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Prediction of temperature-dependent nucleation and growth rates
from crystallization-related heat release
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We propose a method for determining the time and, therefore, temperature-dependent relative nucleation and
growth rates during crystallization. We do so by linking the partial differential equation governing the time
dynamics of the crystal size distribution to kinetic (Avrami) parameters describing heat release. This approach
is tested in silico by nucleating and growing diffusion limited aggregates with time-varying morphology and
growth rates unhindered by impingement. The associated heat release is analyzed, showing that nucleation and
growth rates could be extracted with high fidelity.
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I. INTRODUCTION

Nucleation, involving the formation of growing regions
of a new phase from a parent phase, is one of the most
fundamental phenomena in physics and chemistry. Charac-
terization of these first-order phase transitions, especially the
nucleation and growth time dynamics, is important for un-
derstanding a diversity of topics throughout the physical and
biological sciences, from defect growth in amorphous silica
to the formation of ice crystals in cells [1,2]. A common
challenge in the investigation of phase change time dynamics
is that the spatiotemporal resolution of current direct measure-
ment techniques for liquid-solid nucleation rates is lacking
in the majority of systems at most temperatures, especially
those in ‘no man’s’ land below the homogeneous nucleation
temperature [3–6]. Existing methods rely on direct optical
observation of nuclei formation, requiring tight constraints
on system opacity and both the temporal and spatial scale
over which nucleation occurs. Instead, a variety of indirect
methods are commonly deployed to measure macroscopic
system properties during phase change, ultimately linking
these to nucleation and growth via a variety of thermo-
dynamic and kinetic models, including classical nucleation
theory. Such techniques include measurements of induction
times and metastable zone widths [7,8]; transformed fraction
measurements via Fourier transform infrared spectroscopy
[9], differential scanning calorimetry (DSC) [10–12], and dif-
ferential thermal analysis [13]; and crystal size distribution
measurements via laser [14] and x-ray diffraction [15], which
suffer from calibration difficulties, poor temporal resolution,
and measurement difficulties in liquids systems. Unfortu-
nately, indirect methods for measuring nucleation rates often
suffer from the same fatal flaw, i.e., reliance on empirically
determined kinetic parameters such as activation energy or
fitting parameters without theoretical justification, and no
clear method of comparing the model results to either real
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or simulated nucleation or growth measurements [16,17]. It
is then not surprising that even for water, one of the most
well-characterized substances, nucleation rate measurements
for the same temperatures may vary by over four orders of
magnitude [18].

In this paper, we derive an approach to determine nu-
cleation and growth rates more directly, with minimal
assumptions. To do so, we consider DSC, which is arguably
the most simple of the aforementioned measurement tech-
niques to employ. In DSC, the latent heat released during
phase change is measured, which can be related to the fraction
of a newly formed phase in the system, given knowledge of the
heat of fusion of said phase. This transformed fraction f (t )
can be determined by integrating the baseline corrected heat
flow per unit mass q(t ) between the onset and offset times
of solidification and then dividing by the enthalpy of fusion
�H

◦
fus [19]:

ḟ (t ) = q(t )

�H ◦
fus(T )

. (1)

The transformed fraction has long been shown, under
isothermal conditions, to follow the Avrami equation, also
known as Johnson-Mehl-Avrami-Kolmogorov (JMAK) equa-
tion [20–22], expressed as

f (t ) = 1 − exp(−ktn), (2)

where k is a kinetic parameter relating to the nucleation and
growth of the new phase while n is related to the morphology,
which can both be determined via least-squares regression
[23–26]. Under idealized conditions, when the growing nuclei
morphology is easily expressible, such as a sphere, rod, or
disk, k and n can be derived from first principles; however,
a cohesive theory deriving the Avrami equation for general
arbitrary morphological growth has yet to be demonstrated
until now, which we show provides an avenue for extracting
three key fundamental parameters of phase change from latent
heat release curves. These three key fundamental parameters
are the nucleation rate J , growth rate u, and fractal dimen-
sion D of the newly formed phase, describing the rate of
formation of new phase nuclei (number per unit time per
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unit volume), their growth rate (length per unit time), and
morphology (nondimensional), respectively. Throughout this
paper, we will demonstrate under what conditions the Avrami
equation remains valid; how k and n are related to the funda-
mental parameters J , u, and D; and how these fundamental
parameters can be extracted from heat release curves. We
will refer specifically to crystallization, but the arguments
presented hold equally true for many other phase change pro-
cesses. As in the original formulation of JMAK kinetics, we
treat growing regions of the phase independently, that is, they
pass through each other without alteration of the growth or nu-
cleation mechanics. Though this seems at first nonphysical, it
is merely a mathematical trick which transforms an extremely
complex problem involving overlapping geometries into a
relatively simple one solvable with standard calculus. Though
this treatment may break down under certain circumstances,
the success of the JMAK equation in describing phase change
in many systems shows it to be a valid assumption.

II. LINKING THE AVRAMI PARAMETERS TO CRYSTAL
NUCLEATION AND GROWTH RATES

We start by considering a crystal with an arbitrary mor-
phology. The volume V of this crystal can be described in
terms of some length scale L, dimensionality D, and density-
volume scaling parameter A:

V = ALD. (3)

We now consider a spherical-equivalent crystal, referred to as
the packed-volume crystal, with radius r and volume equal to
that of the arbitrary morphology crystal in Eq. (3). Relating
the volumes of these two crystals yields

ALD = 4π

3
r3. (4)

Next, by differentiating Eq. (4) with respect to time, we deter-
mine how the growth rate of the characteristic length L relates
to the radius of the packed-volume crystal:

dL

dt
= 3

D

(
4π

3A

) 1
D

r
3
D −1 dr

dt
. (5)

Under conditions of constant growth, the crystal with arbitrary
morphology grows at a velocity v0, which can be related to the
growth rate of the packed-volume crystal u(r) via the packed-
volume scaling factor α,

α = 3

D

(
4π

3A

) 1
D

, (6)

dr

dt
= u(r),

dL

dt
= v0, v = v0/α, m = 3

D
− 1, (7)

u(r) = v

rm
, (8)

where m is related to the fractal dimension D of the growing
arbitrary morphology crystal and v is the morphology-scaled
growth rate. By definition, the packed-volume crystal is per-
fectly volume filling, so its growth rate will decay with its
increasing radius, as the length scale of the arbitrary mor-
phology crystal increases at a constant velocity. It becomes
mathematically convenient to use the packed-volume velocity

when describing the time dynamics of the crystal size distri-
bution ρ(r, t ), which defines the number of packed-volume
crystals of radii r per unit volume per unit radii. The time
evolution of ρ(r, t ) is described by the population balance
equation, given an initial crystal size distribution R0(r), nucle-
ation rate J (t ), and packed-volume growth rate u(r, t ) [27,28]:

∂ρ(r, t )

∂t
+ ∂

∂r
(u(r, t )ρ(r, t )) = 0,

ρ(r, 0) = R0(r),

ρ(0, t ) = J (t )

u(0, t )
. (9)

Previously, we presented a general solution to Eq. (9) when
the growth rate and nucleation rate are time independent (i.e.,
under isothermal conditions), absent an initial distribution of
transformed phase [29],

ρ(r, t ) = J

u(r)
θ

(
t −

∫ r

0

dy

u(y)

)
, (10)

where θ is the Heaviside step function. The transformed
fraction can be related to the crystal size distribution by ac-
counting for overlapping regions of phase via impingement
correction [30]:

− ln (1 − f (t )) =
∫ ∞

0

4πr3

3
ρ(r, t ) dr. (11)

By linking Eq. (11) to the Avrami equation and the solution
described by Eq. (10), we can relate the Avrami coefficients k
and n to the nucleation rate, morphology-scaled growth rate,
and fractal dimension of the crystals, a detailed outline of
which is given in Appendix A:

k = 4π (1 + m)

3(4 + m)
J ((m + 1)v)

3
m+1 = 4πJ

3(D + 1)

(
3v

D

)D

, (12)

n = 4 + m

1 + m
= D + 1. (13)

We will demonstrate the utility of Eqs. (12) and (13) by
describing a method by which the temperature-dependent
changes in crystal growth and nucleation rate can be extracted
from heat-release (calorimetry) curves.

III. SOLID-PHASE GROWTH AND NUCLEATION RATES
FROM CALORIMETRIC CURVES

A. Extracting the Avrami parameters k and n

Beyond providing insight into how crystal geometry influ-
ence the Avrami equation, the utility of Eqs. (12) and (13)
is apparent in the analysis of calorimetric data, as extract-
ing the Avrami parameters from a calorimetry curve is a
well-established experimental method [19]. The transformed
fraction f (t ) can be determined by integrating the baseline
corrected heat flow per unit mass q(t ), equation (1), between
the onset and offset times of solidification and then dividing
by the enthalpy of fusion �H

◦
fus. Then, k and n can be deter-

mined via linear fitting of the Avrami equation:

ln (− ln (1 − f (t ))) = ln (k) + n ln (t ). (14)

Beyond the direct link to parameters defining nucleation and
growth in Eqs. (12) and (13), we now show that modi-
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fied calorimetry operation, specifically by introducing a step
change in temperature during measurement, can be employed
to directly determine relative change in nucleation and growth
rates, as well as structural changes to growing nuclei for
systems at different temperatures.

B. Calculating the change in nucleation and growth rates
resulting from a step-change in temperature

First, we consider a system in the liquid state that is
rapidly brought to a temperature T1, below its melting point,
and thus begins to solidify. Then, at time t = s, the system
is rapidly brought to a second temperature T2, also below
the melting point. We assume the temperature transitions are
fast compared to the rate of phase change, and thus phase
change during the near-discontinuous temperature jumps can
be neglected. Examining the changes in ρ(r, t ) across the tem-
perature jump holds the key to extracting useful information
about nucleation and growth in the system.

Via the method of characteristics, the solution to Eq. (9) has
the form ρ(r, t ) = rmg(rm+1 − (m + 1)vt ) for some function
g. Applying the initial and boundary conditions, along with
the growth rate from Eq. (8), we arrive at

ρ(r, t ) = θ

(
vt − rm+1

m + 1

)
J

v
+ θ (rm+1 − (m + 1)vt )

× rmR0((rm+1 − (m + 1)vt )
1

m+1 )

(rm+1 − (m + 1)vt )
m

m+1
. (15)

We then consider Eq. (8) at two different temperatures T1

and T2, then employ Eq. (15) to evaluate the system behavior
as a consequence of the temperature jump at time t = s. For
the T1 case, there is no initial crystallization and the solution
is

ρ1(r, t ) = θ

(
v1t − rm1+1

m1 + 1

)
J1

v1
rm1 . (16)

Next, ρ1(r, s) = R0(r) is used as the initial condition for the
T2 case, with the new time t − s. Since we are only concerned
with the solution for small times after the temperature jump,
we can ignore the term corresponding to the nucleation of new
material:

ρ2(r, t ) = J1

v1
rm2θ (rm2+1 − (m2 + 1)v2(t − s))

× θ

⎛
⎝v1s − (rm2+1 − (m2 + 1)v2(t − s))

m1+1
m2+1

m1 + 1

⎞
⎠

× (rm2+1 − (m2 + 1)v2(t − s))
m1−m2
m2+1 . (17)

Examining the ratio of the time derivatives of the transformed
fractions associated with ρ1(r, t ) and ρ2(r, t ) at time t = s,
ḟ1(s) and ḟ2(s) respectively, we derive a link between this
measurable ratio and the morphology-scaled growth rates:

ḟ2(s)

ḟ1(s)
= β

v2

vM
1

, (18)

where

β =
(

3

3 + m1 − m2

)
(s(m1 + 1))

m1−m2
m1+1 (19)

M = m2 + 1

m1 + 1
. (20)

Using Eq. (1), we can now represent ḟ2(s)/ ḟ1(s) in terms of
the heat flow and heat of fusion at temperature T1, just before
the temperature jump [q1(s) and �H

◦
fus(T1)] and the heat flow

and heat of fusion at temperature T2, just after the temperature
jump [q2(s) and �H

◦
fus(T2)]:

v2 = vM
1 q2(s)�H

◦
f us(T1)

βq1(s)�H ◦
f us(T2)

. (21)

Continuing in this fashion from T2 to T3, or even T1 to T3,
we can infer v(Ti ) in terms of v(T1). Finally, from Eq. (12),
the nucleation rate J (T ) can be determined in terms of k(T ),
v(T ), and n(T ):

J (T ) = 3k(T )n(T )

4π

[
3v(T )

n(T ) − 1

]1−n(T )

. (22)

We provide an the extension of this approach in two dimen-
sions in Appendix B, which is applicable to phase change on
surfaces, and used here in subsequent numerical experiments.
Additionally, Appendix B includes a detailed derivation of
Eq. (18). It is important to note that the nucleation rate
J and the growth rate v0 describe the supercooled portion
of the system alone, denoted by 1 − f . If one was inter-
ested in the systemwide nucleation rate, it would simply be
Jsys = (1 − f )J .

C. Method for extracting the relative (or nonrelative) growth
and nucleation rates

We desire to know the temperature-dependent growth and
nucleation rates for a substance in some temperature interval
[T0, Tf ]. To infer this from measurements, we first partition
this interval into N temperature points T1, T2, ..., TN . Next, for
each temperature, we start the DSC run at some initial temper-
ature above the melting temperature of the substance. From
this temperature, we rapidly (as fast as possible) decrease the
temperature to T1 and hold it until the substance solidifies and
reaches equilibrium. This isothermal curve can be analyzed to
calculate n1 and k1 for T1. The time s1 when half of the avail-
able sample solidifies is also identified; this often corresponds
to the peak location for the heat release q1(t ). This procedure
is then repeated for T2 through TN . Subsequently, a series of
jumps between these temperature points need to be carried
out, as depicted in Fig. 1. For the first jump, the sample is
held at T1 just as in the first trial, but for s1 seconds, followed
by a rapid change in the temperature to T2. This approach
continues with a sample starting at T2 transitioned to T3 and so
on all the way through a sample starting at TN−1 transitioned
to TN . Using the curves qi(t ) generated from the DSC trials
(for the temperature jump from Ti to Ti+1), Eqs. (21) and (22)
are then applied to obtain v(T ) and J (T ) in terms of v(T1).
These temperature-dependent velocities and nucleation rates
can then be normalized to v(T1) and J (Ti ). If desired, one
can measure the velocity u(T1) of a single growing crystal
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FIG. 1. Example heat-release curves (a) and associated temper-
ature profiles (b) for the DSC protocol required for calculating the
temperature-dependent changes in the nucleation and growth rate of
the growing phase.

at T1 (or one of the other temperature points), then, using
its radius R and fractal dimension D (measured from DSC),
can solve for v(Ti ), and thus know the temperature-dependent
velocities and temperature-dependent nucleation rates in the
temperature range from T1 to TN .

Although this approach follows directly from the solution
to the differential equation governing nuclei growth, testing
this procedure is experimentally difficult, as at present, we are
not aware of a system where v(T ), J (T ), n(T ), and k(T ) are
adequately established. Therefore, to examine the capabilities
of this approach, we apply crystal growth simulations, sim-
ulating DSC curves for fractal-like structures whose fractal
dimension of growth changes with system temperature.

IV. TIME-DEPENDENT DIFFUSION LIMITED
AGGREGATION

We perform in silico experiments to extract the nucleation
and growth rates from heat release curves via Eqs. (21) and
(22) as, in this way, all nucleation and growth parameters
can be known exactly a priori. We specifically simulate the
growth of a system of two-dimensional pseudocrystals with
predefined nucleation and growth rates via a time-dependent
diffusion limited aggregation (TD-DLA) algorithm based on
the classic algorithm and its more computationally efficient
derivatives, as depicted schematically in Fig. 2(a) [31,32]. Ad-
ditional details on this algorithm are provided in Appendix C.
Briefly, using a two-dimensional grid, a series of TD-DLA
structures are generated, which grow by a specified number
of particles at each simulation time step. The growth rate is

FIG. 2. (a) A schematic depiction of how time dependence is
applied to a growing diffusion-limited aggregate in two dimensions.
The applied algorithm allows for the tuning of fractal dimension by
altering the step size d (tn) (or stickiness) and growth rate v0(tn) by
applying a growth constraint, growing the aggregate by N (tn) parti-
cles and increasing the radius of gyration Rg(tn) by dtnv0(tn). (b) The
temperature-time profile for the simulation involving a step change
from temperature T1 to T2 at time t = s, resulting in a step change in
both growth rates v0(t ) and step size d (t ) [and thus fractal dimension
D(t )]. The temperature time profile and a simulated diffusion limited
aggregate before (in black) and after (in red) the temperature jump
are displayed. Also depicted is an aggregate nucleated before time s
which contains the growth from before and after time s.

maintained by adhering to the growth constraint:

{N (tn)|Rg(tn+1) = Rg(tn) + �tnv0(tn)}. (23)
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For each generated aggregate, the number of particles added
at time step tn increases the radius of gyration Rg(tn) by
v0(tn)�tn, such that the aggregate is now composed of N (tn)
particles. The fractal dimension D is modulated by altering
the random walk step size d or stickiness parameter, allowing
for values of D between 1.71 and 2.0 in the continuous limit,
see Fig. 2(b).

In growth simulations, the aggregates are seeded randomly
on a grid and grow at a constant rate of v0(tn), with their
introduction rate following a nucleation rate J (tn) and time
step �tn. The base unit added during nucleation is a monomer;
we remark that the “critical size” defining the smallest stable
nuclei does not influence the system as J (t ) and u(t ) are prede-
fined in simulations, and our goal is strictly to use simulations
to test Eqs. (21) and (22). Nucleation and growth are hence
simulated in irreversible fashion, i.e., in a situation where
the system is cooled well below its melting temperature. By
construction, with fixed J (t ) and u(t ) in these simulations, the
equation is valid to describe the fraction of transformed phase.
For each new particle added to a growing aggregate, heat is
released according to a prescribed heat of fusion �H

◦
fus(tn) at

the simulation time (temperature). Intersection between pseu-
docrystals is ignored (i.e., not counted as a new phase, with
no heat release) with periodic boundary conditions applied.
Testing the validity and applicability of Eqs. (21) and (22)
requires us to simulate the growth of TD-DLA pseudocrys-
tals under conditions emulating a step change in temperature.
To accomplish this, we predefine the system parameters at
two temperatures, T1 and T2, with associated temperature-
dependent growth rates u1 and u2 (thus v1 and v2), nucleation
rates J1 and J2, fractal dimensions D1 and D2, and heat of
fusions �H

◦
fus,1 and �H

◦
fus,2.

In this simulation, 875 diffusion limited aggregates were
grown, consisting of between 1 and 50 000 particles depend-
ing on when they were nucleated during the simulation time
span. A step size of 5 and 15 grid spaces were chosen for
simulation temperatures T1 and T2, respectively, both with a
stickiness value of 1.0. This allowed for distinguishable frac-
tal growth between the two temperatures while allowing the
aggregates to remain spatially dense to limit computational
time. Due to these generation properties, each aggregate had
a unique fractal dimension and geometry, with those formed
at the same temperature having similar geometric properties,
see Tables I and II. Growing nuclei did not interact with each
other, as they represent individual crystals in the extended
volume (total crystal volume disregarding overlap), an impor-
tant quantity in Avrami kinetics. We simulate crystallization
in this system under isothermal conditions at T1 and T2, as
well as a step change in temperature Ts(t ) from T1 to T2 at
time t = s. A comparison between theoretical prediction for
the transformed fraction and those simulated under isothermal
conditions is provided in Fig. 3(b). The strong agreement
(R2 > 0.99) between predictions and the simulations supports
application of Eqs. (12) and (13) for crystals with complex
morphologies with nonuniform dimensionality, given the size
dependence of fractal dimension in diffusion limited aggre-
gates. For the temperature jump condition, the time t = s is
chosen when half the system transformed phases so the newly
nucleated phase is insignificant relative to the growing pre-
existing phase. Additionally, the strongest heat release signal

TABLE I. The extracted Avrami parameters k and n, heat flow
q(s) immediately before and after the temperature jump, the heat
of fusion �H

◦
fus, and bulk density-volume scaling parameter A, and

bulk packed-volume scaling factor α at T1 and T2. The uncertainty
shown represents 95% confidence bounds on the parameters from
regression. The values of the parameters are given in dimensionless
units.

Parameters T1 T2

k 31.249 ± 0.220 6.424 ± 0.026
n 2.743 ± 0.005 2.938 ± 0.004
q(s) 3.868 1.262
�H

◦
fus 1 1.1

A 8.07 6.89
α 0.668 0.688

often occurs near the moment the system is half transformed,
i.e., f (t ) = 0.5. In practice, this point would need to be de-
termined by a first measurement where the phase change is
monitored, holding the system at temperature T1. Figure 2(b)
depicts the change in aggregate morphology before and af-
ter the temperature jump, denoting crystal formation at T1

in black and T2 in red. The heat release curves resulting
from isothermal temperature holds at T1 and T2, Fig. 3(a),
are integrated to solve for the transformed fraction, Fig. 3(b),
which enables extraction of the Avrami parameters k and n via
equation (14) via curve fitting. Analyzing the resulting heat
release curves associated with the step change in temperature
via regression yields the parameters summarized in Table I.
We extracted nearly identical growth rates and nucleation
rates to those used as inputs in the simulation, as evidenced
in Table II. This is true even though the crystals have a
distribution of fractal dimensions, as is the case here due to
the size dependence of fractal dimension in diffusion-limited
aggregates. It is important to note again that the values of
the calculated nucleation and growth rates are in terms of
v1, which means we have determined the relative change in
these values, but not their absolute values. To determine the
absolute values, one needs a single additional data point, v1

or J1 suffice, to determine the values of these parameters at
all temperatures T1 to Ti. Figures 3(c) and 3(d) depict snap-
shots of the crystallization simulation before (t = .1) and after
(t = .35) the temperature jump (s = .25).

TABLE II. Values of the input versus extracted growth rates v0,
mean morphology-scaled growth rates v, nucleation rates J , and
mean fractal dimensions D at temperatures T1 and T2. The values
of the parameters are given in dimensionless units. †Indicates a
measured value for v1, as one measurement is required to anchor
all other nucleation and growth rate data. Without this value, one can
normalize all other rates in terms of v1 or v01 to obtain the normalized
growth and nucleation rate curves.

Parameters T1 T1(predicted) T2 T2(predicted)

v0 300 300† 60 59.48
v 449.21 449.21† 86.43 87.19
J 5 × 10−5 5.11 × 10−5 1 × 10−4 9.97 × 10−5

D 1.757 1.743 1.904 1.938
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FIG. 3. (a) The heat release q measured from crystal simulations resulting from isothermal holds at T1 and T2, as well as the temperature
jump Ts(t ) from T1 to T2 at time t = s, with q1 and q2 referring to the heat release values before and after the temperature jump, respectively,
in Ts(t ). These heat release curves can be integrated via Eq. (1) to calculate the transformed fraction for the three temperature cases, depicted
in (b). The transformed fraction curves associated with isothermal crystallization simulation at temperatures T1 and T2 are shown along with
the associated theoretical predictions (× and +, respectively) for these curves based on Eqs. (12) and (13), both of which have R2 values
of over 0.99. Additionally, the transformed fraction for Ts(t ) is also shown. Snapshots of the crystallization simulation at (c) t = 0.1 and
(d) t = 0.35 with the temperature jump at s = 0.25. Crystallization before the temperature jump is depicted in black while crystallization after
the temperature jump is depicted in red, illustrating the changing crystal morphology.

V. CONCLUSION

We utilize a population balance approach to model the
heat release of a system undergoing first-order phase change
involving nucleation and growth. In doing so, we show that the
kinetic parameters extracted from the traditional Avrami equa-
tion k and n are functionally dependent upon the nucleation
rate, growth rate, and growth geometry, here characterized
by the fractal dimension. The exact solutions to our gov-
erning equations provide insight into performing calorimetry
experiments, in which relative growth rates and nucleation

rates, as well as growth geometries, can be extracted from
calorimetric curves. The applicability of this approach, uti-
lizing measurements of heat-release surrounding temperature
jumps, is demonstrated through simulating diffusion-limited
aggregates nucleating and growing in a periodic system. Af-
ter testing the theory on simulated TD-DLA crystals, we
have confidence that implementation of these methods for
extracting relative changes in growth rates and nucleation
rates from a system undergoing liquid-solid phase change will
quantitatively yield the true changes in growth rates, nucle-
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ation rates, and morphologies in that system relative to some
baseline. Absolute values of the nucleation and growth rates
only require the addition of one anchoring measurement, such
as a growth rate measurement via microscopy. The method
outlined in this paper is only contingent on the accuracy of
the heat-release measurements, and that the DSC instrument
can achieve changes in temperature sufficiently faster than the
phase change at hand.
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APPENDIX A: AVRAMI COEFFICIENTS

1. Derivation of Avrami constants

The Avrami equation can be rearranged as follows:

− ln (1 − f (t )) = ktn. (A1)

Given Eqs. (10) and (11), and equating them to Eq. (A1), we
have

ktn =
∫ ∞

0

4πJr3+m

3v
θ

(
t − rm+1

(m + 1)v

)
dr. (A2)

For isothermal conditions, we have u(r) described by
Eq. (8), and for brevity we will now refer to v(T ) and m(T )
as simply v and m. By applying the following substitutions
z = rm+1

(m+1)v and dz = dr rm

v
, we arrive at

ktn = 4π

3
J ((m + 1)v)

3
m+1

∫ ∞

0
z

3
m+1 θ (t − z)dz, (A3)

ktn = 4π (1 + m)

3(4 + m)
J ((m + 1)v)

3
m+1 t

4+m
1+m . (A4)

This solution can conveniently be separated into two parts:
a time-independent portion corresponding to k and an time-
exponential portion corresponding to t n. Equation (A4) thus
yields

k = 4π (1 + m)

3(4 + m)
J ((m + 1)v)

3
m+1 = 4πJ

3(D + 1)

(
3v

D

)D

. (A5)

n = 4 + m

1 + m
= D + 1. (A6)

2. Example of calculating parameters for a disk

For simple geometries, some solutions for n and k in terms
of the fundamental parameters are known and summarized
in Table III. As an additional example, we can consider the
case where the growing solid is a disk of radius r. Since our
model assumes dampened spherical growth instead of specific
geometries, we can compare the relative radius of a sphere R
vs disk r of equal volume:

4

3
πR3 = π r2D, (A7)

r =
√

4R3

3D
. (A8)

TABLE III. Equivalent values for the fractal dimension of the
growing solid Df 3D, the radial growth parameter m, and the Avrami
parameter n

Df 3D = m n

3 (spherically symmetric growth) 0 4
2 (circular symmetric growth) .5 3
1 (linear symmetric growth) 2 2

Now comparing the velocity, the sphere grows in comparison
to the disk:

dr

dt
= dR

dt

√
3R

D
. (A9)

We denote the disk velocity as dr
dt = v0 and sphere velocity

as dR
dt = usphere. Since usphere = v√

R
, we have

v2 = D

3
v2

0 . (A10)

For a disk m = 0.5, which with Eq. (12) we find a k value of

k = πDJv2
0

3
. (A11)

This is precisely the same Avrami parameter from the classical
treatment of a growing disk [33]. In this case, we find that v is
the disk velocity v0 scaled by a geometric constant. In general,
this constant α can be defined as the scaling between v and v0:

v = v0/α. (A12)

It should be noted that v0 is the true velocity of the growing
crystal geometry, where v is the geometry-scaled velocity of
the crystal.

APPENDIX B: CALCULATING THE CHANGE IN
NUCLEATION AND GROWTH RATES RESULTING

FROM A STEP CHANGE IN TEMPERATURE

What follows next will show how the difference in the
solution before and after the temperature jump can be used to
extract information about the change in growth velocity and
nucleation rate. Recall that the transformed fraction is

f (t ) = 1 − exp

(
−

∫ ∞

0

4

3
πr3ρ(r, t ) dr

)
. (B1)

Now we will consider how the system solidifies shortly after
the temperature jump. Since there has not been enough time
for appreciable phase change due to the growth of newly
nucleated solids after the temperature jump, then we can focus
solely on the growth of the previously formed solids. Let
us compare the time derivative of the transformed fraction
slightly after the temperature to a case where the system
remains at T1 for all time to the case where we have a tem-
perature jump from T1 to T2 at t = s. Since

∂

∂t
(− ln (1 − f (t ))) = ∂

∂t

∫ ∞

0

4

3
πr3ρ(r, t )dr, (B2)
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given a velocity of u1(r), we know that at time t = s we get a
maximum phase inclusion radius Rmax of:

Rmax = (v1s(m1 + 1))
1

m1+1 (B3)

Thus, we can ignore all values of r > Rmax. Next, by combin-
ing Eq. (17) from the main text and Eq. (B2), we have

∂

∂t
(− ln (1 − f (s))) = 4

3
π

∫ Rmax

0
r3 ∂ρ2(r, s)

∂t
dr. (B4)

The following summarizes the solution for this integral. The
phase size distribution after the temperature jump, its time
derivative at the temperature jump, and corresponding time
rate of phase change at the temperature jump are expressed as

ρ2(r, t ) = J1

v1
rm2θ (rm2+1 − (m2 + 1)v2(t − s))

× θ

⎛
⎝v1s − (rm2+1 − (m2 + 1)v2(t − s))

m1+1
m2+1

m1 + 1

⎞
⎠

× (rm2+1 − (m2 + 1)v2(t − s))
m1−m2
m2+1

+ J2

v2
rm2θ

(
v2(t − s) − rm2+1

m2 + 1

)
, (B5)

dρ2(r, s)

dt
= v2

J1

v1

[
δ

(
sv1 − rm1+1

m1 + 1

)
r2m1−m2

+ θ

(
sv1 − rm1+1

m1 + 1

)
(m2 − m1)rm1−m2−1

]
,

(B6)

ḟ2(s)

f2(s) − 1
=

∫ ∞

0

4π

3
r3 ∂ρ(r, s)

∂t
dr, (B7)

ḟ2(s)

f2(s) − 1
= 4πv2

3

J1

v1

∫ ∞

0
δ

(
sv1 − rm1+1

m1 + 1

)
r3+2m1−m2

+ θ

(
sv1 − rm1+1

m1 + 1

)
(m2 − m1)r2+m1−m2 dr

(B8)

= ḟ2(s)

f2(s) − 1
= I1 + I2. (B9)

The first integral, I1, is

I1 = 4πv2

3

J1

v1

∫ ∞

0
δ

(
sv1 − rm1+1

m1 + 1

)
r3+2m1−m2 dr, (B10)

y = sv1 − rm1+1

m1 + 1
, (B11)

r = ((v1s − y)(m1 + 1))
1

m1+1 , (B12)

dy = −rm1 , (B13)

I1 = 4πv2

3

J1

v1

∫ sv1

0
δ (y)((v1s − y)(m1 + 1))

3+m1−m2
m1+1 dy,

(B14)

I1 = 4πv2

3

J1

v1
R3+m1−m2

max . (B15)

The second integral, I2, is

I2 = 4πv2

3

J1

v1

∫ ∞

0
θ

(
sv1 − rm1+1

m1 + 1

)
(m2 − m1)r2+m1−m2 dr,

(B16)

I2 = 4πv2

3

J1

v1

∫ Rmax

0
(m2 − m1)r2+m1−m2 dr. (B17)

Taking the sum of I1 and I2, we get

ḟ2(s)

f2(s) − 1
= 4πv2

3

J1

v1
R3+m1−m2

max

[
3

3 + m1 − m2

]
. (B18)

We can substitute m1 = m2 and v1 = v2 to get ḟ1 at t = s:

ḟ1(s)

f1(s) − 1
= 4πv1

3

J1

v1
R3

max. (B19)

Next, we can take the ratio of ḟ2 and ḟ1, noting that f1 = f2 at
t = s:

ḟ2(s)

ḟ1(s)
= v2

v1
Rm1−m2

max

[
3

3 + m1 − m2

]
, (B20)

ḟ2(s)

ḟ1(s)
= v2

v1
v

m1−m2
m1+1

1 (s(m1 + 1))

m1−m2
m1+1

[
3

3 + m1 − m2

]
. (B21)

Thus, we arrive at

ḟ2(s)

ḟ1(s)
= β

v2

vM
1

, (B22)

β = (s(m1 + 1))
m1−m2
m1+1

[
3

3 + m1 − m2

]
, (B23)

M = m2 + 1

m1 + 1
. (B24)

1. Two-dimensional extension

Using the same reasoning as in three-dimensional case,
we now consider circular, disk-equivalent growth in two-
dimensions:

ArD = πR2, (B25)

r =
(

π

A
R2

) 1
D

, (B26)

α = 2

D

(π

A

) 1
D

, (B27)

dr

dt
= αR

2
D −1 dR

dt
, (B28)

m = 2

D
− 1, (B29)

u(R) = v0/α

Rm
= v

Rm
. (B30)

Following the same methods for deriving the three-
dimensional case, we can derive the two-dimensional case for
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the ratio of ḟ1 and ḟ2 at t = s:

β2D = (s(m1 + 1))
m1−m2
m1+1

[
2

2 + m1 − m2

]
, (B31)

M2D = m2 + 1

m1 + 1
, (B32)

ḟ2(s)

ḟ1(s)
= β2D

v2

v
M2D
1

. (B33)

Additionally, the two-dimensional Avrami parameters k and n can be rescaled from the three-dimensional version:

n = m + 3

m + 1
, (B34)

k = π

(
1 + m

3 + m

)
J ((m + 1)v)

2
m+1 . (B35)

Thus, the two-dimensional nucleation rate equation is then

J (T ) = k(T )n(T )

π

[
2v(T )

n(T ) − 1

]1−n(T )

. (B36)

APPENDIX C: TIME-DEPENDENT DIFFUSION LIMITED
AGGREGATION PSEUDOCODE

The algorithms used in this work to generate diffusion
limited aggregates and to then model time-dependent aggre-
gate growth are summarized in Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1. Diffusion limited aggregation.

Input: k, s, N , Rthreshold

Stickiness parameter, step size, number of particles, radius of
gyration at temperature change
Output: p
Ordered array of aggregate particle locations

Choose initial seed location p[0] = p0

for n ← 1, N − 1 do
Calculate the minimum bounding circle Smin of p
Calculate appearance and rejection circles Sr and Sa from Smin

Chose a random point x on Sa

while x �∈ p do
Chose a random cardinal direction d
x ← x + sd
if x lies outside of Sr then

Chose a random point y on Sa

x ← y
end if
if x lies adjacent to any point in p then

if rand < k then
p[n] = x

end if
end while
Calculate the radius of gyration Rg

if Rg > Rthreshold then
Change s to alter the fractal dimension

end if
end for

Algorithm 2. Time-dependent transformation and transformed
fraction.

Input: p, v, JM , �H
◦
fus, M, N

Ordered array of aggregate particle locations, DLA growth
velocity, number of DLA nuclei formed per time step, heat of
fusion, number of time steps, number of particles in p
Output: f , q, t
Transformed fraction, time, heat release

Calculate the radius of gyration Rg[n] of the first n particles in p
Calculate nbin = linspace(0, N, M )
for m ← 0, M− do

Calculate the radius of gyration R[m] = Rg[nbin[m]]
end for
Calculate a and b from area vs radius of gyration A = aRb

Using a, b, and A, calculate t[m] such that R[t] = vt
Generate grid of zeros
for m ← 0, M − 1 do

For JM nuclei, place elements nbin[0] of p shifted by a random
starting location on the grid. For existing aggregates, grow them
by placing the next set of particles nbin[ms] of p corresponding to
ms time steps since nucleation. Set the grid value to 1 every time a
particle occupies a new unoccupied grid space. Apply periodic
boundary conditions. Multiple p aggregates can be generated and
sampled from for sufficient randomness.

The transformed fraction f [m] is the number of grid points
equal to 1 divided by the total number of grid points. The heat
release q[m] is the number of new grid points added multiplied by
the heat of fusion �H

◦
fus.

end for

014617-9



JOSEPH KANGAS AND CHRISTOPHER J. HOGAN JR. PHYSICAL REVIEW E 109, 014617 (2024)

[1] L. J. Lewis and R. M. Nieminen, Phys. Rev. B 54, 1459 (1996).
[2] J. S. Poisson, J. P. Acker, J. G. Briard, J. E. Meyer, and R. N.

Ben, Langmuir 35, 7452 (2019).
[3] R. Strey, P. E. Wagner, and Y. Viisanen, J. Phys. Chem. 98, 7748

(1994).
[4] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen,

and A. Michaelides, Chem. Rev. 116, 7078 (2016).
[5] T. Li, D. Donadio, and G. Galli, Nat. Commun. 4, 1 (2013).
[6] H. Laksmono, T. A. McQueen, J. A. Sellberg, N. D. Loh,

C. Huang, D. Schlesinger, R. G. Sierra, C. Y. Hampton, D.
Nordlund, M. Beye, A. V. Martin, A. Barty, M. M. Seibert, M.
Messerschmidt, G. J. Williams, S. Boutet, K. Amann-Winkel,
T. Loerting, L. G. M. Pettersson, M. J. Bogan et al., J. Phys.
Chem. Lett. 6, 2826 (2015).

[7] S. A. Kulkarni, S. S. Kadam, H. Meekes, A. I. Stankiewicz, and
J. H. ter Horst, Cryst. Growth Design 13, 2435 (2013).

[8] S. Fan, X. Gu, X. Zhou, X. Duan, and H. Li, Energetic Mater.
Front. 2, 62 (2021).

[9] G. A. Kimmel, Y. Xu, A. Brumberg, N. G. Petrik, R. S.
Smith, and B. D. Kay, J. Chem. Phys. 150, 204509
(2019).

[10] S. Charoenrein and D. S. Reid, Thermochim. Acta 156, 373
(1989).

[11] V. M. Fokin, A. A. Cabral, R. M. C. V. Reis, M. L. F.
Nascimento, and E. D. Zanotto, J. Non-Cryst. Solids 356, 358
(2010).

[12] E. Ma, C. V. Thompson, and L. A. Clevenger, J. Appl. Phys. 69,
2211 (1991).

[13] K. F. Kelton, J. Am. Ceram. Soc. 75, 2449 (1992).
[14] E. Aamir, Z. K. Nagy, and C. D. Rielly, Cryst. Growth Des. 10,

4728 (2010).

[15] S. H. Neher, H. Klein, and W. F. Kuhs, J. Am. Ceram. Soc. 101,
1381 (2018).

[16] V. M. Fokin, E. D. Zanotto, N. S. Yuritsyn, and J. W. Schmelzer,
J. Non-Cryst. Solids 352, 2681 (2006).

[17] D. W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992).
[18] B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H.

Wills, H. K. Christenson, and E. J. Murray, Phys. Chem. Chem.
Phys. 12, 10380 (2010).

[19] A. T. Lorenzo, M. L. Arnal, J. Albuerne, and A. J. Müller,
Polymer Testing 26, 222 (2007).

[20] M. Avrami, J. Chem. Phys. 7, 1103 (1939).
[21] M. Avrami, J. Chem. Phys. 8, 212 (1940).
[22] M. Avrami, J. Chem. Phys. 9, 177 (1941).
[23] J. Málek, Thermochim. Acta 267, 61 (1995).
[24] M. C. Weinberg, D. P. Birnie, and V. A. Shneidman, J. Non-

Cryst. Solids 219, 89 (1997).
[25] T. Matsui, T. Ogawa, and Y. Adachi, Results Mater. 1, 100002

(2019).
[26] R. Saeki and T. Ohgai, Crystals 9, 142 (2019).
[27] J. Yang, B. J. McCoy, and G. Madras, J. Phys. Chem. B 109,

18550 (2005).
[28] J. Yang, B. J. McCoy, and G. Madras, J. Chem. Phys. 122,

064901 (2005).
[29] J. R. Kangas, J. C. Bischof, and C. J. Hogan, J. Chem. Phys.

155, 211101 (2021).
[30] B. Rheingans and E. J. Mittemeijer, JOM 65, 1145 (2013).
[31] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).
[32] R. C. Ball and R. M. Brady, J. Phys. A: Math. Gen. 18, L809

(1985).
[33] V. Hinrichs, G. Kalinka, and G. Hinrichsen, J. Macromol. Sci.

Phys. 35, 295 (1996).

014617-10

https://doi.org/10.1103/PhysRevB.54.1459
https://doi.org/10.1021/acs.langmuir.8b02126
https://doi.org/10.1021/j100083a003
https://doi.org/10.1021/acs.chemrev.5b00744
https://doi.org/10.1038/ncomms2918
https://doi.org/10.1021/acs.jpclett.5b01164
https://doi.org/10.1021/cg400139t
https://doi.org/10.1016/j.enmf.2020.12.006
https://doi.org/10.1063/1.5100147
https://doi.org/10.1016/0040-6031(89)87204-1
https://doi.org/10.1016/j.jnoncrysol.2009.11.038
https://doi.org/10.1063/1.348722
https://doi.org/10.1111/j.1151-2916.1992.tb05597.x
https://doi.org/10.1021/cg100305w
https://doi.org/10.1111/jace.15309
https://doi.org/10.1016/j.jnoncrysol.2006.02.074
https://doi.org/10.1088/0953-8984/4/38/001
https://doi.org/10.1039/c003297b
https://doi.org/10.1016/j.polymertesting.2006.10.005
https://doi.org/10.1063/1.1750380
https://doi.org/10.1063/1.1750631
https://doi.org/10.1063/1.1750872
https://doi.org/10.1016/0040-6031(95)02466-2
https://doi.org/10.1016/S0022-3093(97)00261-5
https://doi.org/10.1016/j.rinma.2019.100002
https://doi.org/10.3390/cryst9030142
https://doi.org/10.1021/jp052219b
https://doi.org/10.1063/1.1844373
https://doi.org/10.1063/5.0072299
https://doi.org/10.1007/s11837-013-0674-4
https://doi.org/10.1103/PhysRevLett.47.1400
https://doi.org/10.1088/0305-4470/18/13/014
https://doi.org/10.1080/00222349608220382

