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Transformation of polar nematic phases in the presence of an electric field
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Only a few years have passed since the discovery of polar nematics, and now they are becoming the most
actively studied liquid-crystal materials. Despite numerous breakthrough findings made recently, a theoretical
systematization is still lacking. In the present paper, we take a step toward systematization. The powerful
technique of molecular-statistical physics has been applied to an assembly of polar molecules influenced by
electric field. Three polar nematic phases were found to be stable at various conditions: the double-splay
ferroelectric nematic N2D

F (observed in the lower-temperature range in the absence of or at low electric field),
the double-splay antiferroelectric nematic NAF (observed at intermediate temperature in the absence of or at
low electric field), and the single-splay ferroelectric nematic N1D

F (observed at moderate electric field at any
temperature below transition into paraelectric nematic N and in the higher-temperature range (also below N) at
low electric field or without it. A paradoxical transition from N1D

F to N induced by application of higher electric
field has been found and explained. A transformation of the structure of polar nematic phases at the application
of electric field has also been investigated by Monte Carlo simulations and experimentally by observation of
polarizing optical microscope images. In particular, it has been realized that, at planar anchoring, NAF in the
presence of a moderate out-of-plane electric field exhibits twofold splay modulation: antiferroelectric in the
plane of the substrate and ferroelectric in the plane normal to the substrate. Several additional subtransitions
related to fitting the confined geometry of the cell by the structure of polar phases were detected.

DOI: 10.1103/PhysRevE.109.014701

I. INTRODUCTION

One of the main trends in modern science today is the
development of new materials, which can be effectively ma-
nipulated by electric field for various humans needs, from
displays to medicine. Liquid crystals (LCs) fulfill many
demands. It was noticed that LCs possessing spontaneous
polarization can be better candidates for novel applications:
from fast energy-saving and compact electronics to artificial
muscles. However, the layered structures of smectics (the
only class of LCs known previously to possess spontaneous
polarization) are poorly resistant to mechanical stress. Over
the past few years, several new classes of nematic LCs (which
are sustainable to mechanical stress) with unique properties
originating from the unique symmetry of individual molecules
have been discovered.

For the past few decades, the formation of spontaneous
polarization in nematic materials has been actively discussed
[1–4]. Liquid crystals consisting of bent-core molecules were
considered as the main candidates, since they have a sig-
nificantly (several orders of magnitude) higher flexoelectric
coefficient [5]. Indeed, nanosized polar clusters in the nematic
phase were found for this and other kinds of mesogens [6,7].
However, these materials do not possess macroscopic polar-
ization in the absence of external field. Meanwhile, proper
ferroelectricity was found in columnar phases composed of
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umbrella-shaped mesogens [8–10] and in reentrant smectic
phases [11–15].

In 2017, the two scientific groups independently reported
on the existence of polar nematic phases in LCs composed
of wedge-shaped molecules [16–18]. In Refs. [19,20] it was
realized that the polar nematic phases can demonstrate spon-
taneous splay and flexoelectricity, while the existence of splay
flexoelectricity in nematic LCs was predicted earlier theoret-
ically in Ref. [21]. It was also noticed in Refs. [22–26] that
minor changes in the molecular shape can sufficiently modify
the phase sequence.

In Ref. [16] it was demonstrated that DIO material
possesses at least three nematic phases: a conventional para-
electric nematic phase (N or M1) at higher temperature, a
ferroelectric nematic phase (NF or MP) at lower tempera-
ture, and some intermediate phase (NX or M2) in between
them. M2 is also reported as SmZA phase in Ref. [27], where
the evidence of translational correlations of DIO molecules
is presented. In Refs. [17,18] and later in Ref. [28] it was
confirmed that RM-734 material demonstrates NF , but does
not demonstrate NX . The anomalously high dielectric permit-
tivity and dielectric anisotropy were found in the NF phase
in both DIO and RM-734 materials [29]. The value of spon-
taneous polarization in NF is comparable with that for the
solid-state ferroelectrics [30]. At present, many other polar
nematic (including chiral and biaxial) phases were found
in different materials and mixtures [31–34]. Our theoretical
studies presented in Ref. [35] suggest that the intermediate
M2 (or NX ) phase observed in DIO can be the antiferroelec-
tric double splay nematic phase (in correspondence with the
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definition and in complete agreement with Refs. [36,37])
forming the periodic 2D-splay domains of several microm-
eters size. The same conclusions follow from dielectric
measurements and polarizing optical microscope (POM) ob-
servations in Refs. [16,38], measurements of spontaneous
polarization and piezoresponse force microscopy observations
in Ref. [28], and dielectric spectroscopy measurements [39].

Experimentally, it is becoming more and more evident [40]
that ferroelectric nematic phase (MP or NF ) also possesses
the splay domains. For the uniformity of description, here and
below we are going to use the N1D

F and N2D
F notations by com-

bining “NF ” with “single-splay” or “double-splay” definitions
introduced in Refs. [36,37]). To be consistent, furthermore,
we are going to use the NAF notation for M2 (NX ), which is
antiferroelectric.

There are many expectations about applications of nematic
ferroelectrics (NFs). Generally, their behavior at application
of electric field is not trivial, particularly in combination with
electric field and surface-related effects [41,42]. NFs are good
candidates in nonlinear optics [43]. Interesting effects related
to the motion of ferroelectric nematic droplets in isotropic
melts are considered in Ref. [44], the light-induced branched
structures of NF droplets on the surfaces are observed in
Ref. [45], and the optically controlled motion of NF droplets
on a ferroelectric substrate was observed in Ref. [46]. Various
polarization topologies in confined NFs were discussed in
Ref. [47]. Recently, the behavior of ferroelectric nematics
confined in microchannels under action of electric field was
investigated in Ref. [48].

The discussion on how many polar nematic phases can
exist, which of them are splayed and which are uniform,
which of them are proper and which are improper, is ongoing.
Recently, Ref. [49] reported the existence of three kinds of
NF phases. In the present paper, we justify the existence of
three (macroscopically uniaxial and achiral) polar nematic
phases. In particular, we expect that all three polar phases
can be observed in DIO material. We are going to present
theoretical explanations for why all three polar phases are
splayed and improper ferroelectric. At the same time, since
the splay domain size can achieve several micrometers in
some temperature ranges, the splay director deformation can
be suppressed by the surfaces if the cell thickness is lower
than the domain size.

The paper is organized as follows. In Sec. II the structures
of polar nematic phases merged from theory, computer sim-
ulations, and experiment will be outlined and systemized. In
Sec. III the transformations of polar nematic phases induced
by variation of temperature and electric field will be investi-
gated. In Sec. IV the theoretical approaches used for analysis
of the structures of polar nematic phases will be presented.
Finally, in Sec. V the conclusions will be made.

II. THE STRUCTURES OF POLAR NEMATIC PHASES
MERGED FROM THEORY, COMPUTER SIMULATIONS,

AND EXPERIMENT

A. Generalization of elastic free energy for the presence
of flexoelectric and induced polarizations

It is known that the flexoelectric effect is crucial for the
formation of various polar nematic phases. We are considering

FIG. 1. A pair of interacting polar molecules. Adapted from
Ref. [35].

polar molecules similarly to that presented in Ref. [35].
Technically, the flexoelectric term in the free energy can be
obtained from consideration of specific symmetry of the pair
molecular potential. In particular, the effective pair molecular
interaction potential U e f

12 (a1, a2, r12) can be approximated by
spherical invariants T� L λ(a1, u12, a2), where a1 and a2 are the
principal axes of molecules 1 and 2 located at points r1 and
r2, respectively, and u12 ≡ r12/|r12| is the unit intermolecular
vector, r12 ≡ r2 − r1 (Fig. 1):

U e f
12 (a1, a2, r12) = −

∑
�,L,λ

J�Lλ(r12)T�Lλ(a1, u12, a2). (1)

Introducing the polar P(r) and nonpolar S(r) orientational
order parameters

P(r) ≡
∫

f [(a · n), r]P1(a · n)d2a,

S(r) ≡
∫

f [(a · n), r]P2(a · n)d2a, (2)

where P1 and P2 are the first and second Legendre polynomi-
als, and f [(a · n), r] is the orientational distribution function
for molecules having principal axes a with respect to director
n at point r, and using the gradient expansion of the director
[50,51], we obtain the flexoelectric term as the average of
T110(a1, u12, a2) and T011(a1, u12, a2) polar invariants [35]:

〈J110(r12)T110(a1, u12, a2)

+ J011(r12)T011(a1, u12, a2)〉 �⇒ λP(∇ · n), (3)

where λ is proportional to the flexoelectric coefficient. The
elastic free-energy density can be generalized by inclusion
of the flexoelectric splay term and the term related to the
presence of external electric field:

∂Fn

∂V
= 1

2
K11 {n (∇ · n) − λP}2 + 1

2
K22(n · [∇ × n])2

+1

2
K33[n × [∇ × n]]2 − εa(E · P), (4)

where P(r) is the vector having absolute value P(r) [see the
definition in Eq. (2)] and (at positive P) parallel to a particular
direction (one of the two opposite directions) of pseudovector
n(r); K11, K22, and K33 are the splay, twist, and bend elas-
tic constants, respectively; K11λ is the flexoelectric constant
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FIG. 2. Director distribution in NAF (a), N2D
F (b), and N1D

F (c). Green corresponds to the positive splay and polarization, red corresponds to
the negative splay and polarization; the x-axis is either along the domain symmetry axis in (a) and (b) or along the symmetry plane in (c); the
r-axis is perpendicular to the x-axis; θ is the angle between the local director n and the x-axis; P is the local polarization.

[Eq. (3)]; and εa is the dielectric anisotropy of the material. At
positive λ, polarization P is parallel to director n at positive
splay (∇ · n), and it is antiparallel to n at negative splay. Here
we should note that Eq. (4) is only a part of the free-energy
density, which explicitly depends on director n, but it does
not contain all the terms depending on the polarization value
P. The total free-energy density will be considered in Sec. IV.

B. Equilibrium structures of polar nematic phases

To obtain the equilibrium structures of polar nematic ma-
terial at various conditions, we should minimize the total
free energy independently with respect to director n(r) and
orientational distribution function f [(a · n), r]. The whole
director-dependent part of the free-energy density is presented
in Eq. (4), while the total free-energy density depending ex-
plicitly on the orientational distribution function f [(a · n), r]
will be considered in the framework of molecular statistical
theory in Sec. IV A. One notes, however, that Eq. (4) contains
also polarization P(r), which is determined by the function
f [(a · n), r] in correspondence with Eq. (2), and therefore
the director and the orientational distribution function are
correlated. This correlation will be considered in the frame-
work of perturbation theory in Sec. IV B. The theoretical part
requires, however, some geometrical simplification, such as
consideration of the axial and planar symmetries. Within these
symmetry restrictions, at various conditions we find the three
basic structures, which are presented in Fig. 2. At the same
time, from computer simulations (Sec. IV C) we can see the
more detailed information about the transformations between
structures presented in Fig. 2, and the transient structures have
obviously more complex geometry. The first basic structure is
the double-splay antiferroelectric nematic phase NAF (desig-
nated also NX or M2 elsewhere) with alternating signs of the
splay and polarization in space. The other two basic structures,
stable at different conditions, are the double- and single-splay
ferroelectric nematics, N2D

F and N1D
F , respectively. N2D

F and
NAF are composed of quasicylindrical periodic domains, while
N1D

F is composed of planar periodic domains. For each struc-
ture presented in Fig. 2, the x-axis can be introduced, to which
the director is parallel in the middle of each domain. In N2D

F
and NAF , the director exhibits variation along radius r of the

cylinder, while in N1D
F the director exhibits variation along

the single space direction (for uniformity of equations, also
designated as r). In all cases, r is perpendicular to x. In ferro-
electric phases, N2D

F and N1D
F , the projection of polarization on

the x-axis does not alternate in sign, while in antiferroelectric
NAF , polarization alternates periodically in sign along each
Cartesian coordinate.

The electric field–temperature phase diagram is presented
in Fig. 3(a), while the temperature dependencies of the domain
radius and characteristic polar order parameter at E = 0 are
presented in Figs. 3(b) and 3(c), respectively. From theory
(Sec. IV B) it follows that, within each polar phase, the do-
main radius rm increases and polarization P∗ decreases with
increasing temperature, while multiple rm P∗ remains con-
stant. At zero electric field, N2D

F minimizes the free energy
at lower temperature, N1D

F phase minimizes the free energy
at higher temperature, and NAF minimizes the free energy in
between. The domains in N2D

F and NAF are visible with a mi-
croscope [see Figs. 4(a) and 4(b), respectively]; their typical
size is several micrometers. In the absence of an electric field,
the domains in N1D

F at planar anchoring [Fig. 4(c)] are not vis-
ible, because the energy-optimal configuration of the domains
makes no optical difference between any points on the glass
substrate. In the absence of electric field, the antiferroelectric
single-splay phase [Fig. 4(d)] possesses the same free energy
as the ferroelectric one. The plane of each arc in Figs. 4(c) and
4(d) can be vertical or tilted. At moderate values of electric
field, all the splay nematic phases transform into N1D

F [the
orientations of arcs in N1D

F in the presence of moderate electric
field are shown in Fig. 4(e), they can be vertical (β = 0)
or tilted (β �= 0) to fit the cell gap] and at higher values of
electric field—into paraelectric N having uniform director
orientation.

III. TRANSFORMATIONS OF POLAR NEMATIC
PHASES INDUCED BY VARIATION OF

TEMPERATURE AND ELECTRIC FIELD

A. Transformation of NAF and N2D
F into N1D

F in electric field

Let us consider the variation of NAF in the electric field,
as it seen from POM and computer simulations (Sec. IV C).
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FIG. 3. Electric field–temperature phase diagram (a); Tempera-
ture dependencies of the domain radius (b) and characteristic polar
order parameter (c) at E = 0. Green arrow in (a) tentatively corre-
sponds to the phase sequence with temperature variation at fixed
E �= 0. Red arrows with numbers in (a) and (b) correspond to the
temperatures of specific phase transitions observed experimentally
(Sec. III B). Dashed blue line in (b) corresponds to the half-thickness
of the cell. Molecular parameters are the same as in the caption of
Fig. 12.

FIG. 4. POM images of quasicylindrical domains in N2D
F (a) and

NAF (b); orientation of planar domains (schematic illustration) in N1D
F

(c) and N1D
AF (d) at E = 0; orientation of planar domains in N1D

F at
E �= 0. In (a) and (b) DIO material is used; cell thickness is 10 µm.
Images of (a) and (b) are reproduced with permission from Ref. [16].
Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,
2017.

The 5-µm-thick planar cell was filled with DIO liquid crystal
in an isotropic state. After that, the sample was examined by
a polarizing optical microscope (Nikon V100N Pol, Japan)
equipped with a heating stage (TMS-93 Stage Temp Con-
troller and THMS 600 microscope stage, UK). The voltage
from a waveform generator (Agilent 33220A, USA) was ap-
plied to the ITO-coated cell substrates.

Upon cooling in the absence of electric field, NAF is ob-
served between 68.8 and 84.5 ◦C [16]. The 1 kHz frequency
electric field of various amplitude was applied at several
temperatures within this range. The images of the structure
variation at application of electric field are presented in Fig. 5.
From computer simulations (Sec. IV C) if follows that the
antiferroelectric splay remains in the plane of the substrate
and gradually disappears when the voltage increases, while
the ferroelectric splay arises in the direction perpendicular to
the glass and gradually increases. Starting from a particular
voltage, the stripes corresponding to the director periodic
modulation in space rotate from longitudinal (parallel to the
rubbing direction) to transverse (perpendicular to the rubbing
direction). In the 5-µm-thick planar cell, in correspondence
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FIG. 5. POM images of the DIO planar cell (cell thickness is 5 µm) at several voltages (sinusoidal signal, 1 kHz) and temperature T = 74 ◦C
(Row 1), 70 ◦C (Row 2), and 81 ◦C (Row 3). P and A are the directions of polarizer and analyzer, R is the rubbing direction.

with Fig. 3(b), the domains are bigger than the cell thickness
almost in the whole temperature range of NAF and they are
therefore suppressed at the ground state (at E = 0) by the
surfaces. From birefringence measurements in Ref. [35] we
also conclude that, at 0 V, the conventional paraelectric ne-
matic phase is observed. Temperature 74 ◦C (Row 1 in Fig. 5)
corresponds to the middle of the temperature range of NAF

in the infinite bulk. At 0.6 V the structure with longitudinal
stripes, which is similar to the one obtained in computer sim-
ulations, arises. When the voltage increases, one can observe
the gradual disappearance of the longitudinal stripes and the
appearance of the transverse ones. At 70 ◦C (Row 2 in Fig. 5)
the AF to F transition threshold [Fig. 3(a)] corresponds to the
lower voltage, therefore 0.6 V is a sufficiently large voltage
to cross over directly to the ferroelectric state, and only the
transverse stripes are observed. One notes that at each trans-
verse stripe, the middle of each arc presented in Fig. 4(e) fully
satisfies the planar alignment at the vertical orientation of the
director variation plane (β = 0). When the voltage increases,
the director modulation first increases, but at higher voltage
it starts decreasing again. At 81 ◦C (Row 3 in Fig. 5) the
situation is generally the same. First, the longitudinal stripes
appear, then the transverse ones. Surprisingly, at any temper-
ature, at higher voltage the structure is targeted to become
planar paraelectric again. This mainly happens due to a dis-
balance between the induced and flexoelectric polarizations,
which is discussed in detail in Sec. IV B.

From experimental observation it also follows that trans-
formation from N2D

F to N1D
F induced by electric field also

happens continuously, while all the phase borders presented
in Fig. 3(a) follow from consideration of simplified geome-
tries (either planar or cylindrical) and rather indicate tentative
places on the diagram where the continuous transforma-

tions between phases should happen. In Fig. 6, POM images
of a planar cell of DIO material at 67 ◦C (just below the
temperature of transition from N2D

F to NAF ) are presented
upon application of 0.4 V, 1 kHz electric field. The major
part of the cell [Fig. 6(a)] represents a conjugation of N2D

F
cylindrical domains with each other, similar to those presented
in Fig. 2(b). Another part of the cell [Fig. 6(b)] demonstrates a
continuous transformation from N2D

F to N1D
F . The quasicylin-

drical domains continuously transform into the elongated ones
and then to the linear stripes. Here the darker dots and lines
correspond to θ → 0 and π (the places where the director is
parallel to electric field—at cylinder axes or in the middle
planes of planar domains; see the definition of angle θ in
Fig. 2). The brighter surrounding corresponds to θ → π/2
(the places where the director is parallel to the substrate—at
the domain periphery). At higher voltage, the whole system
transforms into N1D

F and then into paraelectric N .

FIG. 6. POM images of the two parts of the cell with DIO at
67 ◦C under 0.4 V, 1 kHz electric field: (a) mostly N2D

F ; (b) transfor-
mation from N2D

F to N1D
F .
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FIG. 7. POM images of the DIO planar cell (cell thickness is
5 µm) at applied fixed electric field (0.9 V, sinusoidal signal, 1 kHz)
during the cooling cycle (temperatures are indicated in the bottom
right corners). P and A are directions of polarizer and analyzer, while
R is the rubbing direction.

B. Variation of the structure of DIO
on cooling at applied voltage

Let us consider the temperature-induced phase transitions
in a polar nematic in the presence of electric field. The 5-µm-
thick planar cell filled with DIO material was cooling from
99 ◦C down to 27 ◦C at an applied 1 kHz frequency electric
field with constant amplitude 0.9 V. The images in crossed
polarizers were registered each half-degree. The phase se-
quence generally appears to be completely different from that
observed without electric field. Particular key images are pre-
sented in Figs. 7 and 8 (see also Video 1 in the supplemental
material [52] ). The images practically do not change between
99 and 87 ◦C (see Fig. 7). Presumably we observe the uniform
paraelectric nematic with planar orientation of the director in
this temperature range. One notes that our theoretical phase
diagram presented in Fig. 3(a) predicts the existence of the
N1D

F polar phase below 93 ◦C. However, in correspondence
with Fig. 3(b), an equilibrium domain length (corresponding
to the infinite bulk of LC) in the temperature range between
93 and 87 ◦C is predicted to be huge, and, in realistic confined
geometry, the splay domains are most likely suppressed by the
substrates. However, below 87 ◦C the images start gradually
becoming darker, and some longitudinal stripes arise.

The red arrows with numbers presented in Figs. 3(a) and
3(b) reflect the temperatures of particular phase transitions
observed in DIO at applied fixed voltage, and Arrow 1 ten-
tatively corresponds to the realistic temperature of transition
from paraelectric N to N1D

F in DIO confined between parallel
glasses (87 ◦C). At 87 ◦C the equilibrium domain size in N1D

F
is still greater than the cell thickness. However, we expect
that the highly tilted (almost parallel to the substrate, β →

FIG. 8. POM images of the DIO planar cell (cell thickness is
5 µm) at applied fixed electric field (0.9 V, sinusoidal signal, 1 kHz)
during the cooling cycle (continuation of Fig. 7).

π/2) single-splay domains can already exist. The electric
field would like to make the director variation plane vertical
[perpendicular to the substrates, β = 0 in Fig. 4(e)], but in this
case the splay domains would not fit the gap between glasses.
In this situation, both arms of each arc in Fig. 4(e) choose
the longitudinal (parallel to the rubbing) orientation, and this
could be the origin of the longitudinal stripes observed in
the temperature range between 87 and 82 ◦C. When the tem-
perature decreases down to 82 ◦C, the domain size decreases
continuously [see Fig. 3(b)], therefore the arcs presented in
Fig. 4(e) gain larger and larger vertical projection (which is
favorable for the coupling of flexoelectric polarization with
electric field), and the images in crossed polarizers are be-
coming darker and darker.

Surprisingly, the structure variation does not demonstrate
any irregular variation near the transition into NAF registered
at 84.5 ◦C in Ref. [16] by DSC measurements in the absence
of electric field, which indirectly indicates that the structure
of LC does not have any tendency to return to the ground
state between pulses of high-frequency electric field. An easy
explanation for this effect is that the switch-off relaxation time
should be much longer than the inverse frequency of electric
field in this temperature range. This could be related to the fact
that flexoelectric polarization inversion requires the director
splay inversion in the whole space. However, the director is
trapped by its own periodic structure. The alternative to the
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director’s continuous motion is the total director disruption
in the whole space, the energy cost of which is much higher.
Since the director is determined on the scale, which is much
larger than molecular size, the director motion is analogous to
that of the Brownian particles, whose velocity is much slower
than molecular velocity. Our expectation following from the
Einstein-Smoluchowski equation is that the director should
not move faster than several micrometers per second, which
means that application of 1 kHz frequency electric field should
definitely trap the director distribution within the 5-µm-thick
cell, since the director can only move a few nanometers per
pulse. If the frequency of electric field is between the inverse
τon and τoff , the director should stay in the position of a partic-
ular (say, positive) pulse, and should not return to the ground
state between pulses. Detailed analysis of all the images of
DIO material obtained at application of the high-frequency
electric field demonstrates good correlation with our theoret-
ical predictions obtained in a supposition of constant electric
field used in Sec. IV.

The next phase transition [marked with Arrow 2 in
Fig. 3(b)] takes place at some temperature between 82 and
81 ◦C (see Fig. 7), at which the transverse (perpendicular
to the rubbing direction) stripes appear, and the whole im-
age becomes darker stepwise. This transition is most likely
first-order and is related to the reorientation of the director
variation plane [reorientation of each arc presented in Fig. 4(e)
around the vertical axis]. The reason is that the vertical projec-
tion of each arc is already sufficiently great at 82 ◦C, and the
middle of each arc is targeted to be oriented along the rubbing
direction, while the arms of each arc, on the contrary, are not
biased anymore.

From observation of images presented in Fig. 8, it follows
that between 80 and 79 ◦C [Arrow 3 in Fig. 3(a)], the transition
from N1D

F to the phase corresponding to NAF deformed in the
electric field (see the discussion in Sec. III A) takes place.
Tentatively, the structure variation in this temperature range
follows the green arrow in Fig. 3(a), which is inclined, because
the splay elastic constant (participating in the denominator
of the value plotted on the vertical axis) should tentatively
increase with decreasing temperature, at least within the range
of a single phase. One can see the islands of NAF inside of
N1D

F at 80 ◦C, and therefore the N1D
F to deformed NAF phase

transition is also of first order.
At about 74 ◦C, the structure comes out of the NAF range

[Arrow 4 in Fig. 3(a)]. Formally, the structure should return to
N1D

F . However, it was demonstrated in Sec. III A that, at this
temperature and voltage, the director splay modulation is not
very deep, and the structure rather resembles the paraelectric
nematic with planar director orientation. The origin of this
effect will be discussed Sec. IV B.

At 71.5 ◦C the new phase transition happens [Arrow 5
in Fig. 3(b)]. From our observations in Ref. [35] and also
from Fig. 3(b) it follows that the size of the domains in NAF

becomes comparable to the cell thickness at around 71.5 ◦C,
and thus the stripes corresponding to the splay domains in NAF

would arise at E = 0. Above 71.5 ◦C the structures of DIO
at applied voltage and in the ground state are the same—the
planar paraelectric nematic, while below 71.5 ◦C they be-
come different again. The observed structure returns to the
one resembling N1D

F observed between 82 and 87 ◦C with

FIG. 9. A trial (blue) polar molecule in a combination of the
mean molecular field and electric field E. Here n is the local director
at a point where the trial molecule is located.

partial inclusions of the N2D
F domains, whose axes (visible

as reflecting dots) are oriented parallel to the electric field
and perpendicular to the substrates. When the temperature
decreases further (see Fig. 8), the images become darker, and
the number of reflecting dots increases. The structure variation
completely ignores the NAF to N2D

F transition registered at
68.8 ◦C by DSC measurements in Ref. [16] in the absence
of electric field, and thus the structure does not return to the
ground state again, similarly to that in the temperature range
between 82 and 87 ◦C.

At 57 ◦C the material structure is already close to the nom-
inal transition into N2D

F . At 27 ◦C, the structure corresponding
to the quasi-ideal N2D

F with islands of crystal and also with
some domains similar to those reported in Ref. [53], consid-
eration of which is beyond the scope of the present paper,
arises. At different temperatures we observe similar domains
at application of much higher voltage, at which we already
expect an induction of paraelectric nematic phase by electric
field (see the discussion in Secs. III A and IV B). One notes
that, at planar boundary conditions, in the presence of electric
field we obtained an image of N2D

F similar to that obtained
at homeotropic boundary conditions without electric field in
Ref. [16].

IV. THEORETICAL APPROACHES

A. Molecular-statistical theory: Temperature- and
electric-field-dependent distributions of S

and P order parameters in space

Let us consider a system of elongated polar molecules
(with longitudinal electric dipoles μ) interacting with each
other and with external electric field E (Fig. 9). Formally,
constant electric field participates in all the equations below.
Having in mind our discussion in Sec. III B about slow relax-
ation of director splay, we expect that the structures arising
at high-frequency electric field do not differ very much from
those obtained at constant electric field. In the general case,
director field n(r) is inhomogeneous, and the free-energy
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density ∂F/∂V can be written in the following form [50]:

4πV0
∂F (r1)

∂V
= kBT

∫
d2a1 f [(a1 · n1), r1] ln f [(a1 · n1), r1] + σ0

8πV0

∫
d2a1

∫
d2a2

∫
d3r12 f [(a1 · n1), r1]

× f [(a2 · n2), r2]U e f
12 (a1, a2, r12) − μ

∫
d2a1 f [(a1 · n1), r1](a1 · E), (5)

where V0 is the bulk occupied by a molecule located at point
r1 and all its nearest neighbors, σ0 is the average number of
neighbors for each molecule, f [(a · n), r] is the orientational
distribution function for molecules having principal axes a
with respect to director n at point r, ri (i = 1, 2) are the
coordinates of points 1 and 2, where molecules 1 and 2 are
located, r12 is the vector connecting points 1 and 2, kB is
Boltzmann constant, T is the temperature, U e f

12 (a1, a2, r12) is
the effective pair interaction potential for two molecules with
long axes a1 and a2 located at points 1 and 2, respectively,
while n1 is the director at point 1 and n2 is the director at point
2. The first term in Eq. (5) is the minus entropy, the second
term is the internal energy, and the third term is the energy
of interaction of molecular longitudinal dipoles with electric
field. At any point r, the orientational distribution function
f [(a · n), r] in Eq. (5) satisfies the normalizing constraint:∫

d2a f [(a · n(r)), r] = 1. (6)

Minimizing the free energy (5) with respect to the orienta-
tional distribution function f [(a · n), r] under constraint (6),
one obtains

f [(a · n), r] = 1

I0(r)
exp

{
− UMF+E [(a · n), r]

kBT

}
, (7)

where r ≡ r1, n ≡ n1, I0(r) is the normalizing constant, and
UMF+E [(a · n), r] is the potential of a molecule located at
point r with orientation a ≡ a1 of the prime axis in a com-
bination of the mean molecular field and electric field:

UMF+E [(a · n), r] ≡ σ0

4πV0

∫
d3r12

∫
d2a2 f [(a2 · n2), r2]

×U e f
12 (a, a2, r12) − μ(a · n)(n · E).

(8)

Approximating the pair potential by spherical invariants
[Eq. (1)], substituting Eq. (1) into Eq. (8), introducing coef-
ficients

J (i)
�Lλ ≡ σ0

V0

∫ ∞

0
dr12ri+2

12 J�Lλ(r12), (9)

and using only T101, T110, T011, and T202 spherical invariants
resulting on the average in the appearance of the terms in
the mean field depending on the powers of operator ∇ not
higher than 1, one finally obtains the following expression for
the potential of a molecule with orientation a affected by a
combination of the mean molecular field and electric field:

−UMF+E (t, r)

= J (0)
101P(r)P1(t ) + J (0)

202S(r)P2(t )

+
{

1

6

[
J (1)

110 + J (1)
011

]
(∇ · n) + μ(n · E)

}
P1(t ), (10)

where t ≡ (a · n), and P1(t ) ≡ t and P2(t ) ≡ 3/2 t2 − 1/2 are
the first and second Legendre polynomials. Equation (10)
corresponds to the first (simplest) approximation reflecting
modulation of the S and P order parameters caused by mod-
ulation of splay and describing the major tendency: both
parameters S and P should be higher (lower) at the places
where the splay is higher (lower). The first two terms in
Eq. (10) are the polar and nonpolar anisotropies, while the two
terms in brackets are due to the flexoelectric effect and electric
field. From Eqs. (2), (7), and (10) one readily obtains the
following recurrent equations for determination of the P(r)
and S(r) order parameters at each temperature T and electric
field E at any given n(r) distribution:

P(r) = I1(r)

I0(r)
, S(r) = I2(r)

I0(r)
, (11)

where integrals Im(r) are defined as follows:

Im(r) ≡
∫ 1

−1
Pm(t ) exp

{
− UMF+E (t, r)

kBT

}
dt, (12)

where UMF+E is determined by Eq. (10). Substituting solution
(7)–(10) back into Eq. (5), one obtains for the equilibrium
free-energy density ∂Feq/∂V :

4πV0
∂Feq(r)

∂V
= −kBT ln I0(r) + 1

2
J (0)

101P2(r) + 1

2
J (0)

202S2(r),

(13)
where normalizing integral I0(r) should be calculated using
Eqs. (12) and (10). Equation (13) should be used for compari-
son of the free energies of the neighboring phases in the phase
diagram.

As was mentioned in Sec. II, Eq. (4) (multiplied by 4πV0)
is the part of Eq. (5) explicitly dependent on director n.
Indeed, if one prolongs the gradient expansion in Eq. (10)
up to the terms depending on the second power of operator
∇ [for this purpose, invariants T220, T022, T222, T422, and T224

should also be considered in approximation Eq. (1); this is
done in Ref. [50]] and substitutes Eq. (10) into the second
and third terms of Eq. (5) [definition Eq. (8) should also be
used], then one obtains Eq. (4). In particular, the flexoelectric
and electric-field-dependent terms (which explicitly depend
on both P and n) coincide in Eqs. (4) and (5) at substitu-
tion of 4πV0K11λ = [J (1)

110 + J (1)
011]/6 and 4πV0εa = μ. By the

same substitution of Eq. (10) into Eq. (5), one obtains the P2

term introduced phenomenologically in Ref. [38]. In the same
manner, it is possible to obtain additional contributions to
the elastic constants depending on the polar order parame-
ter P studied phenomenologically in Refs. [19,38] (see also
Ref. [35]).
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B. Perturbation elastic continuum theory reflecting space
variation of S and P order parameters

Let us now consider the director distribution in the po-
lar phases in the presence of electric field, having in mind
the results obtained in Sec. IV A. In the cases presented in
Figs. 2(a) and 2(b), we expect that the director is (mostly)
along the radial planes (the planes parallel to the cylinder axis
x and radius r). Thus, in all cases presented in Fig. 2, the
director mainly has two nonzero coordinates, similarly to that
in Ref. [54]:

nx = cos θ (r), nr = sin θ (r). (14)

One notes that all the structures presented in Fig. 2 can be
described in a unified way, and here we also introduce the δ

parameter to distinguish between the double- and single-splay
structures (δ is set to 1 in the case of 2D-splay and is set to 0
in the case of 1D-splay). From Eq. (14) it follows that

(∇ · n) = δ

r
sin θ + cos θ

dθ

dr
,

[n × [∇ × n]]2 = sin2 θ

(
dθ

dr

)2

. (15)

In the manner of paper [35], let us consider the one-constant
approximation K11 = K33 ≡ K for simplicity. An equilibrium
director n(r) distribution should be obtained by independent
minimization of free-energy density (4), while an equilibrium
polarization P(r) distribution has already been obtained by
independent minimization of free-energy density (5) and is
presented by Eq. (11). Precise minimization of Eq. (4) with
constraint (11) appears to be complicated. The complexity
is in the fact that minimization with respect to director n
and polarization value P should be done independently, while
distributed in the space polarization P (and this distribution is
unknown before we know the distribution of n) participates
in differential Eq. (4), from where this distribution of n is
supposed to be obtained. For this purpose, let us consider a
perturbation theory based on the assumption that variation of
the order parameters in space is small. In the framework of
perturbation theory, let us first consider the uniform polar-
ization P(r) = P∗ in Eq. (4). In both cases of ferroelectric
domains presented in Figs. 2(b) and 2(c), let us consider
variation of angle θ from zero (at the x-axis of one domain)
to π (at the x-axis of the neighboring domain). Then the same
simplification for the free-energy density is valid for all the
structures presented in Fig. 2: all the terms proportional either
to dθ/dr or to λ should have opposite signs in the neighboring
domains, and the corresponding terms vanish on average.
Taking this into account, substituting Eq. (15) into Eq. (4),
and minimizing free-energy density (4) with respect to θ and
dθ/dr, as presented, for example, in Ref. [55], Appendix A,
one obtains the following equation of state:

(
dθ

dr

)2

+ τ 2| cos θ | − δ

r2
sin2 θ = τ 2

k2
, (16)

where τ ≡ √
2εaEP∗/K is the reduced electric field, and k

is some constant independent of angle θ , which should be
obtained by independent minimization of the free-energy den-
sity. Introducing new dimensionless variable ψ ≡ τ r/k, one

obtains from Eq. (16)

dθ

dψ
=

√
1 − k2| cos θ | + δ/ψ2 sin2 θ. (17)

Radius rm of the domain can now be found by minimization
of the free energy with respect to parameter k. This, however,
can be done in a more precise way by partially taking into
account the nonuniformity of P(r). Indeed, from Eq. (11)
it approximately follows [after expansion of the exponent
in Eq. (12) in Taylor series with substitution of Eq. (10)]
that P(r) ∼ (∇ · n) + εaE cos θ/(Kλ), where the first term is
flexoelectric polarization and the second term is induced by
electric field polarization. One notes from Eq. (4) that any
rescale of coordinate r, at which rλP and τ/(λP) remain con-
stant, does not change the free-energy density. This means in
the end that distribution of polarization is determined only by
distribution of angle θ in the space. Let us therefore write the
following trial approximation for the polar order parameter:

P(θ ) = P∗rm{(∇ · n) + τ 2 cos θ/(2λP∗)}

= P∗ψm

{
δ

ψ
sin θ + cos θ

(
dθ

dψ
+ 1

2
kτ̃

)}
. (18)

where τ̃ ≡ τ/(λP∗) is the dimensionless electric field. One
notes from Eq. (18) that, in the case of N2D

F , the P∗ propor-
tionality coefficient coincides with P at θ = π/2 (polar order
parameter at periphery rm of the ferroelectric domain). In the
cases of N2D

F and NAF , the P∗ coefficient formally corresponds
to a different place r∗ within the domain, other than periphery
rm. Regardless of the kind of domain, however, the expression
in brackets in the first line of Eq. (18) is equal to 1/rm at r∗.
Substituting Eqs. (15), (17), and (18) into Eq. (4), integrating
the free-energy density along the radius of domain (with the
r dr Jacobian for 2D-splay or with the dr Jacobian for 1D-
splay), and dividing the result by the cross section area (for
2D-splay) or by the length of domain (for 1D-splay), one ob-
tains the expression for the average free-energy density, which
should be further minimized with parameter k. This could be
done for each polar nematic phase similarly to that presented
in Ref. [35] for NAF . Subsequently, at any value of τ̃ , the
r(θ ) dependence can be obtained, and, in particular, radius
rm of the domain can be obtained. In NAF , rmλP∗ ≈ 1.55 and
maximum tilt is θm ≈ 64◦. In N1D

F and N2D
F , radius rm of the

domain generally depends on the applied electric field, while
maximum tilt is always equal to θ = π/2. Several θ (r) and
(∇ · n) dependencies at several particular values of dimen-
sionless electric field τ̃ are presented in Figs. 10(a) and 10(b),
respectively, for N2D

F [blue curves (1) and (2)] and N1D
F [red

curves (3), (4), and (5)]. One notes that the tilt of the director
varies almost linearly in both N2D

F and N1D
F , with a slight

tendency to greater variation in the middle of each domain in
N2D

F and, oppositely, at the domain periphery (r = rm) in N1D
F .

From Fig. 10 it follows that, at moderate values of electric
field, the maximum splay deformation in N1D

F is achieved at
θ = 0, at which the director is parallel to electric field. This
is the configuration at which both flexoelectric and induced
polarizations give an optimal summarized contribution to the
free energy. Therefore, both N2D

F and NAF exhibit a transition
into N1D

F at application of electric field. However, there al-
ways exists a disbalance between the induced and flexoelectric
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FIG. 10. Tilt of director (a) and splay deformation (b) distribu-
tions within the domain in N2D

F [blue curves (1) and (2)] and N1D
F

[red curves (3), (4), and (5)]. Here τ̃ = 0.001 (1), 0.22 (2), 0.225 (3),
0.8 (4), and 0.843 (5).

polarizations. Indeed, the flexopolarization can exist only in
the presence of director deformation. However, at the applica-
tion of electric field, the structure becomes more uniform, and
the splay deformation reduces. Therefore, at higher electric
field, the maximum in Fig. 10(b) reduces and shifts to the
position where the director is not parallel to electric field. At
τ̃ ≈ 0.843, the splay phase becomes unstable, and a transition
into a paraelectric nematic phase happens. The electric field
dependencies of characteristic polar order parameter P∗ and
domain radius rm at particular fixed temperatures within N1D

F
are presented in Figs. 11(a) and 11(b), respectively. Both
dependencies are generally not monotonic because of the non-
trivial correlation between splay and electric field. At higher
values of electric field, P∗ greatly decreases and rm greatly
increases just before the transition into N .

Knowing the director distribution in space in N2D
F , NAF ,

and N1D
F , one obtains the distributions of S and P order

parameters in each phase using Eqs. (10)–(12). For this
purpose, one should substitute approximation (18) into the
last line of Eq. (10). In particular, at specific places r∗
within each domain, where polar order parameter P coincides
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FIG. 11. Electric field dependencies of the characteristic polar
order parameter (a) and domain radius (b) in N1D

F at J (0)
202/kB =

2032 K, J (0)
101/kB = 362 K, λ = 2 µm−1, K V0 = 5 × 10−35 N m3, and

T = 70 ◦C [curves (1)] and 81 ◦C [curves (2)].

with coefficient P∗, one immediately obtains that the whole
expression in brackets in the last line of Eq. (10) is equal to
[J (1)

110 + J (1)
011]/(6rm). From the recurrent Eqs. (11) and (12)

one obtains S∗ and P∗ first, and then the whole distribution
of S(r) and P(r) within the domain, which are presented
in Fig. 12. One notes that both S and P generally decrease
with increasing temperature. The maximal values of both
parameters are observed close to the middle of the domain
in N2D

F and NAF and in the middle exactly in N1D
F . The polar

order parameter reaches zero at the periphery of each domain
in N1D

F , while in N2D
F and NAF it does not, which means

that flexopolarization exhibits stepwise reversal between the
domains without director disruption. Distributions of S(r)
and P(r) at several nonzero values of electric field are also
presented in Fig. 13. One notes that profiles of both S and
P first tend to become sharper at moderate electric field and
then smoother at higher electric field.

C. Computer simulations

To perform calculations of director distribution in a po-
lar nematic film under the action of an electric field, we
have modified the existing extended Frank elastic continuum
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FIG. 12. Distribution of the S [(a),(c),(e)] and P [(b),(d),(f)] orientational order parameters within the domains in N2D
F [(a),(b)], NAF

[(c),(d)], and N1D
F [(e),(f)] at T = 57 ◦C (1); 62 ◦C (2); 67 ◦C (3); 69 ◦C (4); 76 ◦C (5); 81 ◦C (6); 83 ◦C (7); 85 ◦C (8); 88 ◦C (9); 90 ◦C (10); and

92 ◦C (11) at E = 0, J (0)
202/kB = 2032 K, J (0)

101/kB = 362 K, λ = 2 µm−1, JA/kB = 113 K µm, and K V0 = 5 × 10−35 N m3. Radius r is defined in
Fig. 2 for all the polar phases. Here JA is the strength of antiferroelectric decoupling [35,56].

approach [35], previously used for calculations of polar ne-
matic material. The original approach takes into account the
effects of director field distortion with the λ(n · p) term in-

cluded, as well as the formation of defects and finite energy
of the surface boundaries. In this paper, we have modified the
free energy to take into account the action of an electric field:

F = 1

2

∫
V
{K11[n(∇ · n) − λ p]2 + K22(n · [∇ × n])2 + K33[n × [∇ × n]]2}dV

− εa

∫
V

(n · p)(n · E)dV + W

2

∫


(1 − cos2 γ )d + Fdef , (19)

where K11, K22, and K33 are the splay, twist, and bend elastic
constants, respectively, K11λ is the flexoelectric constant, p

is the polarizability direction vector, E is the electric field
intensity, V is the bulk of the sample having surface , W is
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FIG. 13. Distribution of the S (a) and P (b) orientational order
parameters within the domains in N1D

F at εaE/(Kλ2) = 0 (1); 0.01
(2); 0.028 (3) at T = 87 ◦C, J (0)

202/kB = 2032 K, J (0)
101/kB = 362 K, λ =

2 µm−1, and K V0 = 5 × 10−35 N m3. Radius r is defined in Fig. 2(c).

the surface anchoring energy density, γ is the angle between
local director and normal to the surface, and Fdef is the energy
of defects calculated by the summation of the point and linear
defect energies (see the details in Ref. [57]). The details of
optimization are presented in Ref. [35]. For simplicity, po-
larizability direction vector p is supposed to be a unit vector
parallel or antiparallel to n in each point. In addition, in corre-
spondence with the theoretical part of the paper, an algorithm
accepted only those steps with (n · p)(n · E) � 0. As a result,
our simulation annealing procedure leads to minimization of
the free energy over both director n and polarizability direc-
tion p distributions in a self-consistent way.

The one-constant approximation was used for simplicity:
K11 : K22 : K33 = 1 : 1 : 1, and the value of λ is set to 10.
To take into account the potential formation of disclination
lines, their core linear energy density was set to f line

core = 10K11.
The cubic simulation box of size 0.125 × 2 × 2 was ren-
dered into a 4 × 64 × 64 lattice. For x and y facets, the
periodic boundary conditions were applied. For z facet, planar
aligned boundary conditions were set with the rubbing direc-
tion having an angle ϕ ∈ [0◦; 90◦] with the x axis and μ1 =

FIG. 14. Principal geometry of the simulations box and the polar
nematic film. Black arrows show the rubbing direction of planar
alignment of the film. Orange arrow shows the electric field direc-
tion. Yellow dashed arrows show the periodic boundary condition
directions of the simulation box.

W d/K11 = 400, where d is the film thickness (see Fig. 14).
The electric field E was oriented perpendicular to the film
plane, and the value of dimensionless electric field intensity
e = Ed ( εa

K11
)1/2 varied from 0.1 to 30. For each e, we produced

6.1 × 1010 steps (3 × 107 parallel multisteps) Monte Carlo
annealing optimization with four independent runs to find the
energy-optimal structures.

The resulting structures strongly depend on the value of
electric field and the rubbing direction ϕ. Figure 15 shows the
dependency of the total free energy of the system on these
two parameters. At low values of the electric field (e from
0.1 to 14), the energy-optimal structure corresponds to the
antiferroelectric splay in the xy plane (which is supposed to
be the plane of the substrate in a real experiment) with an
alternating sign of polarizability. The average director ori-
entation is almost parallel to the rubbing direction. Some
slight ferroelectric modulation is also present: a projection

FIG. 15. Dependence of the total free energy on the value of
dimensionless electric field e and rubbing direction orientation ϕ.
Violet dashed line traces energy minimum over ϕ.
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FIG. 16. Director n and polarizability (n · p) distributions at various dimensionless electric field e values in the central cross-cuts
perpendicular to the substrate plane (top) and along the substrate plane (bottom). Director distributions are shown in color, corresponding
to the direction of n (x, red; y, green; z, blue). Polarizability is shown in orange [(n · p) = 1] and violet [(n · p) = −1].

of the director along electric field arises at the periphery
of each antiferroelectric domain, so that the projection of
director lines perpendicular to xy plane gains the shape of
periodic arcs. This structure is visualized as longitudinal to
the rubbing direction stripes (Fig. 16). Above the thresh-
old value e∗ ≈ 15, the system undergoes a transition related
to the reorientation of the arcs along the rubbing direction,
and the arcs themselves become much bigger, while the an-
tiferroelectric modulation in the xy plane disappears. This
structure (at e > 15) is visualized as transverse to the rubbing
direction stripes (Fig. 16). At further increasing electric field,
the layer period starts growing [similarly to that in theory;
see Fig. 11(b)], and the director divergence in the middle
of each domain decreases [similarly to that in theory; see
Fig. 10(b)]. Computer simulations describe well the transfor-
mation from antiferroelectric to ferroelectric structure with
the reorientation of stripes, which is observed experimentally
and presented in Sec. III A.

V. CONCLUSION

The origin and structures of ferroelectric and antiferro-
electric splay nematic phases are outlined. The double-splay
ferroelectric N2D

F and antiferroelectric NAF nematic phases are
composed of quasicylindrical periodic domains. Without elec-
tric field, N2D

F and NAF are observed in the lower-temperature
range. The single-splay ferroelectric N1D

F nematic phase is
composed of planar periodic domains. Without electric field,
N1D

F is observed in the higher-temperature range. In the
presence of electric field, all the splay nematic phases first
(at moderate electric field) transform into N1D

F and then (at
higher electric field) into paraelectric nematic phase N having

uniform director orientation. The origin of all the splay ne-
matic phases is the flexoelectric effect due to the polarity of
molecules. The origin of the transformations between phases
in electric field is the nontrivial interplay between flexoelectric
and induced polarizations. The distribution of the director and
both polar P and nonpolar S orientational order parameters
within the domains of all the splay nematic phases is found.
Variation of the structure and properties of the splay nematic
phases with variation of temperature and electric field are
investigated. The electric field–temperature phase diagram is
obtained. The equilibrium domain size was found to increase,
and polarization was found to decrease in each polar phase
with increasing temperature. Several additional phase transi-
tions related to optimization of the domains within the cell gap
were found and explained.
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