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Dynamics of viscous droplet coalescence in the confined geometry of optical cells
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The dynamics of quasi-two-dimensional coalescence of isotropic droplets in nematic liquid crystal environ-
ment was studied. Investigations were made in confined geometry of a Hele-Shaw optical cell with different
transverse droplet sizes. The existence of three distinct dynamic regimes was found for coalescence, namely,
short-, middle-, and long-time regimes. The fast dynamics of bridge transformation was visualized. At short
time the dynamics of droplet transformation is similar to the transformation of free (three-dimensional) droplets.
At later stages, two regimes of the coalescence at different timescales are determined by Poiseuille flow.
Experimental data are discussed on the basis of existing theories.
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I. INTRODUCTION

Droplet coalescence is one of the most actively investigated
areas of fluid dynamics [1–15]. Coalescence of liquid droplets
is observed in everyday life, has wide technical applications,
and for many years has been investigated experimentally and
theoretically. It is relevant to different areas of science such
as physics, chemistry, and biology. Theoretical studies of
droplet coalescence are performed using different methods
from scaling analysis to analytical and numerical calculations
[16–23]. In recent decades high-speed cameras and electric
methods are used in experiments that allow investigating pro-
cesses previously unavailable for observation. The advantage
of optical studies with temporal resolution up to about 10−4 s
is the possibility to visualize the shape of a droplet during coa-
lescence. The electric methods allow monitoring coalescence
processes with resolution up to 10−8 s [3,4,24,25]; however,
in these experiments the transformation of droplet form at
coalescence can only be reconstructed on the basis of indirect
data. The driving force of coalescence is surface energy or
linear tension of the domain boundary. The nature of resis-
tance can differ (can be related to viscosity μ or to inertia)
which leads to complicated mechanisms of coalescence in
systems with different materials, dimensions, and geometry.
The majority of investigations so far were performed on three-
dimensional droplets situated in air or in other liquids. The
main attention in experimental investigations and theoretical
calculations was paid to temporal transformation of the bridge
region formed between two droplets at the initial stage of
coalescence. Several regimes of bridge transformation were
found for liquid droplets depending on viscosity of droplets
and environment material: viscous, inertially limited viscous,
and inertial regimes [4,24,25]. A more interesting situation is
realized when the regime of bridge transformation changes
during coalescence [3,4,24].

In recent years substantial attention was given to droplet
coalescence in systems with reduced dimensionality. In par-
ticular, freestanding smectic films [26] are suitable media for
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modeling two-dimensional geometry. These films consist of a
stack of parallel molecular layers. The thickness of the films is
significantly smaller than their transverse size. Coalescence of
islands (areas of larger thickness than the film), holes (areas of
smaller thickness than the film), or isotropic droplets on smec-
tic film are examples of quasi-two-dimensional coalescence
[7–15]. Another example of quasi-two-dimensional behavior
is the coalescence of two droplets in the confined geometry
of a flat optical cell when the transverse size of droplets
is larger than the cell thickness [27–29] or the coalescence
of quasi-two-dimensional droplets with a bath of the same
liquid [30–33]. In thin cells coalescence dynamics is strongly
affected by Poiseuille flow with a large gradient of fluid
velocity across the cell [30]. However, until recently quasi-
two-dimensional droplet coalescence was investigated only on
the latest state of the process when droplet shape relaxes to
circular [27]. Recently it was found that the dynamics of large
nematic droplets on the middle and late stages of coalescence
is described by different laws [28].

In this paper, we present detailed experimental investi-
gations of dynamic droplet evolution at coalescence in the
confined geometry of a thin optical cell (here also referred to
as the Hele-Shaw cell). Investigations were made on isotropic
droplets in a nematic environment. Different regimes of
coalescence were found with different functional temporal de-
pendence of the size of the bridge connecting the two droplets.
Three sequential (following one after the other) regimes and
a crossover between them were not investigated previously
in the same coalescence event both in quasi-two-dimensional
and in three-dimensional coalescence. We used droplets with
different sizes, which allows tracking the establishment and
duration of the middle-time coalescence regime. Characteris-
tic times of different stages of processes and their dependence
on droplet size were determined. Experimental results are
compared with existing theories.

II. EXPERIMENT

In our experiments we used nematic liquid crystal E7 (Syn-
thon Chemicals). The material parameters of E7 can be found
elsewhere [34–36]. The nematic liquid crystal was confined
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FIG. 1. A snapshot sequence of transformation of the droplet
shape at coalescence. Isotropic droplets are located in a homeotropic
nematic sample. Thickness of the cell is 19 µm. Droplet radii R are
21.8 and 22.5 µm. Times after the start of coalescence are 0.016 s
(b), 0.05 s (c), 0.34 s (d), 3 s (e), and 16 s (f).

in a cell between two glass plates. Cells with homeotropic
anchoring on the surfaces and with thickness ranging from
5 to 19 µm were used. The cell with the liquid crystal was
deposited in a temperature-controlled stage (Mettler Toledo
FP95 or Linkam LTS100) mounted on the table of an Olym-
pus BX51 optical microscope. Isotropic droplets nucleated in
nematic liquid crystal on heating near the nematic-isotropic
transition and increased in size. During heating the sample
was monitored visually. Then as the droplets reached neces-
sary size, heating was stopped. We selected a pair of closely
located droplets with approximately the same size without
other droplets in their vicinity. To induce droplet coalescence,
the sample was slowly heated with a typical velocity of
0.05 ◦C/ min so that the droplets grow and come into contact.
The dynamics of the droplet shape during coalescence was
directly recorded using optical microscopy with high-speed
video cameras (Baumer VCXU-2C and Optronis Sprinter).
Frame rates up to 1000 fps were used. Our measurements
cover four decades of time.

III. RESULTS

Figure 1 shows a series of images illustrating the coales-
cence of two isotropic droplets of approximately equal size
(R ≈ 21.8 µm and R ≈ 22.5 µm) in a homeotropic nematic
sample. Three distinct droplet shapes at different coalescence
stages can be specified: two nearly circular droplets with a
small bridge between them (b), waist-type (figure of eight)
droplet (c), (d), and ellipsoidal droplet (e) relaxing into a
circle (f). The duration of the relaxation stage is more than
an order of magnitude larger than the range of existence of a
waist-type droplet. Figure 2 shows schematically the starting
stage of coalescence. R is the radius of the droplets. The
contact region, which, as a rule, is called the bridge region,
is highlighted by a dashed line and is shown in the right part
of the figure. In many experimental and theoretical works the
bridge width W was used as a quantitative characteristic of

FIG. 2. A schematic of two equal droplets at the early stage
of their coalescence (left) and bridge region between the droplets
(right). R, W, and r are droplet radius, bridge width, and curvature
radius at the edge of the bridge, respectively.

the coalescence dynamics. At long times, when the droplet
shape becomes convex, the bridge width W is transformed to
the minor axis of the ellipsoidal droplet.

Figure 3(a) shows the temporal dependence of bridge width
W (t ) for droplets of different initial radii R of about 22.5,
14.6, and 13.4 µm in the cell with gap h = 5.5 µm. The
velocity of the bridge expansion decreases with time. This
behavior correlates with an intuitive consideration. At first,
the main transformation takes place in a small region near
the point of contact, while at the final stage, the material
of the whole droplet relaxes to a circular form that decreases
the flow velocity. The variation of geometrical characteris-
tics on time at coalescence often follows the power law tβ .
To understand more clearly the mechanism of coalescence,
we present in Fig. 3(b) the log-log dependence of W (t ). In
such presentation we can check the existence of coalescence
regimes with power-law dependences W (t ) on time W (t ) =
A(t − t0)β . Clearly visible [Fig. 3(b)] are two nearly linear
dependences in the log-log scale with a crossover between
them. At short time β ≈ 1, later a slower regime was ob-
served. In the 5.5 µm cell the power at the middle stage is
found to be β ≈ 1/4 [Fig. 3(b)]. A similar dependence was
observed in the inverse process at the coalescence of nematic
droplets in an isotropic environment in thin cells [28]. At
long times the functional dependence W (t ) is not clear from
Fig. 3(b). The droplet shape at this stage is close to ellipsoidal.
Deviation of the ellipse from a circular form can be described
by the so-called shape factor D(t ) = [L(t )/W (t ) − 1], where
L(t )/W (t ) is the aspect ratio, and L(t ) and W (t ) denote the
major and minor axes of the ellipse [27,37]. The log-time plot
of D(t ) is given in Fig. 3(c). We see that ln D(t ) decreases
in a linear manner with time, which indicates exponential
relaxation to circular form at the latest state of coalescence
[Fig. 3(c)]. Qualitatively similar behavior in the early and
middle stages of coalescence were observed in a thick cell,
h = 19 µm [Figs. 4(a) and 4(b)]. Two regimes with power-law
dependence of W from time [Fig. 4(b)] were found. However,
at the middle stage of coalescence the exponent β ≈ 1/5
[Fig. 4(b)]. As to the final stage, for droplets of large size
R > 30 µm the relaxation of the ellipse to a circle is hindered.
This did not allow one to conduct measurements in thick cells
on droplets of large size (R/h > 1.5).
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FIG. 3. The width of droplet bridge W versus time for isotropic
droplet coalescence (a). Log-log (b) presentation of the experimen-
tal dependence of W on time. (c) Log-time representation of the
shape factor D = (L/W −1) at droplet relaxation to circular form.
The radii of initial droplets are R1 ≈ 22.5 µm, R2 ≈ 14.6 µm, and
R3 ≈ 13.4 µm. Thickness of the cell is h = 5.5 µm.

Figure 5 compares the coalescence of droplets of approxi-
mately the same size (R = 22.2 µm and R = 22.5 µm) in cells
of different thickness. In the first regime, at the start of coa-
lescence the linear behavior of bridge growth is observed with
approximately the same velocity. The duration of the linear
regime is greater in the thick cell. The crossover from the
first to the second regime in the thick cell takes place at larger
W. After the first crossover the velocity of the bridge growth
decreases. It can be noted that the slope of log-log dependence
after the first crossover is somewhat smaller in the thick cell
than in the thin one [Fig. 5(b)]. After the second crossover the
droplet relaxes in an exponential manner to its equilibrium
circular form [Fig. 5(c)]. The moment of the second crossover
also depends on cell thickness. Contrary to the first crossover,
in the thicker cell it takes place at an earlier time. The slope
of dependence of lnD on time is larger in the thicker cell
[Fig. 5(c)]. So, thick quasi-two-dimensional droplets trans-
form to equilibrium form faster than thin droplets. Meanwhile,
in the cell of the same thickness (Fig. 3 or Fig. 4) small
droplets relax to equilibrium form faster. Both these effects

FIG. 4. Linear (a) and log-log (b) representation of the experi-
mental dependence of W on time in a thick cell with h = 19 µm. The
radii of initial droplets R are about 27.4, 16.7, and 11.3 µm.

are due to surface resistance (decrease of the velocity of the
flow near the surface).

In our experiments the droplets were brought into con-
tact to induce coalescence by slow heating of the sample
so that the droplet radius slowly increased. The heating rate
was typically 0.05 ◦C/ min. The question could arise whether
some of the observed effects might be related to heating. We
performed some measurements with different heating rates
(0.05 ◦C/ min and 0.2 ◦C/ min) in thin and thick cells and on
droplets of close sizes (Fig. 6). We see that the behavior at
all three stages of coalescence is identical and the crossovers
between regimes occur at the same times. At relatively small
rates heating initiates droplet coalescence but does not influ-
ence its process.

IV. DISCUSSION

Coalescence dynamics is determined by the balance be-
tween the forces leading to coalescence and the resistance
due to viscous and inertial forces. The most studied situations
were the two limiting cases when the outer fluid medium is
absent or when the viscosity of the inner medium can be
neglected with respect to the outer medium. These two cases
correspond to the coalescence of liquid droplets in air and the
coalescence of bubbles in liquid [4,24]. The first theory of vis-
cous two-dimensional coalescence was developed by Hopper
[16]. He calculated the time evolution of the shape of two co-
alescing cylinders of equal size. The plane flow perpendicular
to the cylinder axis was considered. So, this case corresponds
to two-dimensional coalescence. The starting state in the cal-
culations was an inverted ellipse (i.e., a figure obtained by
inversion of an ellipse with respect to a unit circle) arbitrarily
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FIG. 5. The time evolution of the bridge width W for droplets
with approximately the same radius but different cell thickness.
Blue open circles: R ≈ 22.2 µm, h = 19 µm; red closed squares: R ≈
22.5 µm, h = 5.5 µm. (a),(b) Dependence of W on time in linear and
log-log representation; (c) log-time representation of the shape factor
D = (L/W −1). The solid lines in (c) are exponential functions.

close to two tangent circles. Hopper has shown [16] that its
evolution takes place through a sequence of inverted ellipses
up to the final state, which is a circle. In Hopper’s theory at the
early stage of the coalescence the bridge between two droplets
is very small and rapidly increases during droplet evolution.
At the middle stage the inverted ellipse has a waist form as
in experiments. At longer time it relaxes to a circle. Hopper’s
equations qualitatively describe the experimental data on the
two-dimensional coalescence of islands in freestanding films
[8,9,11].

The theory of three-dimensional coalescence predicts the
existence of several coalescence regimes [4,24]. For droplets
in the absence of external fluid at the initial stage of coales-
cence the bridge width grows in a linear manner with time,
according to the so-called inertially limited viscous regime
[4,24]. When the influence of the inner fluid can be neglected
and the dynamics is governed by the outer medium, the bridge
should grow as the square root of time [4]. A transition be-
tween different regimes can be observed with a change of
the relative viscosity and density of the inner and the outer

FIG. 6. The time dependence of bridge width W (a),(b) and shape
factor D = (L/W −1) in (c) depend on droplet radius R and cell
thickness h but do not depend on heating rate (0.05 ◦C/ min, solid
symbols and 0.2 ◦C/ min, open symbols). Red closed squares, green
open circles: h = 5.5 µm. Orange closed circles, green open trian-
gles: h = 19 µm.

fluid or in the process of coalescence with an increase of
the bridge size. The relative influence of viscous and iner-
tial forces on dynamics is described by the dimensionless
Ohnesorge number Oh = μ/

√
ργ rS , where μ is the dynam-

ical viscosity, ρ is the fluid density, γ the interface tension,
and rS is the characteristic size [4,20]. A large Ohnesorge
number corresponds to a viscous regime. In our case when
the viscosities of the droplet and the environment are close,
we consider μ as the sum of the viscosities of droplet μ1 and
environment μ2 (isotropic liquid and nematic). The densities
of both phases are about 1 g/cm3 [35]. The viscosity of the
nematic phase is anisotropic. At homeotropic alignment the
viscosity of nematic is close to Miesowicz viscosity ηc [27].
The viscosities of the isotropic phase and nematic close to the
isotropic-nematic transition determined by Oswald and Poy
in a similar compound 7CB [27] are about 2.35 × 10−2 and
3.52 × 10−2 Pa s. The value of the nematic-isotropic interface
tension in 7CB is 1.12 × 10−5 N/m [27]. As the effective size
rS one can take the width of the droplet bridge W, which is in
the range of about 3–80 µm (Figs. 3–6). Using these param-
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eters, we find that the Ohnesorge number in our case varies
from approximately 62 to 320. So, our conditions correspond
to the viscous regime. Large values of a Ohnesorge number
are in part due to the small value of the nematic-isotropic
interface tension. The interface tension between two different
liquids can be substantially larger, for example γ between
droplets and environment in the experiments of Yokota and
Okumura [30] was about 2 × 10−2 N/m.

In our case the situation is more complicated and richer
with respect to three-dimensional coalescence due to the in-
fluence of confined geometry and dissipation related to the
Poiseuille flow [27,30,37]. We found three distinct regimes of
coalescence that change one to another with time (Figs. 3–5).
The first and third regimes exist at the coalescence of both
large and small droplets. The second regime exists in large
droplets (2R > h). The width of the second regime decreases
with the decrease of the droplet radii [Figs. 3(b) and 4(b)] and
disappears at the coalescence of small droplets. Some of the
listed regimes were observed in Hele-Shaw cells or in three-
dimensional geometry. However, to the best of our knowledge,
three sequential regimes following one after the other with
different functional dependence were never investigated in
any materials and geometries. It should be noted also that
the geometry of experiment sometimes imposes restrictions
on the final stage of coalescence, for example, in experiments
on pendant droplets [2,3,24]. In such experiments usually it
is possible to investigate only the early stage of coalescence
when the size of the bridge does not exceed the initial droplet
radius. In our study it is possible to follow the modification of
the droplet shape from the start of coalescence until relaxation
to the circular form.

Now we discuss in detail every observed coalescence
regime.

A. Short-time regime

In the beginning of the coalescence we observed linear
dependence of the bridge size W on time (Figs. 3–5). The rate
of bridge growth is nearly the same for droplets of different
size and cell thickness. The main transformation takes place
near the contact point of two droplets when 2r ≈ (W/2)2/R
(Fig. 2) is smaller than h. After the start of coalescence
the material moves mostly in the meniscus of the droplets.
We may guess that at this stage the cell surface and the
Poiseuille flow do not play an essential role in coalescence
dynamics and the situation is similar to the coalescence of
free droplets. According to Hopper’s theory [16] for two-
dimensional coalescence the functional dependence of bridge
expansion is linear with logarithmical correction. In the years
following Hopper’s work, both three-dimensional and quasi-
two-dimensional coalescence were studied using different
theories and numerical calculations [17–23]. Scaling theory
was widely used for prediction and for explanation of the evo-
lution of a bridge formed at droplet coalescence. According to
a simple consideration for a viscous droplet at early time the
scaled bridge width W/2R is inversely proportional to scaling
time W/2R = A1t/τ , where τ = μR/γ [21,24]. So, the bridge
width grows with capillary velocity VC = γ /μ multiplied by
a dimensionless coefficient A1 of order of unity. Eggers et al.
[18] obtained the early time asymptotical dependence for

systems of different dimensionality W/2R ∼ A1t/τ | ln(t/τ )|,
where coefficient A1 contains a multiplier (α−1) that depends
on the dimensionality of the system α. At the coalescence of
droplets in air μ stands for the viscosity of droplets, and at the
coalescence of bubbles, for the viscosity of the environment.

In previous experiments [1,3,21,24] the expansion of the
bridge with a nearly linear dependence on time was observed.
So, our results about nearly linear dependence of W on time
support the guess that at the early stage the coalescence of
sandwiched droplets can be considered as free coalescence. A
similar assumption was previously made by Yokota, Okumura
[30,32], and Chinaud et al. [31] who investigated the merging
of a flat droplet composed by a glycerol-water mixture with a
bath of the same mixture. In their cell the single droplet was
surrounded by low-viscosity oil and sandwiched between two
glass plates with a large gap of about 1 mm. The time depen-
dence of the bridge width W between droplet and bath was
measured. The linear dependence of the bridge width at short
time was found [30–33] that correlates with our observation
for a different process, namely, coalescence of two droplets.

Referring to the dimensionless expression W/2R ≈ t/τ the
experimental data for W were scaled by 2R and time by τ

so that the data at short time collapsed on the same line
[Fig. 7(a)]. In such way we obtained the characteristic time
τ [Fig. 8(a), closed circles for cell thickness 5.5 µm; open
circles for cell thickness 19 µm]. For free coalescence the
characteristic time τ depends on R in a linear manner and
practically does not depend on cell thickness within the range
of experimental error.

B. Middle-time regime

After the linear dependence in the short-time regime
(Figs. 3–5) we did not find a transition to square root de-
pendence which was observed in a number of experiments
[3,4,21]. Instead, we observed a smoother dependence W ∼
tβ with β about 1/4 in the cell with gap 5.5 µm and about 1/5 in
the thick cell with gap 19 µm (Figs. 3–5). Crossover times be-
tween the first and the second regime increase with thickness
of the cell (Fig. 5) as expected for droplets with a larger menis-
cus. The transition to the second regime is related to confined
geometry when dissipation connected with the Poiseuille flow
(surface resistance) is dominant. Such dissipation was con-
sidered by Yokota and Okumura [30]. The velocity gradient
results from Poiseuille flow between cell surfaces. So, dissi-
pation related to gradient along the bridge (first stage) changes
during the crossover to dissipation related to gradient perpen-
dicular to the bridge (later stage). In the second regime the rate
of change of the surface energy is estimated as γ d (W h)/dt
and Poiseuille dissipation μ(V/h)22W hr in volume 2W hr,
where V ≈ dW/dt and 2r ≈ (W/2)2/R (see Fig. 2). This con-
sideration gives W ∝ (γ Rh2t/μ)1/4 similar to [30] or scaling
W/2

√
Rh = A2(t/τs)1/4 with τs = (μ/γ )R and with dimen-

sionless constant A2. This power dependence correlates with
our data for thin cells (Fig. 3; h = 5.5 µm).

Keeping in mind that the power function W ∼
[(t − t0)/τs]β with exponent β = 1/4 is in agreement
with the theoretical dependence for merging of a droplet
with a straight boundary, we scale the experimental data
for the 5.5 µm cell varying τs and t0 to obtain the universal
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FIG. 7. Scaled experimental data demonstrating three different
regimes. (a) The experimental dependence of scaled bridge width
W/2R on scaled time (t − t0)/τ for droplets of different sizes that
demonstrates linear dependence at the initial stage of coalescence.
Thickness of the cell h = 19 µm. (b) The dependence of W/2

√
Rh

on (t − t0 )/τs. The data were scaled in the middle-time region, h =
5.5 µm. (c) The dependence of scaled shape factor D/D0 on (t −
t0)/τr shown for the late stage of coalescence. The solid line is the
dependence ln(D/D0 ) = −t/τr . h = 5.5 µm.

dependence of W/2
√

Rh on time scaled by τs. Here, we
take A2 = 1. For different droplet radii the experimental
dependence ln(W/2

√
Rh) collapsed onto the master curve

by a suitable choice of τs [Fig. 7(b)]. Starting time t0 was
close to the value determined from the linear dependence
at the initial stage. For the data in Fig. 7(b) the universal
dependence with exponent β = 1/4 is observed over two
decades of dimensionless time (t − t0)/τs. The characteristic
times τs obtained in such a way are shown in Fig. 8(a) by
diamonds. τs depend on R in a linear manner in accordance
with the arguments given above. The dependence is the
same as for the early-stage times τ , but the values of τs are
about six times larger [Fig. 8(a)]. It should be noted that the
numerical coefficient A2 in the scaling relation is not known.
If a different value of A2 is taken instead of A2 = 1, it is
equivalent to multiplication of all the characteristic times

FIG. 8. (a) Characteristic times for different stages of coales-
cence and different film thickness. Circles, diamonds, and squares
are characteristic times (τ , τs, and τr) for early, middle, and final
stages of coalescence. Closed symbols: h = 5.5 µm; open symbols:
h = 19 µm. Early-stage characteristic times τ are close in thin and
thick samples. The characteristic times for the later stages are given
for the thin cell (h = 5.5 µm). The straight lines are guides to the eye;
the solid lines have the slope 1, the dashed line corresponds to ∼ R3

dependence. (b) Characteristic times at the initial-stage τ (circles),
rescaled middle-stage τ ∗

s , and late-stage τ ∗
r times rescaled to Rµ/γ

for the 5.5 µm cell (diamonds and squares).

by the same coefficient (A2)4 and it does not change the
functional dependence of τs on R. In particular, we can take
the value of A2 such that the rescaled characteristic times
τ ∗

s [Fig. 8(b); diamonds] become close to the times at the
early stage τ . The values of τ ∗

s in Fig. 8(b) correspond to
A2 ≈ 0.64. We may guess that our results allow estimating
the numerical coefficient A2. It was possible because we
observed several regimes of coalescence in a single event.
Our value of A2 can be compared to the results of Yokota and
Okumura [30]. The value of A2 estimated from the data [30]
at the initial and middle stages of coalescence is also found
to be of the order of unity, A2 ≈ 1.2. The difference with
respect to our result (A2 ≈ 0.64) can be related, in particular,
to different geometry of coalescence, namely, the coalescence
of two circular droplets in our case and the coalescence
of a circular droplet with a bath in [30]. Another possible
reason is that in [30] the droplet is surrounded by a liquid of
considerably smaller viscosity, and in our case the viscosity
of the surrounding medium is comparable to the viscosity of
the droplet.
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As to our data for the 19 µm cell, we remind one that there
is some difference in slope of ln(W ) in the middle-time range
with respect to thin cells (Figs. 3–5). Although the difference
in slope is small, it is clearly reproduced in the measurements.
Power-law dependence with exponent β = 1/5 has not been
observed previously and now its origin is not clear. The reason
could be that the ratios of R/h in the case of the 19 µm cell are
relatively small, and the condition of quasi-two-dimensional
geometry used to derive the functional dependence [30] is not
fully applicable.

C. Final regime, relaxation to circular form

Relaxation dynamics of elliptical or ellipsoidal droplets
[38], vesicles [39,40] to equilibrium circular or spherical
shape is essential for fundamental sciences, technical appli-
cations, and biology. In previous experiments external forces
(electric field, elongation flow) were applied to create a
nonequlibrium droplet shape [39,40]. In our case a nearly
elliptical droplet is formed on the final stage of droplet coa-
lescence [Figs. 1(e) and 1(f)]. In theoretical works different
starting shapes of the coalescing droplet were considered.
In Hopper’s theory [16] the droplet boundary is an inverse
ellipse, which is represented by a bicircular curve of fourth
degree, also called the lemniscate of Booth [41]. On the final
stage of relaxation to circle the shape of the inverse ellipse
is very close to ellipse. The transformation of the shape was
described during the whole coalescence process by one relax-
ation time τ = μR/γ [16]. Exponential relaxation to circular
form was observed for smectic islands in freestanding films
[9] that can be considered as a quasi-two-dimensional system.
In freestanding films and Hele-Shaw cells the physics of the
driving force is the same, but in Hele-Shaw cells the resis-
tance to droplet relaxation is related to Poiseuille flow. This
does not change the functional (exponential) dependence of
relaxation during the final stage, but essentially increases the
relaxation time τr ∝ BR3μ/h2γ , where B is a nondimensional
constant B ≈ 23/2/0.38 [27,37]. Brun et al. [37] and Oswald
and Poy [27] have shown that in the limit of small distortion
D(t ) = D(0) exp(−t/τr ). The relaxation time can be written
in our case as

τr = BR3(μ1 + μ2)/h2γ . (1)

Exponential relaxation is demonstrated in Fig. 7(c). Time
is scaled by τr . Shape factor D(t) is scaled by a suitable value
D0 so that the data at the late-stage collapse on the same curve
ln(D/D0) = −t/τr . Relaxation times τr determined from ex-
ponential dependence on the final stage of coalescence are
shown by squares in Fig. 8(a). The values of τr are approx-
imately proportional to R3 in accordance with (1). We can
compare the relaxation dynamics with the characteristic time
at the early stage of coalescence. Based on the theoretical
expression (1) we scale our values τr found from experiment
by multiplying them by h2/BR2 so that the expression for
the characteristic time coincides with the equation τ = μR/γ .
The rescaled relaxation times τ ∗

r are shown in Fig. 8(b) by
red squares. It is remarkable that the rescaled values fall in
the same range as the times for the initial stage. For the thick
cells we do not analyze the data at the relaxation stage, since
the range of values R/h < 1.5 for our measurements in the 19

µm cell is smaller than the range of ratios R/h of the quasi-
two-dimensional geometry considered in [27,37]. To analyze
the results for R/h < 1.5 quantitatively, a theory has to be
developed.

From the dependence of characteristic times on R we can
estimate the capillary velocity γ /μ which governs the coa-
lescence dynamics. At the initial stage of coalescence, the
bridge width grows linearly with time with approximately the
same rate in thick and thin cells. The solid line in Figs. 8(a)
and 8(b) corresponds to ratio τ/R = 3.38 × 10−3 s/µm. The
dependence of the bridge width at the initial stage is given
by W/2R = (t/τ ) = (γ /μR)t , so we get γ /μ = (τ/R)−1 ≈
3 × 10−4 m/s. Taking for comparison the values of γ and
μ determined by Oswald and Poy [27], we get the value of
capillary velocity about 2 × 10−4 m/s. Note that if we take the
value of interface tension between the isotropic and nematic
phases 1.8 × 10−5 N/m as determined by Faetti and Palleschi
[42], the capillary velocity is about 3.1 × 10−4 m/s, which is
very close to our value.

V. SUMMARY

About 40 years ago, Hopper in his seminal work [16] inves-
tigated two-dimensional coalescence of two viscous cylinders.
The obtained analytical expressions described structure trans-
formation on different stages of coalescence using one
characteristic time τ = Rμ/γ . Since then, experimental and
theoretical studies of two-dimensional and three-dimensional
coalescence of droplets and bubbles have shown that the sit-
uation can be essentially complicated. Several coalescence
regimes were found (inertial, viscous, and intermediates) that
can be observed at the same coalescence event. Then, it was
shown that confined geometry and Poiseuille flow open ad-
ditional possibilities for coalescence dynamics. In our paper
we describe in details the structure features of coalescence
in Hele-Shaw cells on different stages of coalescence. Time
dependence of the bridge width and droplet shape factor was
experimentally determined for droplets of different size in
cells of different thickness. Experimental results are discussed
on the basis of existing theoretical models. In the beginning
of coalescence, the rate of bridge growth does not depend
on droplet radius and cell thickness. In the middle and final
stages, the coalescence dynamics is determined by Poiseuille
flow. For thin cells, characteristic times τ = Rμ/γ obtained
from initial, middle, and relaxation stages of coalescence can
be collapsed on the same dependence on R. Late-stage relax-
ation is faster in thicker cells.

Several aspects can be explored in further investigations.
In particular, it is tempting to study the crossover from quasi-
two-dimensional to three-dimensional coalescence of droplets
and clarify the origin of the difference in power-law exponent
at the intermediate stage in thin and thick cells. These would
be subjects of future studies.
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