The critical MCN must then satisfy the equality

d
zc

2
N =

[
d + d (d − 1)

2

]
N ⇒ zc = d + 1. (1)

This calculation can be found extensively in the literature.

B. Frictionless non-(hyper-)spherical particles

In this case the force must be normal to the tangent plane at
the contact point, and, therefore, the geometry determines the
direction of any contact force. This leaves only one unknown
per contact—the force magnitude. The number of unknowns
is then Cd = zcN/2. The number of equations is the same as on
the right-hand side of Eq. (1), and equating it with the number
of unknowns yields

zc = d (d + 1). (2)

C. Frictionless hyperspherical particles

An assembly of frictionless perfect hyperspheres, which
includes disks in d = 2, is often used in numerical simulations
because it is convenient for contact detection and contact force
transmission. However, not only is it difficult to reproduce
physically, but such an assembly is also degenerate in the
sense that balance of forces on every particle ensures auto-
matically balance of torques. Therefore, the torque balance
conditions are redundant for all particles, and only the Nd
force balance conditions must be satisfied. Since, for such
particles, the forces are also normal to the contact tangent
plane, there is only one unknown to determine at each of the
zcN/2 contact points. Equating unknowns and equations then
yields

zc = 2d. (3)

It should be commented that the values for zc, calculated
for all types of particles, incur boundary corrections of order
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O(N−1/d ), which have been neglected. These corrections will
become relevant for the discussion in Sec. VI.

III. CRITICAL STRESS TRANSMISSION
AT MARGINAL STABILITY

As mentioned, force chains are the conduits of stress and
displacement perturbations, and the longer they are the further
the response. In particular, in the marginally stable state the
typical length of force chains is comparable to the system
size, making this state the equivalent of a conventional critical
point. This equivalence is key to understanding stress trans-
mission in more general states of GM. It is therefore useful
to review briefly the theory of stress transmission at marginal
stability.

Any continuum stress theory must satisfy the balance con-
ditions:

�∇ · σ = �gext (balance of forces) (4)

σ = σ
T

(balance of torques). (5)

In d dimensions, the first equation provides d conditions,
the second d (d − 1)/2, and together d (d + 1)/2 conditions
in total. Since the stress tensor has d2 components, further
d (d − 1)/2 equations are required to determine it. These “clo-
sure” equations need to be provided by constitutive relations.
In elasticity theory, the closure is by St. Venant’s compatibility
constraints on the strain tensor, augmented with stress-strain
relations [17]. Such closure, however, is not appropriate for
the marginally stable state. This is because the stress field is
nothing but a continuum representation of the spatial distribu-
tion of interparticle forces in the marginally stable state, and,
since these forces are exactly determinable by the structure
and are independent of any infinitesimal displacement that led
to it, then the continuum stress cannot depend on the strain
field. This is also evident from the fact that no elastic moduli
are involved in the above discussion of the determination
of those forces. It follows that the only relevant constitutive
characteristics must be based on the local structure. The ob-
servations of nonuniform stress transmission in GM via chains
[7–14] further supports the idea that the equations cannot be
elliptic and therefore cannot arise from strain-based constitu-
tive relations. It was proposed then that the closure is by a
stress-structure relation [18–21],

M : σ = 0, (6)

in which M is a symmetric tensor that characterizes the lo-
cal structure. Its determinant is negative, which results in
hyperbolic equations, in contrast to the elliptic equations of
elasticity theory. This gives rise to solutions that “propagate”
into the medium along characteristic paths. Along these paths,
which can be interpreted as stress chains, characteristic stress
combinations are constant. The set of equations (5) and (6)

are commonly called isostaticity theory. So far, the tensor M
has been derived from first principles only in d = 2 [15,22–
24]. Nevertheless, there is a range of empirical models for it,
or leading to it, in d = 2 and 3, e.g., Mohr-Coulomb [25],
Tresca [26], von Mises [27], and Drucker and Prager [28].
The characteristics can be straight or curved and even bend

backwards [24]. A brief outline of the solution of these equa-
tions in rectangular coordinates and an example of a solution
are given in the Supplemental Material [16]. It should be
commented that the first-principles theory holds for compliant
particles, as long as the MCN is zc and the compressed areas at
contacts are small compared to the particle sizes. Compliance
introduces corrections to the solutions of Eqs. (5) and (6),
which decay as the number of particles increases [29].

The marginally stable state acts as a critical point in that
a small displacement of a particle can lead to the yield of
large part of the assembly [14,30–32]. The main descriptor
of this state is the critical MCN, zc, and the deviation from
this state can be parameterized by the difference z − zc. The
critical nature of the marginally stable state opens the door
to modeling GM in general, which is the subject of the next
section.

It should be commented in passing that, while it is tempting
to consider the typical length of the characteristic stress chains
as a descriptor of the long-range correlation, this similarity

holds only for uniform fabric tensors, M. This is because
stress chains straight in such systems and span the entire

system. However, when M is nonuniform, the stress along
the characteristics decays with distance and so do the effects
of local perturbations. There is some fundamental difference
between the force chains, observed in experiments with pho-
toelastic particles [11,33–37], and stress chains. The former
are observed only when above some threshold, and, therefore,
the definition of a force chain is not sharp to some extent.
In contrast, theoretical stress chains are defined uniquely and

unambiguously, given the fabric tensor M.

IV. GENERAL GM IS A TWO-PHASE COMPOSITE

While isostaticity is an established first-principles theory,
marginally stable states are rare in realistic static systems, re-
quiring specialized dynamics to generate them. The MCNs of
most solid granular assemblies, whether natural or manmade,
often exceed zc. The question is how to extend the isostaticity
stress theory to such media. To this end, it has been proposed
that, at least sufficiently close to the marginally stable state,
realistic GM must be regarded as composites comprising re-
gions of two phases: one is marginally stable and the other
is overconnected, in which z > zc [15]. The usefulness of
the two-phase composites picture can be illustrated with the
following thought experiment.

Consider a large assembly of elastic particles, e.g., rub-
ber balls, initially at a marginally stable state under some
infinitesimally small boundary forces. Under such loading,
the contact areas can be made much smaller than the small-
est ball diameter, and isostaticity theory provides the correct
solution for the stress field. Now, increase all the boundary
forces uniformly by a factor α = 1 + ε, with 0 < ε. When ε

is sufficiently small, such that it cannot bring even the closest
pair of particles into contact, the number of contacts remains
the same, and only their areas increase as they are compressed
slightly. In a very large assembly, this has been shown only
to introduce small corrections to the original solution, with
the corrections decaying with system size. As ε increases,
new contacts are made here and there, and the MCN starts
to increases: z = zc + δz. When δz � 1, the overconnected
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regions are small and isolated. A force chain incident on such
a region “scatters” in the sense that its continuation is shared
by more contacts than required for marginal stability. This
sharing means that each of the forces emerging from this
region is lower in magnitude. Setting the magnitude obser-
vation threshold of force chains appropriately, the incident
force chain effectively “terminates.” As α increases, more
overconnected regions form, the typical length of force chains
decreases, and with it the stress. This resembles strongly the
behavior of traditional systems as they move away gradually
from critical points. For example, increasing the temperature
slightly above the critical point introduces regions of normal
conductivity, or increasing the concentration of nonconduct-
ing elements at the percolation threshold through an otherwise
conducting system reduces the conductivity by generating
nonconducting regions.

Another effect of increasing α is that contact areas between
particles in contact increases. When the size of such a contact
becomes comparable to the size of either of the particles
sharing it, this pair can no longer be regarded as two sepa-
rate particles. As balls get squeezed together and the contact
areas of sufficiently many reach this limit, the assembly can
no longer be regarded as granular and is, rather, a porous
medium, comprising an elastic solid phase and cavities or
pores. Some models for computing stress transmission in this
type of media exist [38,39], but discussing them is tangential
to this presentation. Finally, at some large value of α, these
voids are also squeezed out completely, and the system be-
comes a continuous uniform elastic solid. The stress fields in
such a solids are readily calculated by conventional elasticity
theory.

This thought experiment shows that there is a continuous
spectrum of structures with the marginally stable critical point
at one end and a perfectly elastic state at the other. General
GM is on this spectrum sufficiently close to the former, before
the appearance of porous media. In particular, where on this
spectrum a granular solid exactly is depends on the difference
δz = z − zc, which is tantamount to saying that it depends on
the response length.

It is clear that, in assemblies of particles that are not as elas-
tic as rubber balls, other physical mechanisms may intervene
before the porous medium state or the continuum are reached,
such as particle fragmentation, phase transitions, etc. These
are all ignored because they are irrelevant to the purpose of
this thought experiment. Additionally, if the original particu-
lates are made of nonelastic materials, the stress transmission
in the final continuous phase need not satisfy the equations of
elasticity theory. All these side issues notwithstanding, start-
ing from a perfectly elastic final state is a useful first step
toward a more general theory. The two-phase idea may also
provide insight into the observation of two distinct sets of
force chain networks in simulations of GM [40]. In any case,
this conceptual picture suggests a strategy to extend the theory
beyond the ideal marginally stable limit, and this strategy is
discussed next.

V. TOWARD A CONTINUUM STRESS THEORY
OF GENERAL GM

Field theories of two-phase composites are generally diffi-
cult to construct except when the phases have a special spatial

distribution. The main existing methods for arbitrary spatial
distributions are effective medium approximation, mean field
theory, and renormalization near critical points. Each of these
methods involves some special assumptions. Unfortunately,
none of these models can be applied directly to GM com-
posites because they are based on the assumption that the
two phases satisfy the same field equations and they differ
only by their constitutive properties. Example are mixtures of
two conducting materials, in which both phases obey Ohm’s
law, but have different conductivities; composites of elastic
materials, which are often presumed to obey the same stress
equations but with different elastic moduli; and mixtures of
dielectrics having electric-displacement fields relation of the
same functional form, but with different dielectric constants.
The two-phase GM problem is more difficult because the
phases differ not by their constitutive properties but by the
stress equations that they satisfy. This problem is exacerbated
by the fact that the elastic phase satisfies elliptic equations and
the marginally stable phase satisfies hyperbolic equations.
While the former can be solved under Dirichlet boundary
conditions, the latter can be ill-posed under such conditions.
Thus, much care is required even in posing the problem.

A. Isostatic-elastic pair of plates

To illustrate the complexity of the problem, it is useful
to start with a simple solvable structure in two dimensions.
Consider only the two parallel plates, I and II, sketched in
Fig. 1. Plate I is isostatic, occupying 0 < x < W1 and −∞ <

y < ∞, and plate II is elastic, occupying W1 < x < W2 and
−∞ < y < ∞. The boundary at x = W2, which also extends
to ±∞ in the y direction, is rigid and stress is not transmitted
between plates II and III.

The equations of both elasticity and isostaticity are linear,
given the respective constitutive properties, and it is sufficient
to consider a point loading applied to the leftmost plate at the
origin, σ (x = 0, y = 0). A more general loading is the super-
position of such point loadings. The full solution to the point
loading problem is detailed in the Supplemental Material [16].
To summarize it, the stress field response in the marginally
stable region I, whose example structure tensor is chosen to

be uniform, for simplicity, M = (3 1
1 −1), consists of a finite

stress only along two straight stress chains. The gradients of
the stress chains are λ1 = 3 and λ2 = −1, and they follow
the characteristic paths. Along each path, the stress field is
a characteristic combination of the stress components that
originate from the source at (x = 0, y = 0). Outside these
paths, the stress is exactly zero. This solution superposed with
the uniform stress field due to the uniform loading on the
boundary, which is also detailed in the Supplemental Material
[16],

σ uniform =
(

σxx σxy

σxy σyy = 3σxx + 2σxy

)
. (7)

The value of the loading σyy must depend on the values of σxx

and σxy to satisfy the constitutive stress-structure relation (6).
The stress chains of the solution are incident on the bound-

ary between regions I and II, x = W1, giving rise to two point
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FIG. 1. A stack of alternating marginally stable and elastic
plates. A localized stress is applied at the boundary x = 0, generating
two stress chains that “propagate” along two characteristic paths.
The chain stresses apply two localized loads on on the strain-free
boundary at x = W1. The boundary at x = W1 deforms to trans-
mit this stress to the elastic plate. The stress response within the
elastic plate satisfies the elliptic equations of elasticity theory. The
stress response on the strain-free boundary at x = W2 is sketched.
Adding another plate of marginally stable medium at x = W1 + W2,
the stress solution within it is a superposition of the stress chains,
which emanate from every point along this boundary, such as the
two exemplified in the figure.

loadings on this boundary at y = −W1 and y = 3W1,

σ 1(W1, 3W1) = σxx + σxy

4

(
1 3
3 9

)
,

σ 2(W1,−W1) = 3σxx − σxy

4

(
1 −1

−1 1

)
. (8)

The boundary condition at x = W1 must be considered
carefully now. If this boundary is presumed to remain straight
and independent of y, then the stresses at the points y =
−W1, 3W1 along this boundary would not be transmitted to the
elastic medium. Some boundary deformation is required for
that. The problem is that isostaticity theory does not provide a
way to predict this deformation because strain plays no role
in it. Nevertheless, such a deformation will occur because
the application of the load at (0,0) changes the structure
wherever the stress is finite. This issue and its effect on the
choice of this boundary condition are discussed in some detail
in the concluding section, a discussion that touches on the
assumptions underlying isostaticity theory. To summarize it
here, since there is currently no theory to predict local struc-
tural changes as a function of the local stress perturbation,
the only way forward is to impose a boundary condition at

x = W1 that transmits faithfully the stress from left to right.
The natural way to achieve that is to impose a deformation,
or strain, e, that satisfies the stress-strain relation in the elastic
medium, namely, σ (x = W −

1 , y) = C̆II e(x = W +
1 , y), with C̆II

the fourth-order stiffness tensor of the elastic medium in II.
Applying this boundary condition to the problem at hand, the
stress at the left boundary of plate II comprises two δ func-
tions, as sketched in Fig. 1, and, together with the condition
of a flat rigid boundary on the right of region II, make for a
well-defined formulation for the solution in the elastic plate.

Since the strain at, and therefore the distortion to, the left
boundary is known, a convenient way to solve for the stress
in this region is to first mapping conformally the physical
domain with the distorted boundary to a rectangle. Solve for
the stress in the mapped domain, using textbook methods [41],
and then transform the solution back to the physical plane.
Two such point-loading solutions are sketched in the figure.

For completeness, it should be commented that, when the

fabric tensor M is not uniform in the marginally stable plate,
secondary paths of lower stresses emanate from the main
characteristic paths, which reach the boundary at x = W1 at
different locations. These modify the boundary stress for the
elastic plate in a manner that can also be calculated from the
solution in the Supplemental Material [16] and can be treated
as a superposition of source points at x = W1.

B. A chain of alternating-phase plates

Next, consider a longer chain of parallel plate of alternat-
ing phases, by adding them to the right of plates I and II.
The first of this chain, III, is shown in Fig. 1. They have
different thicknesses and all similarly extend to ±∞ in the
y direction. Applying the same source load at (x = 0, y =
0), the stress response in plate I as well as its transmission
across the boundary at x = W1 are the same as for the pair
system discussed above. The boundary condition at x = W2

is straightforward to determine: since the marginally stable
medium in plate III is rigid, it is chosen to be flat. Then
the solution in II is the same as in the pair system and,
consequently, so is the stress at σ (x = W −

2 , y). This boundary
stress is transmitted to the medium in III at σ (x = W +

2 , y).
Assuming that the fabric tensor in III is the same as in I,
the conceptual “propagation” from two arbitrary source points
along the boundary at x = W2 is exemplified in Fig. 1. Each
such point plays the same role as the point load at (x = 0, y =
0).

A consistent set of boundary conditions for a chain of
2N such plates is then the following. The boundaries at
x = W2k (k = 1, 2, . . . , N/2), which transmit stress from the
2kth elastic plate to the (2k + 1)th marginally stable one, are
presumed rigid and flat, while the boundaries at x = W2k−1,
which transmit stress from (2k − 1)th marginally stable plate
to the 2kth elastic one, deform such that the strain generated
by the deformation matches the stress-strain relations in the
elastic part, σ (x = W −

1 , y) = C̆2ke(x = W +
1 , y).

C. Effective medium method: Possibilities and difficulties

The aim of this subsection is to outline an effective medium
approximation (EMA) approach for deriving the stress in a
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FIG. 2. A rectangular inclusion (light blue) in an otherwise
marginally stable medium (light brown). Stress chains (dark brown)
emanate from the point loading at (0,0) along two narrow character-
istic paths. The chain incident on the elastic inclusion deforms the
boundary slightly, “letting” the stress through and giving rise to an
intra-inclusion stress field that satisfies the linear elasticity equations.
The inclusion’s other boundaries are rigid. The inclusion “diffracts”
the stress, which reemerges into the marginally stable medium at a
much attenuated magnitude along wider paths (dark brown regions).

general GM composite, rather then develop it in full detail.
EMAs are based on the assumption that one phase is suf-
ficiently dilute, often as inclusions, within the other. In this
approximation, one neglects the effect of the inclusions on one
another. Consequently, the key ingredient in an EMA is then
the solution for an isolated inclusion of one phase within an
otherwise much larger medium composed of the other phase.
By interchanging the roles of the phases, this approach can
be applied close to either the marginally stable state or the
purely elastic state. Analysis of a marginally stable inclusion
in an elastic medium is straightforward: the marginally stable
medium can be regarded as a rigid inclusion in a large elas-
tic medium, for which solutions exist or can be found with
standard elasticity theory [42].

The opposite limit, of an elastic inclusion in a marginally
stable medium, requires a careful consideration. While
diffraction of hyperbolic characteristics from scatterers has
been discussed in the literature [43], this is less relevant in this
context than the stress developing within a finite inclusion. Let
the medium occupy the half-space x > 0 and −∞ < y < ∞
and the stiffness tensor within the inclusion be C̆inc. For clar-
ity, assume again that its fabric tensor is spatially uniform;

as mentioned, position-dependent fabric tensors, �∇ · M �= 0,
lead to nonstraight chains, stress attenuation along them, and
branching, all of which, although making the treatment more
involved quantitatively, can be included without any concep-
tual difficulty in the following approach. It is convenient to
consider a rectangular elastic inclusion, as shown in Fig. 2.

Consider a set of discrete point loadings on the boundary
at x = 0, at intervals χi, with χi narrowly distributed around
a mean value χ0. These act as sources, and from each one

can trace two characteristic paths into the marginally stable
medium. The paths from one such source are shown in Fig. 2.
The characteristic stress component combination on each path
is determined by the solution described in the Supplemental
Material [16]. In the absence of the inclusion, the stress field
inside the medium, �0(x, y), consists of a network of stress
chains. This solution would be unaffected when no chain is
incident on the inclusion and the probability for this to happen,
p0, decreases with Wy/χ0, most likely as e−Wy/χ0 although its
exact functional form is immaterial for the present discussion.

When a stress chain is incident on the inclusion, which
is the case illustrated in Fig. 2, it provides a point load-
ing on the boundary of the elastic inclusion at x = x−

0 . As
illustrated in the alternating plates system, the way to trans-
mit the stress to within the inclusion is by posing that this
boundary is deformed into the inclusion such that the strain at
x = x+

0 satisfies σ (x = x−
0 , y = 0) = C̆ince(x = x+

0 , y = 0) =
σ (x = x+

0 , y = 0). Following the example of the system of
alternating plates, the boundaries of the inclusion, on which
no stress chain is incident, should be regraded as flat and rigid.
Given these conditions, the stress field inside the inclusion can
be calculated either analytically or numerically, using linear
elasticity. Again, if the calculation with the deformed bound-
ary is problematic, one can conformally map the inclusion
back to the original rectangle, solve for the intra-inclusion
stress in the mapped plane, and then conformally map this
solution back to the physical plane. A schematic illustration
of contours of equal-σ xx within the inclusion is also shown
in Fig. 2. This calculation then yields the stress distribution
along the rigid boundaries, which are then transmitted to the
rest of the marginally stable medium. This transmission must
follow also the characteristic paths, as sketched in the figure.
The “reemerging” stress paths are broad, corresponding to the
size of the inclusion and orientation differences between the
boundaries and the two characteristics.

As a consequence of force balance, the stress component
magnitudes within the widened stress paths are suppressed
to well below those of the original incident chain. Setting a
detectability threshold, as for force chains, the stress is likely
to drop below the threshold, and, to all practical purposes, the
incident stress chain effectively terminates at the inclusion.
The larger the inclusion, the wider the reemerging paths and
the stronger the suppression. Denoting the single-inclusion
stress field �1, the EMA stress field is

�EMA = p0�0 + (1 − p0)�1. (9)

Placing a second inclusion elsewhere gives rise to a similar
solution, �2. Since the inclusions are too far to interact, the
EMA stress field due to n such inclusions is

�EMA = pn
0�0 + (

1 − pn
0

) n∑
j=1

� j (�r − �r j ), (10)

in which �r j denotes the position of the jth inclusion. Increas-
ing the concentration of inclusions and/or their sizes, but
without violating the effective medium assumption, increases
the MCN, zc → z = zc + δz. An increase in the inclusion
concentration also increases the probability of incidence of
stress chains on them and effectively terminating. The con-
sequent shortening of the typical length of stress chains with
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increase of the MCN is indeed consistent with experimental
observations [44,45]. This also makes the EMA consistent
with the idea that the value of δz controls the response length
near the marginally stable critical point. Using then δz as a
measure of the proximity to the critical point, it is tempting
to conjecture that the relation between the stress chain typical
length, Lσ , and the “distance” from the critical point follows
the conventional power-law form:

Lσ ∼ δz−ν ; ν > 0. (11)

This form is consistent with experimental observations near
the marginal stability point [46], but it depends on more than
the typical length of stress chains. This is because nonuniform
fabric tensors, in which �∇mi j �= 0, give rise to coupled char-
acteristics ωi, which may lead to chains dropping below the
threshold and terminating even if without incidence on inclu-
sions [23,24]. These effects are not taken into consideration in
(11), and to include them requires quantifying the dependence

of this relation on the gradients of the fabric tensor M. Strong
gradients could not only lower the prefactor in (11) but also
increase ν, with each of these effects suppressing Lσ for a
given δz. A full discussion of the effects of structure tensor
inhomogeneity is beyond the scope of this work, but it offers
an interesting line of future investigation.

VI. IDENTIFYING THE PHASES
IN THE TWO-PHASE COMPOSITES

To implement the two-phase-composite idea, it is impor-
tant to have a clear way to identify the boundaries between the
phases. This is particularly important in view of the required
careful treatment of the boundary conditions. Unlike in many
traditional two-phase composites, such an identification is not
straightforward because the phases are visually very similar.
The only structural difference between the phases is their con-
nectivities per particle or specific connectivities. The specific
connectivity of a region � is defined as δz� = z� − zc,� , with
zc,� the critical value of the MCN that makes the region �

marginally stable and z� the actual MCN of the particles
within �. This value is different from that of the infinitely
large assembly, calculated in Sec. II, due to the boundary
corrections, which are no longer negligible.

A sketch of a finite domain, �, is shown in Fig. 3. It
contains N� particles, of which NS are regarded as its surface
and the boundary, ∂� (dark brown in the figure), between
� and the rest of the assembly. Let us define a stability pa-
rameter as the difference between the number of unknown
force components to determine and balance conditions, per
particle in �,

J� ≡ (Nunknowns)� − (Nconditions)�
N�

. (12)

Dropping the subscript �, for brevity, the region is unstable
and fluid when J < 0, marginally stable when J = 0, and
stable and solid when J > 0. The specific connectivity and the
stability parameter are equivalent for determining the phase
because the number of unknowns is proportional to the num-
ber of contacts. The calculation of the stability parameter of �

is done as follows.

FIG. 3. A finite domain � within a larger granular assembly. The
internal particles (light brown, particles labeled ‘I’) are surrounded
by a surface (dark brown, particles labeled “S”), regarded as its
boundary, ∂� , whose particles are in contact with external particles
(white, particles labeled “E”).

Within �, there are CII contacts between internal particles,
CIS contacts between internal and surface particles, and CSE

contacts between surface and external particles. The external
particles exert forces on � through αNS contacts with the
surface particles, with α = O(1). The premise is that all these
quantities can be extracted visually from �. In the following,
I focus on two-dimensional systems, for simplicity, but the
analysis can be readily extended to three dimensions. The
stability threshold depends on the particle surface friction and
whether they are spheres or not. These are discussed next case
by case.

A. Frictional particles in d = 2

In the calculation of the MCN of �, the contacts of the
internal particles are counted twice each, while the contacts
of the boundary particles with external particles are counted
only once. This yields

z = 2CII + 2CIS + CSE

N . (13)

The forces at the CSE contacts comprise the external loading
on � and are regarded as known boundary loading for the
purpose of determining the intra-� forces. These boundary
forces are also presumed to be balanced (otherwise the as-
sembly would not be static). The contacts CII and CIS transmit
two force components each, giving 2(CII + CIS) unknowns to
resolve within �. These are to be compared to the 3N balance
conditions. Defining pS ≡ NS/N , we then have

JA = 1

N [2(CII + CIS) − 3N ]

= z − 3 − CSE

N N

= z − 3 − αpS, (14)

corresponding to the critical point shifting to

zc,A = 3 + αpS. (15)
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B. Frictionless nondisks in d = 2

Using the same definitions as above, the number of equa-
tions is the same, 3N , but only the force magnitudes at the
internal contacts are unknown, CII + CIS. Then

JB = 1

N [(CII + CIS) − (3N )]

= z

2
− CSE

2N − 3

= z

2
− 3 − α

2
pS. (16)

The critical point in this case is at

zc,B = 6 + αpS. (17)

C. Frictionless disks in d = 2

The number of unknowns is the same as in case B, but all
the torque balance conditions are redundant, leaving only 2N
available equations. Therefore,

JC = 1

N [(CII + CIS) − 2N ]

= z

2
− CSE

2N − 2

= z

2
− 2 − α

2
pS. (18)

The critical point in this case is at

zc,C = 4 + αpS. (19)

Thus, in all three cases, the change to the infinite critical value
is by adding αpS .

The stability parameter J can be used to define a phase field
parameter in mechanically stable granular assemblies,  ≡
1 − H (J ), with H the Heavyside step function.  is unity in
the marginally stable phase and vanishes in the overconnected
phase. It can be used to develop phase-field simulations, in
which it would determine the stress equations to use and
where phase boundaries are. It is straightforward to extend
the calculations of J to three and higher dimensions, using the
same rationale.

VII. CONCLUSION

To conclude, this paper should be regarded as a step toward
a continuum stress theory of general mechanically stable GM,
which goes beyond marginally stable states and the yield sur-
face. The proposition is that real systems should be regarded
as comprising two phases: one marginally stable and the other
overconnected. The conditions for marginal stability in large
assemblies in arbitrary dimensionality and the first-principles
formulation of isostaticity theory, including the explicit solu-
tions to the stress field equations in d = 2, have been reviewed
briefly. A thought experiment was described which supports
strongly the feasibility of the two-phase picture. In particular,
it showed that there is a continuous spectrum of system struc-
tures that extends from the marginally stable state, through
a general granular assembly and a porous medium, to a
continuum uniform solid. To highlight the issues involved
in deriving stress fields in two-phase systems, the problem

was solved for a simple case: a stack of plates of alternat-
ing phase. This problem also highlighted the constraints on
the boundary conditions. The critical-point-like nature of the
marginally stable state has been used to extend the theory near
this state. Specifically, a variation of the effective medium
approximation (EMA) has been formulated for this problem
and analyzed. Finally, a quantitative stability parameter has
been defined, which helps with the difficult problem of identi-
fying the different phases and their boundaries within a given
granular assembly. This parameter can be used for developing
phase-field approaches to the problem.

Several points are worth discussing. One is the effects of

gradients of M on the stress chains typical length in the EMA
method. The criticality of the marginally stable state is be-
cause a small local displacement of a particle is likely to break
a contact, which destabilizes the local structure by definition.
This leads to local rearrangement, which causes another con-
tact to break and so on. The long-range rearrangement due to
a small local perturbation is the analog of a diverging response
length near traditional critical points. While it is tempting to
relate the rearrangement response to the stress and, in partic-
ular, to the typical length of stress chains, this relation holds

only in media with relatively uniform fabric tensors, M. This
is because, as mentioned in Sec. V, spatial gradients of mi j

give rise to secondary chains that split from the main chains
and siphon stress away from them. Consequently, the stress
attenuates along the main chain. The rate of this attenuation
depends on the gradients magnitude along the chain, and once
the stress drops below some observability threshold, chains
effectively terminate even though the medium is still ideally
marginally stable and the rearrangement response is still very
long range. This is another manifestation of the decoupling
between the stress and the strain in marginally stable media.

Another consideration enters this picture: isostaticity is a
continuum theory, and the EMA method requires an elemen-
tary volume over which the structure tensor is coarse grained.
This has two effects. One is that the gradients are milder
on the coarse-grained scale, and the other, that stress chains
cannot be thinner than the linear size of an elementary volume.
Both these effects counteract the shortening of the response
length and must also be taken into account in structurally
inhomogeneous systems. An investigation into this issue must
also be part of the further development of the general stress
theory.

Another subtle issue is the following. In the solution for
the uniform stress, (7), whose full derivation is in the Sup-
plemental Material [16], the σyy component of the boundary
stress was taken to satisfy the stress-structure relation imposed

by the local structure tensor, M : σ = 0, and it is therefore a
local function of σxx and σxy. This may seem strange because
one expects to be able to choose all the components of the
boundary stress at will. However, there is no inconsistency!
It has been shown that structure and the stress self-organize
cooperatively [47–49], namely, one cannot change without
a corresponding change to the other. Self-organization is a
fundamental phenomenon GM, at least if the settling follows
quasistatic dynamics. Thus, choosing a different value of σyy

at some point on the boundary should have the effect of
restructuring the contact network near that point, and that
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restructuring perturbation would propagate into the system as
far as the stress response length. Such a self-organization has
been discussed and quantified to some extent in the literature
[47,48,50]. Yet there is no theory to predict the resultant mod-
ified structure tensor due to an arbitrary stress perturbation.
It is likely that the structure would be most strongly modi-
fied close to the source of perturbation and unaffected very
far from it, which means that gradients must develop. Once
the structure has rearranged and the new structure tensor is
known, the derivation of the stress field in the GM follows
the same procedure that led to Eq. (7), albeit with coupling
between the characteristics. Moreover, it is the inability to
predict the structural response in marginally stable media to
stress perturbations which necessitated the tailoring of the
boundary conditions to describe stress transmission from a
marginally stable to elastic medium.

While the discussion in this paper focused on two phases
in static GM, it is interesting to note that two phases have also
been discussed in the context of dense granular flows: plug re-
gions, which are clusters of particles moving rigidly together,
and plug-free regions, in which the velocity gradients are finite
[51–53]. It is possible that, upon settling, the plug regions have

a higher tendency to become the overconnected regions. This
conjecture can be tested by measuring the correlation between
a presettling particle belonging to a plug and its postsettling
belonging to an overconnected particle.

Finally, there remain several hurdles in implementing this
theory in practical modeling of natural systems and engineer-
ing applications. These include, but are probably not limited

to, effective modeling of the constitutive fabric tensor M on
relevant length scales and determining the relative concentra-
tions of the two phases. More work is needed to address these
issues. However, the reward of such work cannot be overem-
phasized because a first-principles theory of real GM outside
the yield surface has the potential to improve significantly
predictability of models in a range of engineering disciplines.

Data sharing not applicable to this article as no
data sets were generated or analyzed during the current
study [54,55].
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