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particles in solution: The effect of interfaces and interparticle correlations
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The propagation of light across 2D and 3D slabs of reflective colloidal particles in a fluidlike state has been in-
vestigated by simulation. The colloids are represented as hard spheres with and without an attractive square-well
tail. Representative configurations of particles have been generated by Monte Carlo. The path of rays entering
the slab normal to its planar surface has been determined by exact geometric scattering conditions, assuming that
particles are macroscopic spheres fully reflective at the surface of their hard-core potential. The analysis of light
paths provides the transmission and reflection coefficients, the mean-free path, the average length of transmitted
and reflected paths, the distribution of scattering events across the slab, the angular spread of the outcoming
rays as a function of dimensionality, and thermodynamic state. The results highlight the presence of a sizable
population of very long paths, which play an important role in random lasing from solutions of metal particles in
an optically active fluid. The output power spectrum resulting from the stimulated emission amplification decays
asymptotically as an inverse power law. The present study goes beyond the standard approach based on a random
walk confined between two planar interfaces and parametrized in terms of the mean-free path and scattering
matrix. Here, instead, the mean-free path, the correlation among scattering events, and memory effects are not
assumed a priori, but emerge from the underlying statistical mechanics model of interacting particles. In this way
the dependence of properties on the thermodynamic state, the effect of particle-particle and particle-interface
correlations and of spatial inhomogeneity, and memory effects are accounted for in a transparent way. Moreover,
the approach joins smoothly the ballistic regime of light propagation at low density with the diffusive regime at
high density of scattering centers. These properties are exploited to investigate the effect of weak polydispersivity
and of large density fluctuations at the critical point of the model with the attractive potential tail.
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I. INTRODUCTION

The scattering of light in disordered media is a subject
of great conceptual and practical interest, which underlies
natural phenomena such as the rainbow [1] and the metallic
hues of selected butterflies and beetles, as well as the irides-
cent glazing of ancient Chinese pottery. The interest in this
subject has been renewed and enhanced by its applications in
photonics and nanophotonics in particular.

One specific case of application is represented by random
lasing. Conventional lasers [2] rely on the amplification of
light by stimulated emission in an active medium whose pop-
ulation inversion is driven by a secondary light source. Their
gain is typically due to the coupling to a high-quality optical
cavity, whose mode selectivity and sizable energy density are
instrumental in achieving strong beam intensity, coherence,
and collimation. High amplification of light, however, does
not strictly require a highly tuned optical cavity [3,4], since
it can be achieved also using simpler setups such as the vari-
ety of devices known as random lasers (RLs) [5,6]. In these
systems, amplification relies on the propagation through an
optically active medium of a beam of light whose path is
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lengthened by multiple reflections from a static or dynamic
disordered distribution of scattering centers. The appeal of
random lasers is due, first of all, to the simplicity of their
fabrication, since these systems are largely self-assembled.
To a lesser extent, it is also due to the contrast of structural
randomness and cooperative optical emission. Depending on
the type and structure of the underlying medium, on the feed-
back mechanism, and on the light intensity, the output of RLs
can be coherent [7] or, more often, incoherent light [8]. Even
random lasers can support discrete modes, but often, espe-
cially in the incoherent feedback case, the emission spectrum
is rather broad, and directionality is lacking. Both features
could represent advantages or disadvantages depending on the
application.

Arguably, the simplest realization of RLs is represented by
particles of µm to mm diameter dispersed at equilibrium con-
ditions (colloids) [9], or out of equilibrium (shaken granular
systems) [10,11] in an optically active fluid. A paradigmatic
case is represented by µm TiO2 colloidal particles dissolved
in a solution of fluorescent organic molecules [9]. Then the
scattering of light is due to the difference of refraction index
between particles and the solution, while the amplification is
due to the optical pumping of the organic dye. Other dielec-
tric oxides (ZnO, Al2O3, etc.) and metal particles are used
as well.
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From the conceptual point of view, random lasers are at
the crossroad of several different research topics. First of all,
the propagation of wavelike excitations in a medium sprinkled
by a disordered distribution of scattering centers is a central
theme of statistical mechanics [12,13], with implications for
a broad range of subjects, exemplified by the propagation of
light in glasses and defective crystals [14] and of electrons
in disordered metal alloys [15–17], the localization of vibra-
tions in amorphous materials [18], the scattering of light from
aerosols in the atmosphere [19], and the diffusion of cold
atoms in disordered lattices [20]. Despite lacking some of the
characteristic features of conventional lasers, random lasers
as well find application in a number of different fields, such
as photonics [21], display technology, sensing, speckle-free
imaging [22], and light therapy while further applications
are under development in diagnostics exploiting the random
lasing in human tissues infiltrated with an organic dye solution
[23]. New conceptual developments and the introduction of
new materials [24] can still greatly extend the application
range of RLs.

Because of their broad interest, RLs have been extensively
investigated by theoretical methods [25–31] and by simulation
[19,32–35], accounting for a variety of aspects in the nature
of the scattering centers and of the scattering process (Mie
scattering, reflective hard spheres for colloids, etc.), including
the competition and sometimes the interference of different
wave beams propagating in the medium. In the simplest case
of colloids in an optically active solvent, and with RLs based
on granular matter, theoretical and computational studies are
focused primarily on systems with a high density of scattering
centers, in which the propagation of light is diffusive. In this
regime the underlying kinetics of light has been, in most cases,
modeled as a random walk in a finite slab, with preassigned
distribution of scattering probability. More first-principle ap-
proaches to account for correlation among scattering events
have been proposed (see, for instance, Ref. [36]) but rarely
applied. The idealized random walk approaches, however,
require additional parameters and ad hoc assumptions to
model changes in the thermodynamic conditions and in the
interparticle potential, or the effect of inhomogeneities in the
system. Thus, these parametrized models might not reproduce
exactly all the correlations found in real colloidal systems,
nor account consistently for density oscillations at surfaces
and interfaces or for large-scale inhomogeneities in samples
approaching criticality.

To cover also these phenomena, we model the scattering
of a light beam from a collection of hard spheres with and
without an attractive tail, floating into a fluid environment,
represented as a slab confined by two planar, parallel surfaces.
The model closely corresponds to macroscopic dielectric
[37,38] or metal particles [7,39] in a finite container, which
could represent the core of a random laser.

Particle configurations are generated by Monte Carlo sim-
ulation, hence they fully account for the exact correlations
in the positions of scattering centers, and also they contain
exactly the effect of interfaces and of density fluctuations at
all wavelengths.

The purpose of our study is to investigate the effects of the
packing fraction of colloidal particles on various properties of
the light incident on the system, including the path length, the
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FIG. 1. Schematic representation of the computational set up in
two dimensions.

amplification of the input light, the coefficients of transmis-
sion and reflection, the density distribution of scattering events
along the axis orthogonal to the slab, and the angular distri-
bution of the output light. The geometric optics framework
underlying the present study neglects wave interference and
diffraction, as well as any nonlinearity, due, for instance, to the
depletion of excited states at high beam intensity. Our model,
therefore, describes intensity feedback, which is also inco-
herent. On the other hand, the exact application of the geo-
metric optics relations allows one to match smoothly the
ballistic regime of light propagation at low density of the
scattering spheres with the diffusive regime at high density. In
a different but related context, the model and its results might
be of interest in the analysis of reflectance and transmission
of light from a turbid medium [13,40–42].

II. MODEL AND METHOD

The present computational investigation has been inspired
by the experimental study in Ref. [10], whose setup consists of
∼103 reflective particles of macroscopic (mm) size immersed
in an optically active fluid. The model and the experimental
system, however, differ in two aspects. Since macroscopic
heavy particles sediment under gravity, a fluidlike distribution
has been obtained by applying mechanical shaking. There-
fore, the experimental system is out of thermal equilibrium,
with both the density of particles and their dynamics being
controlled by shaking and gravity. These two effects are dif-
ficult to reproduce by simulation (at least because the details
of shaking and the precise state of the solvent, i.e., density,
temperature, and viscosity, are not reported). Therefore, the
simulation is carried out assuming thermodynamic (athermal,
in the case of hard particles) equilibrium and neglecting grav-
ity. In practice, the model is closer to the colloidal RLs than to
the shaken granular system of Ref. [10]. Moreover, the model
assumes that the disordered configuration of the metal spheres
is probed by a thin laser beam whose waist is significantly
thinner that the particles’ diameter. Although the laser beam
used in Ref. [10] has a waist of a few mm, the thin beam
assumption of the model greatly simplifies the analysis of the
light path through the model system, which corresponds to
the geometric scheme in Fig. 1. Despite these two differences,
we still emphasize the connection with the cited experimental
paper, partly because, as in Ref. [10], our model assumes per-
fect reflection by sphere of diameter σ � λ, with λ being the
wavelength of the input and output light. Moreover, the model
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system could be readily replicated by experiments with nearly
the same setup of Ref. [10], since laser beams of ∼50 µm
waist (<< 2R; see Fig. 1) are widely available.

In more detail, the simulation model consists of N isotropic
particles in two or three dimensions of coordinates {Ri, i =
1, . . . , N} enclosed in an orthorhombic simulation box of size
Lx × Ly(×Lz ), exposing two parallel surfaces perpendicular to
the x axis, and periodically repeated in the other direction(s).
Confinement within the slab is enforced through an external
potential W (Ri

x ) acting on the particles, which vanishes for
0 � Ri

x � Lx and is infinitely repulsive otherwise. In what
follows the term disk will be used for 2D particles only, while
sphere will be used for 3D particles, but also when referring
to either 2D and 3D systems without distinction.

For the sake of simplicity, we describe first the model
and method for the 2D case, the extension to the 3D case
being straightforward. The first model that has been simulated
consists of hard disks, whose hard-core (hc) potential energy
is infinite if at least two disks overlap, and zero otherwise. The
system is athermal, and the properties of the homogeneous
phases and interfaces with confining hard walls (as in the
present simulations) are well documented in the literature
[43,44]. For monodisperse homogeneous samples, all prop-
erties are functions of a single parameter i.e., the packing
fraction η = π

4 ρσ 2, where ρ is the number density. The ho-
mogeneous fluid phase is stable up to ηF ∼ 0.699, separated
from the hexagonal compact 2D crystal phase (stable for η >

0.723) by the hexatic phase [43]. The highest (close) packing
is ηcp = π/

√
12 = 0.906899. The amorphous phase might

form by rapid compression of samples, but in monodisperse
systems solidification into a defective crystal is the most likely
result of increasing the density beyond ηF .

To cover also the liquid-vapor equilibrium, and especially
the existence of a critical point, whose fluctuations might pose
a particular challenge to simpler models of light propagation,
simulations have also been carried out for 2D hard particles
with an attractive potential well of depth −ε and amplitude δ:

v(r) =
⎧⎨
⎩

∞ r � σ

−ε σ < r � σ + δ

0 otherwise
. (1)

The particle-wall interaction W (x) is still purely hard wall.
This model is no longer athermal, and we explored a few

thermodynamic states in the (η, T ) plane. The choice of these
two parameters for this second 2D system has been guided by
the simulation results of Ref. [45], considering, in particular,
states close to the critical point of this model. Similar com-
putations have been done for the 3D analog of the force field
model of Eq. (1). In this second case, the critical point data of
Ref. [46] have been used.

In all simulated cases, in both two and three dimensions,
with and without the attractive potential well, particles are
assumed to be fully reflective at the surface of their hard
sphere potential.

For each system and choice of the thermodynamic condi-
tions, n independent configurations have been extracted from
a MC simulation. For the hard sphere plus square well system,
the equilibration of the sample before selecting configurations
has been verified by looking at the drift of the potential energy,

and the independence of the selected configurations has been
assessed by estimating the potential energy autocorrelation
time. For the pure hard disk model, the potential energy is
constant and the validation has been carried out by computing
the mean square displacement of particles as a function of
MC time, making sure that, on average, particles explore a
sufficient portion of space to achieve equilibration and that
the n representative configurations are independent.

Each of the selected configurations has been used to gener-
ate m � 1 paths for the propagation of light starting from the
left of the slab, undergoing scattering events inside the slab,
and exiting on the left (reflected) or on the right (transmitted)
side of the sample [see Fig. 1(a)]. Here the assumption is
that the motion of particles is so slow that the m light paths
are computed at fixed position of the particles. Moreover, the
beam of light is significantly thinner than the (macroscopic)
particles’ diameter, and the overall picture corresponds to the
scheme in Fig. 1. Then the beam scattering by the macro-
scopic reflecting particles is computed according to geometric
optics.

First, let us consider a single scattering event where a ray of
incident radiation interacts with a scattering center. Since the
spheres under consideration have a diameter σ � λ where λ

is the wavelength of the light, we can consider the scattering
centers as circular mirrors, and each interaction of a ray with
a center follows in accordance with specular reflection.

A beam of light propagating through the medium is repre-
sented by a straight line, given in the parametric form

x(t ) = x0 + kx(t − t0),

y(t ) = y0 + ky(t − t0), (2)

where k ≡ (kx, ky) is a unit (k2
x + k2

y = 1) propagation vector,
and t0 is an arbitrary starting parameter. For simplicity, we
will think of t as time, and visualize light as traveling along
the line at unit speed in the direction of increasing t . In other
terms, we imagine light moving as a thin beam, whose front is
far less extended than the (macroscopic) size of the particles.

In our analysis the light beam starts at position (x0 =
−σ/2; y0), where y0 is a random number selected as speci-
fied in the Results section. The initial propagation vector is
k = k0 ≡ (1; 0). During propagation in the random medium,
traveling in the generic (kx; ky) direction following a scattering
event at position (xr ; yr ), the time dependence of the beam
location is given by

x(t ) = xr + kxt,

y(t ) = yr + kyt, (3)

where the origin of time has been shifted to the time of the pre-
vious scattering event. Elementary geometric considerations
show that the distance between the center (Ri

x, Ri
y) of disk i

and the straight propagation line is

dmin =
√

d2
0 − [kx(Rx − xr ) + ky(Ry − yr )]2, (4)

where d0 is the separation of (xr ; yr ) from (Ri
x, Ri

y), and
occurs at

tmin = kx(xr − Rx ) + ky(yr − Ry). (5)
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The beam intersects the surface of the same sphere provided
dmin � (σ/2)2, and the intersection [see Fig. 1(b)] occurs at

ts = tmin −
√

σ 2

4
− d2

min. (6)

The intersection is relevant only if ts � 0. Then the loca-
tion of the following scattering event is identified as (xr +
kxt̄s; yr + kyt̄s) where t̄s is the minimum among the positive
beam-surface intersection times with respect to all particles.

The radius R joining the center of the scattering sphere
to the scattering point on its surface is orthogonal to the
surface. The incoming propagation vector k is projected into
its components parallel (k‖) and perpendicular (k⊥) to R. The
outgoing propagation vector k′ is obtained by conserving the
parallel component and reversing the perpendicular one:

k′ = k‖ − k⊥. (7)

Starting from the initial position (x0 = −σ/2; y0) and
propagation vector k0 ≡ (1; 0) of the beam, scattering events
are identified until there is no further scattering at positive
time. If, at that point, the propagation vector has a positive kx

component, the beam will exit the slab from its right interface,
the path is counted as transmitted, and its length is accounted
for in histograms of the properties of transmitted paths. In this
case the number ns of scattering events since the beginning of
the trajectory is also recorded to compute the mean-free paths
of transmitted trajectories, as detailed below. In the case that
kx < 0, the beam exits the slab on the initial (left) side, and
the path is counted among those reflected back.

This straightforward algorithm works and is easily adapted
to incorporate periodic boundary conditions in the direction(s)
orthogonal to x. However, at each reflection event, it requires
one to compute the particle-beam distance dmim of each par-
ticle in the system (or more, considering that the beam can
cross a distance > Ly in the transverse direction). A measure
of time savings is introduced by considering that in two di-
mensions, starting from the scattering point (xr, yr ), a beam
of wave vector (kx > 0; ky > 0) can be scattered again only
by particles whose position (Ri

x; Ri
y) satisfies the conditions

xr − σ

2
� Ri

x � Lx,

yr − σ

2
� Ri

y � yr + ky

(
Lx − xr

kx

)

with similar conditions for different sign combinations of the
components (kx; ky) of the scattering vector. These simple
geometric conditions decrease (on average by a factor of four
in two dimensions, a factor of eight in three) the number of
scattering events to be checked. Although this constant and
relatively small gain factor is not decisive, for sample sizes
of the order of 103 particles the determination of light paths
is sufficiently fast to allow collecting statistics over several
million paths for each sample, using only a few core hours on
a laptop or desktop.

All the equations reported above for 2D samples remain
valid for the 3D case, with the trivial addition of the z com-
ponent in all coordinate and propagation vectors, playing a
role completely analogous to that of the y component. Also

the considerations on the relatively low computational cost
remain valid in three dimensions.

The foremost characterization of the transmission and am-
plification process concerns the length l of the light paths
crossing the slab after many reflections by the colloidal par-
ticles, since this quantity is directly related to amplification.
Because of the inherent disorder of the distribution of scat-
terers, l is a random variable whose probability distribution
P(l ) will be characterized by simple statistical parameters
such as the mean value (Mean), the standard deviation (SDev),
the skewness (Skew), and kurtosis, or, more precisely, the
excess kurtosis (ExKur), equal to the difference between the
kurtosis and the constant value (equal to 3) of the Gaussian
distribution. All these parameters are simply related to scaled
moments (centered on the mean value and normalized by the
SDev) of the distribution up to the fourth. They are computed
directly by the program that generates and analyzes the light
paths in the slab.

Besides the mean value, the analysis will focus on the
excess kurtosis, which measures the tailedness of the distribu-
tion, with positive values of ExKur (leptokurtic distribution)
corresponding to an excess of positive outliers (i.e., l � 〈l〉)
with respect to the Gaussian case. Because of the exponential
character of light amplification by stimulated emission, these
outliers might have a significant impact on the intensity of
outcoming rays, and represent the connection with the Lévy
statistics aspects [47,48] of laser emission.

An additional important parameter to consider in multiple
scattering is the mean-free path, which is defined as the aver-
age distance traveled by the ray between two scattering events
[49]. For a single path of length l resulting from ns scattering
events, the mean-free path is

ls = l

ns
.

In the following section, the average mean-free path along
trajectories crossing the sample will be determined and dis-
cussed, defined as

〈ls〉 =
〈

l

ns

〉
, (8)

where 〈·〉 indicates the average over trajectories crossing the
sample. A similar quantities could be computed for the paths
being reflected.

A natural comparison for the 〈ls〉 of simulation is the mean-
field result:

〈ls〉m f = 1

ρσs
, (9)

where σs is the scattering cross section of the single scatterer,
and ρ is the density of scattering centers. A better semiana-
lytical expression for 〈ls〉 accounting for lowest order effects
of particle-particle correlations is available [50]. Using this
approximation, however, already requires a simulation or an
approximate theory to compute the static structure factor of
the particles, hence we find the simple, uncorrelated expres-
sion in Eq. (9) to be the most suitable benchmark for the
computational results.

〈ls〉 is often used as a diagnostic index to monitor the
conditions for Anderson localization [15], where it is scaled
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with the wave vector of the incident light [51]. However, the
present investigation is purely geometric and the model does
not display any nonlinearity, hence Anderson localization is
beyond the scope of the present study. We can instead use
the parameter ls as a single-parameter characterization of the
diffusive medium through which the light travels. There are
typically three regimes to describe multiple scattering: local-
ization, diffusive, and ballistic [49]. In most cases, i.e., when
the density is not too low, the propagation of light in the
samples we considered occurs in the diffusive regime, where
photons propagate according to the diffusion equation [49].

Another valuable parameter of the simulation is the am-
plification ratio of the output light to the input light. The
present study, however, is focused on the light propagation in
the disordered medium filling the slab, while amplification is
discussed only a posteriori, on the basis of the results for the
geometric trajectories. Wave-dependent aspects such as inter-
ference and diffraction are neglected, and also neglected is the
quantum nature of photon statistics and stimulated emission.
In this simplified picture, each incoming ray carries the input
intensity i0. Provided amplification is low, the output intensity
Iout of a ray going through the slab is estimated as

Iout = i0eβ〈l〉, (10)

where 〈l〉 is the average path length of transmitted rays and
β is the gain per unit length of the active fluid medium. To
estimate the order of magnitude of a few quantities, the value
β = 0.002 will be used, being clear that this value is arbitrary
and large, considering the unit of length adopted in this study,
equal to the (presumably small) diameter σ of particles. In
reality, the value would depend on the physical parameters
of the experiment, such as the chemical composition and
concentration of the solution used and the size of the sample.
If N rays are sent through the slab, then the input intensity is
Ni0. On the other side of the slab we have j � N rays with an
energy of i0eβ〈l〉. Therefore, the amplification ratio is

kampl = j

N
eβ〈l〉. (11)

These parameters and properties are discussed in more detail
in Sec. III.

III. RESULTS

A. Colloidal particle configurations

The first step in the simulation protocol has been to create
random configurations of hard disks and spheres of unit diam-
eter (σ = 1) over a wide range of packing fractions. In the 2D
case, for instance, as many nonoverlapping disks as possible
were packed into a square of side L = 40σ . Using a random
number generator, a sequence of (xi, yi ) centers were created,
each time rejecting any disks overlapping with those already
in the system. The maximum number of disks we could pack
into the square was N = 1034, corresponding to a packing
fraction of η = 0.537. Then a sequence of 11 samples span-
ning 0.01 � η � 0.5 has been generated by expanding the box
side to Lx = Ly = σ

2

√
Nπ/η. The list of packing fractions that

have been simulated is η ∈ [0.01; 0.05 × j; j = 1, . . . , 10].
A similar procedure in three dimensions results in a sequence
of 11 samples at the same η(= π

6 ρσ 3) of the 2D case, but

FIG. 2. Snapshot of the simulation cell for two 2D systems:
(a) the pure hard disk sample at η = 0.3 and (b) the hard disk plus
attractive square well potential in proximity of the critical point of
the model at η∗ = 0.2751 and T ∗ = 0.5546ε. In (b) the strength of
the attractive potential well is ε = 1, and the attractive square well
extends over the interval 1 � r/σ � 1.5. Both samples consist of
1034 particles, are finite along the horizontal x direction, and are
periodic along the orthogonal y direction. The radius of the dots and
the side of the cell are at scale.

consisting of 5039 spheres, a size somewhat larger but still
comparable to that of the experimental sample in Ref. [10].
Each sample in two and in three dimensions has been equi-
librated by Monte Carlo for a number of steps ranging from
200 × 106 at η = 0.01 to 109 at η = 0.5. A further MC run
of 40 × 106 steps has been used to generate 201 independent
configurations per sample on which the analysis of light prop-
agation has been carried out.

The starting configurations for the 2D and 3D hard par-
ticles are suitable to initiate simulations also for the system
made of particles with the square well attractive tail, since
the two models share the same hard-core radius. Then, the
equilibration and the generation of the 201 independent con-
figurations for the second model potential have been carried
out in the same way as for the pure hc samples. Both in
two and three dimensions, samples have been considered for
the attractive tail model, whose (ρ; T )′s belong to the critical
isotherm for the two dimensionalities. The relevance of den-
sity fluctuations in proximity of the 2D critical state can be
appreciated in Fig. 2. The morphology in Figs. 2(a) and 2(b),
in particular, displays the characteristic features of negatively
[Fig. 2(a)] and positively [Fig. 2(b)] correlated random struc-
tures [52].

To isolate the effect of the slab surfaces, samples of the
same size and number of particles have been generated by
applying pbc in all directions. These samples, therefore, are
homogeneous and lack both the density variation at the hard-
wall surface, and the enhanced correlations parallel to the
surface that have been discussed in a number of models. Also
in this case both 2D and 3D samples have been considered,
with and without the attractive potential well, and simulated
following the same protocol of the previous cases. Then the
difference in the light propagation properties of homogeneous
and finite-width samples is attributed to the presence of the
hard-wall surfaces.

A final set of 2D samples has been generated adding a
degree of polydispersivity to the population of particles. The
polydispersivity has been obtained by assigning the radius of
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FIG. 3. Transmission (T , red dots) and reflection (R blue
squares) coefficients for the 2D slabs of purely repulsive hc particles
as a function of packing fraction η. The full lines are the fit described
by Eq. (13). The number of particles is the same in all samples;
therefore, the linear size of the slab decreases with increasing η like
L ∝ η−1/2.

each particle according to

σi = 0.95 σ0 + 0.1 σ0ζ , (12)

where σ0 = 1 and ζ is a random variable linearly distributed
in ]0; 1[. The size L of each sample has been rescaled to obtain
the same η values of the previous models.

B. Analysis of light trajectories

The preparation of configurations and the analysis of light
paths arguably are simplest for the case of the pure hard disks
in two dimensions. For this reason we discuss first the results
for this case, which represent a clear benchmark for all the
other systems that have been investigated. The analysis is
based on the generation of at least one million light paths
for each of the 201 independent configurations (>201 × 106

paths per sample) selected from the MC run of the 11 samples
spanning the 0.01 � η � 0.5 packing fraction range.

Preliminary to the discussion of all other properties, the
transmission coefficient T and the reflection coefficient R are
reported as a concise characterization of the overall effect of
the slab on the incident beam. These coefficients are defined
in purely geometric terms, neglecting amplification by stim-
ulated emission and absorption by the fluid medium. Then T
is the fraction of light rays crossing the slab, while R is the
fraction of light rays being reflected back to the original half
space, with T + R = 1. The results shown in Fig. 3 follow
intuition. At low η, R is expected to grow linearly starting
from its limη→0 R(η) = 0 and to tend to 1 with increasing η,
without reaching it within the density range of fluid hard disk
systems. The simple Padé form

R(η) = Aη + Bη3

1 + Cη + Bη3
(13)

provides an excellent fit of the data for R, and it can be trivially
rewritten for T = 1 − R. Assuming that the functional form

FIG. 4. Probability distribution PT (l ) of the length l of the light
path crossing the 2D slab. Particles interact with each other and with
the confining wall by purely hc interactions. The vertical green line
belongs to the η = 0.05 data and represents the fraction of light rays
of length l = Lx crossing the slab without being scattered.

reflects the true dependence of R on η, it is easy to verify that
the deviation of R from 1 decreases like η−2 with increasing η,
and, equivalently, T decreases like the same η−2 with increas-
ing η. Needless to say, considerations on asymptotic trends are
not very relevant in this context, since the admissible range of
η is limited to η � ηcp. Apart from these general properties,
the detailed values of T and R as a function of η depend on the
thickness of the slab. For the size of the simulated systems,
it is apparent that the fraction of beams transmitted through
the slab decreases very quickly at first, dropping below 10%
already at η = 0.1, then (necessarily) decreasing slowly with
further increase of η.

The property that more closely reflects the scattering pro-
cess of light in the slab is the length l of light paths. As stated
in Sec. II, this is a stochastic variable, characterized by the
probability distribution P(l ). To be precise, the analysis is
carried out separately for transmitted and reflected paths, cor-
responding to two probability distributions PT (l ) and PR(l ),
respectively.

The data for transmitted paths are discussed first. The gen-
eration of at least a few hundred million paths per sample
allows us to draw very accurate histograms of the paths’
length, whose normalized version is the PT (l ) shown in Fig. 4
for η = 0.05 and η = 0.4.

The trends apparent in the figure are very intuitive. First, no
transmitted path can be shorter than the width Lx of the slab,
hence PT (l ) = 0 if l < Lx. The sharp peak at l = Lx in the plot
for η = 0.05 corresponds to rays crossing the slab without
being scattered. This peak quickly becomes negligible with
increasing η. To emphasize these features, the distribution
PT (l ) is rewritten as

PT (l ) =
⎧⎨
⎩

0 l < Lx

xδ(l − Lx ) l = Lx

(1 − x)P̄T (l ) l > Lx

, (14)

where 0 � x � 1 is the relative weight of the δ-like peak.
The continuous portion P̄T (l ) of the distribution, whose
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TABLE I. Mean value (Mean), standard deviation (SDev), skewness (Skew), and excess kurtosis (ExKur) of the probability distribution
PT (l ) for the length l of transmitted paths in 2D samples of hard disks as a function of the packing fraction η. The corresponding values
obtained by the fit of the continuous part P̄T (l ) of PT (l ) with an inverse Gaussian distribution are listed in parentheses. The fit parameter have
been omitted for η = 0.01 because in that case the fit is not even qualitatively close to the simulation data. Statistical error bars are implicitly
indicated by the number of digits of the data.

Transmitted Path Length Distribution: Statistical Moments

η 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Mean 658 416 386 455 618 798 928 1046 1172 1333 1521

(—) (452) (391) (454) (639) (840) (963) (1076) (1200) (1360) (1548)
SDev 302 128 140 223 370 507 590 665 745 851 969

(—) (139) (135) (219) (412) (582) (654) (724) (802) (904) (1027)
Skew 0.686 0.574 1.36 1.70 1.77 1.79 1.81 1.80 1.79 1.81 1.80

(—) (1.29) (1.35) (1.73) (2.15) (2.23) (2.15) (2.11) (2.08) (2.06) (2.04)
ExcKur 0.1 1.07 3.40 4.7 4.9 5.1 5.2 5.1 5.0 5.2 5.1

(—) (2.77) (3.02) (5.00) (7.71) (8.29) (7.72) (7.43) (7.22) (7.07) (6.96)

normalization is one, is skewed right, and, with increasing η,
it becomes broader and moves toward larger l ′s, despite the
progressive shrinking of the slab.

The qualitative results obtained by visual inspection of the
PT (l ) distributions are quantified by computing the average
path length 〈l〉, the variance, skewness, and kurtosis of the
length distribution of all samples. The parameters collected
in Table I show that for η � 0.1 the mean value and the
standard deviation increase rapidly with increasing η, while
both skewness and excess kurtosis saturate to a constant value
from below. The excess kurtosis, which is of particular interest
for the present discussion, is always positive and sizable,
implying that the distribution has an excess of outliers with
respect to the Gaussian distribution. To be precise, the average
length has a nonmonotonic behavior, at first decreasing in a
narrow interval of η, with a minimum at η ∼ 0.1 (see Fig. 5).
The presence of the minimum has to be expected since, at
constant number of particles, the linear size of the system,

FIG. 5. Average length 〈l〉 of transmitted paths as a function of
η. Blue filled squares: hc potential; red dots: hc plus attractive square
well tail. Green diamonds mark the values at the η of the critical point
for the 2D hs plus the attractive square well potential described in the
text.

and therefore the minimum path length, diverge in the η → 0
limit, while at large η the value of l increases again because
of trapping of light into the slab.

While the δ-like peak is relevant only at low η and its
weight x is difficult to predict, a few more observations can
be made on the continuous part P̄T (l ) of the distribution. First,
one can remark that as soon as the density of scattering centers
is non-negligible, the light paths inside the slab resemble the
trajectory of a random walk. The length l of each of the trans-
mitted paths is equivalent to the time t spent by a Brownian
particle to travel at unit velocity from (−σ/2; y0) to the exit
point having x = Lx (irrespective of the y exit coordinate).
The distribution of these times has a vague relation with the
Wald distribution PW , also known as the inverse Gaussian
distribution:

PW (t ≡ l; μ, λ) =
√

λ

2πt3
exp

[
−λ(t − μ)2

2μ2t

]
, (15)

which describes the distribution of times taken by a Brownian
particle to travel a given distance. In Eq. (15), μ is the average
value and λ is a fit parameter closely related to the variance
of the distribution. Admittedly, because of the spread of the y
exit coordinate along the surface plane, the random variable l
measured in the simulation is not the time needed to a Brow-
nian particle to drift by the distance Lx, therefore, Eq. (15)
cannot be the a priori model that describes the simulation
results. Nevertheless, we verified that Eq. (15) still represents
a suitable analytical form to fit the simulation results, provided
the density of scattering centers is not too low.

To be precise, the expression of Eq. (15) cannot reproduce
the simulation data because, as already remarked, no transmit-
ted path can be shorter than the width L of the slab, and P(l )
has to be zero for l < L.

To enforce this condition, the smooth part of the probability
distribution is modeled as

P̄T (l ) =
{

0 l < Lx

PW (l − Lx ) l � Lx
, (16)

where PW is the Wald distribution of Eq. (15). The rigid shift
by Lx changes the average 〈l〉 from μ to μ + Lx, but it does not
change the estimate of the variance μ3/λ, skewness 3

√
μ/λ,

and excess kurtosis 15μ/λ.
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FIG. 6. Long-l tail of the probability distribution P(l ) of light
path crossing the 2D slab at η = 0.5. Comparison of fit (blue dots)
and raw data (red line).

As soon as η exceed ∼0.1, the inverse Gaussian distri-
bution of Eq. (16) provides an excellent fit of the entire
distribution given by simulation (see Fig. S1 in the Supple-
mental Material [53]), allowing an immediate estimate of
average, standard deviation, skewness, and excess kurtosis,
whose values are close to those computed directly by the
simulation (see Table I). In the medium- and high-density
range, the ability of the inverse Gaussian distribution to fit
the simulation data extends to high l , as shown in Fig. 6. This
observation is remarkable, since the tail of the distribution has
a negligible weight in the fit. Perhaps more importantly, the
analytical expression of the fit distribution allows us to derive
the asymptotic distribution of the output power, following
amplification by the optically active medium. This aspect is
discussed in Sec. III E.

It is apparent, however, that at low η the inverse Gaus-
sian distribution differs even qualitatively from the simulation
data, as shown in Fig. 7 for the η = 0.01 case. The reason of
the discrepancy between simulation data and inverse Gaussian
fit at low η is easy to guess and verify through the data anal-
ysis. The usage of the inverse Gaussian distribution relies on
the underlying diffusive dynamics for the propagation of light
in the slab, which, in turn, implies a multitude of scattering
events to approach a genuine Brownian process. At low η,
instead, a sizable number of paths cross the slab without being
scattered, and many other paths are scattered only a limited
number of times, thus the limit of a Brownian process is not
reached. This interpretation is verified in the inset of Fig. 7(b),
showing the contribution to P(l ) from paths that cross the
slab undergoing � 6 and >6 scattering events. The two sets
of paths seem to represent different populations, accounting
for the bimodal character of the distribution, that cannot be
reproduced by the inverse Gaussian analytical expression.

Turning now to the properties of the reflected rays: for all
2D hard disk samples, the probability distribution PR(l ) for
the length l of the reflected rays decays monotonically as a

FIG. 7. Main panel: Probability distribution P(l ) of the length
l of the light path crossing the 2D slab at η = 0.01. Comparison
of fit (dashed line) and simulation data (full line). The inset shows
the breakdown of the simulation data into contribution from paths
undergoing � 6 and >6 scattering events while crossing the slab.
The different curves are identified by the symbols on the lines, as
specified in the figure.

function of l . Moreover, the average path length 〈l〉R decreases
monotonically with increasing η (see Table II). The decrease
is very rapid at first, then the value nearly saturates for η �
0.30, apparently because of the compensation between the
increasing reflectivity of the slab, which reduces 〈l〉R, and the
increasing length of any path that is able to penetrate beyond
the first layer of colloidal particles before being reflected back.

A logarithmic plot of PR(l ) suggests the functional form

PR(l ) = A

1 + Bl1/2 + Cl3/2
(17)

as resembling the simulation data at all values of η. The
numerical fit is reasonably accurate, but admittedly the fit is
empirical and not as good as the inverse Gaussian distribution
for PT (l ). On the other hand, a fit with a sum of exponentials
does not achieve the same χ2 (accounting for the number of
degrees of freedom in the fit). It might be useful to remark
that PT (l ) does not measure nor it is directly related to the
penetration depth of the rays into the slab.

The mean-free path 〈ls〉 defined as the average length of
linear segments between scattering events decreases mono-
tonically with increasing η. A fit with a simple inverse power
of η (〈ls〉 = A/η), following the mean-field result, reproduces

TABLE II. Mean value (Mean) and standard deviation (SDev) of
the probability distribution PR(l ) for the length l of reflected paths
in 2D samples of hard disks as a function of the packing fraction η.
Statistical error bars are implicitly indicated by the number of digits
of the data.

Reflected Path Length Distribution: Statistical Moments

η 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Mean 320 120 80 70 67 66 62 59 57 57 56
SDev 330 150 125 140 170 200 210 220 225 240 255
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FIG. 8. Probability density of scattering events across a 2D slab
whose particles interact via a purely hc potential. Red dotted line:
ρT

s (x); green line: ρR
s (x); blue dashed line: ρs(x) = ρT

s (x) + ρR
s (x).

the simulation data fairly well. A significant further reduction
of the square deviation and of χ2 is obtained by adding a
logarithmic term, i.e., 〈ls〉 = A/η + B/ log (η), that apparently
arises from effects beyond mean field. The monotonic de-
crease of 〈ls〉 and the nonmonotonicity of 〈l〉 vs η can be
matched by considering that the number of scattering events
experienced by a beam transmitted through the slab increases
slowly at first, and then more rapidly with increasing η, as
verified by the simulation data. To a very good approximation,
these properties of the mean-free path are shared by transmit-
ted and reflected trajectories.

Given the inhomogeneous and asymmetric nature of the
system and process, it is of interest to determine where the
scattering events take place along the coordinate x normal
to the slab. This information is contained in the density dis-
tribution ρs(x) of scattering events, shown in Figs. 8(a) and
8(b), at low and high η, respectively. The properties of the
system are easier to understand at high η such that the prop-
agation of light is diffusive. In such a case, the propagation
of light is similar to many other transport processes based on
diffusion with a superimposed slight drift, such as electric
and thermal conductivity, driven by an electrostatic poten-
tial and temperature difference, respectively. In the present
case, the potential is represented by the light intensity I (x, t )
(where t is time), and the resistance is due to the scattering
processes, which limit the flow of the light current J (x, t ) =
k [dI (x, t )/dx], which, because of light intensity conserva-
tion, satisfies a continuity equation. In the previous relation,
k is the light conductivity. At stationary conditions, J (x, t ) is
constant along x and t , reflecting the constant gradient of the
light intensity within the slab along x. In other terms, at sta-
tionary conditions, the light intensity I (x) decreases linearly
with x. Neglecting possible deviations due to the layering of
particles along x in proximity of the hard walls, the density
ρs(x) of scattering events is proportional to the light intensity
I (x), hence the probability distribution ρs(x) of scattering
events (considering both transmitted and reflected paths) has
to decrease linearly from left to right across the slab. This
qualitative picture is born out by the simulation results at high
η, reported in Fig. 8(b), showing a clear linear dependence
of ρs(x) on x. The picture, however, is violated at low η [see

FIG. 9. Probability distribution of the exit angle θ of transmitted
rays through 2D samples measured with respect to x̂. Blue full line:
η = 0.1; red dashed line: η = 0.5.

Fig. 8(a)] since in that case, the propagation of light is at least
partly ballistic, and the influence of the interfaces extends to a
sizable portion of the whole system.

More telling is the partitioning of ρs(x) into the contri-
butions ρT

s (x) and ρR
s (x), counting the number of scattering

events arising from transmitted and reflected paths, respec-
tively. In the diffusive regime, paths at the geometric center
of the slab have nearly the same probability of exiting on
the left and on the right of the slab. Therefore, to a good ap-
proximation, ρT

s (Lx/2) = ρR
s (Lx/2), provided the propagation

is diffusive. A slight unbalance might be due to the random
position of the colloidal particles, and especially to the weak
constant flow J crossing the slab from left to right.

Furthermore, ρT
s (x) has to be nearly symmetric around

x = Lx/2, with dρT
s (x)/dx = 0, since transmitted paths can

be traversed in both directions, hence the population of trans-
mitted paths is the same in the right and left directions, and
the same distribution of scattering events is shared by the
propagation from left to right and vice versa. The only dis-
tinction between the left and right of ρT

s (x) is in the boundary
conditions and in the net flow J , which do not affect the details
of the scattering distribution far from the surface walls, always
provided η is high and the light propagation diffusive. At low
η, the symmetry-breaking current J is high, the effect of the
walls is less screened close to the surfaces, and the asymmetry
in ρT

s (x) is sizable, as shown in Fig. 8(a). Besides these quali-
tative features, the quantitative details of ρT

s (x) and ρR
s (x) are

determined by the strength of the scattering processes, which
depends on η, and by the boundary conditions, including the
fact that ρR

s (x) has to vanish at x = Lx.
The direction of the outcoming rays is an important aspect

in view of applications of the system as random laser. For
transmitted rays, the simulation results show that at low η the
probability distribution PT

ang(θ ) of angles θ with respect to the
x̂ direction presents a broad peak around θ = 45◦, and a non-
negligible value in the forward direction, θ = 0◦ (see Fig. 9).
At η > 0.4, the PT

ang(θ ) distribution is peaked at θ = 0◦ but
still broad. It has been verified that path lengths l and exit
direction θ are uncorrelated. Directional beams, therefore, can
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be obtained only by collimation, sacrificing most of the in-
tensity. For reflected rays, the probability distribution PR

ang(θ )
of the angle θ is as broad as for the transmitted ones, but,
especially at low η, it peaks at 180◦, possibly because their
direction is less randomized before leaving the slab. This is
supported by the fact that at high η, when the beam undergoes
a higher number of scattering events in the skin-depth subsur-
face layer before being back-reflected, the 180◦ peak is less
pronounced than at low η (see Fig. S2 in Ref. [53]).

Analysis of the simulation trajectories shows that the prop-
agation direction does not lose its memory at every step,
as assumed by the simplest random walk models, nor it is
equal to the average scattering angle from the single isolated
scatterer. In the simulations the autocorrelation function of the
propagation unit vector k shows a limited memory, lasting
a few scattering events. At densities η � 0.01, in particu-
lar, the average 〈k · k′〉 for propagation vectors separated by
one scattering event is negative for both transmitted and re-
flected rays. In other terms, the short time correlation function
of propagation vectors is dominated by backscattering both
along transmitted and reflected trajectories. This feature has
to change at very low density, since in the limit of a sin-
gle scattering sphere the same autocorrelation function can
be computed analytically and (obviously) it is positive for
transmitted paths, and negative for reflected paths, as we also
verified numerically going to very low η. The same 〈k · k′〉
resulting from each scattering event in a colloidal solution is
discussed experimentally in Ref. [54].

One of the remarkable aspects of hc fluids confined by
hard walls is the density pile up at the interface (see Fig. S3
in Ref. [53]), due to the requirement of mechanical stability
(pxx(x) = const, where pxx is the xx element of the stress
tensor) across the slab [55]. In these systems, the peak density
at contact increases rapidly with increasing packing fraction,
and at high η it might severely hamper the penetration of
light into the slab, increasing its reflectivity. To quantify this
effect, comparison has been made with the results computed
for a sample of the same size and packing, but rendered
homogeneous by the application of pbc in all directions. It
turns out that the overall effect, measured, for instance, by
the transmission and reflection coefficients, or by the average
length of transmitted and reflected path, is small at all η, partly
because at the high η at which the density pile up is most
important, the transmission of light through the slab is already
effectively suppressed by the high average particle density.
The effect on the microscopic scattering mechanisms, how-
ever, is important, and easily identified by the computation.
The comparison of the distribution of scattering events, for
instance, shown in Fig. 10, shows an important change in the
fine structure of ρs(x) in proximity of the interface. The value
of ρs(x) is a measure of the light intensity at position x. The
slightly lower value of ρs(x) well inside the sample (see again
Fig. 10) is due to the higher reflectivity of the inhomogeneous
slab, although the effect integrated over the slab width Lx is
only minor.

The last remark on hc 2D systems concerns the effect
of polydispersivity, which has been modeled as specified by
Eq. (12). Also in this case, the effect grows slowly with
increasing η, but it is small at all η′s that have been simulated.
At η = 0.5, for instance, both the transmission coefficient and

FIG. 10. Probability distribution of scattering events across the
slab (green full line) and the homogeneous sample (red dashed line)
for η = 0.5. The reported ρs(x) refers to the total number of scatter-
ing events, belonging to both reflected and transmitted light paths.
Most of the change observed for x/Lx � 0.1 concerns the reflected
paths.

the average path length of the polydisperse sample are about
1% higher than those of the monodisperse sample. The two
trends are somewhat contradictory, since an increase of path
length points to a lower transmission of light. However, the
difference in both T and 〈l〉 is beyond the error bar. Perhaps
more telling, the differences between mono- and polydisperse
samples are systematic being similar over the entire η range,
confirming that they are a genuine effect of polydispersivity.
We verified that especially at high density, there is a relatively
weak preferential segregation of small particles at the inter-
face, changing the reflection or transmission properties of the
layered slice of the slab in contact with the hard wall, and
possibly causing the changes in all the other properties.

C. Hard disks with an attractive square well tail

Monte Carlo simulations and the analysis of light trajecto-
ries have been carried out for 2D particles interacting with a
hard disk potential plus an attractive tail, following the same
protocol used in the case of purely hard disks. Although the
two models are fairly similar, there are at least two characteris-
tic differences. At variance from pure hard disk case, the phase
diagram of the hard disk plus attractive tail potential usually
(but not always, see Refs. [56,57]) has a genuine liquid phase
and a critical point whose critical fluctuations might greatly
affect light paths in the slab, since opalescence is precisely one
manifestation of criticality. The second difference concerns
the structure of the fluid at the hard wall surface. Assuming
that the wall-particle potential W (x) is purely hard-core, the
contact density of particles ρ(x = 0) = ρ(x = Lx/2) depends
directly on the constant value of the stress tensor element
pxx(x) > 0 across the slab in the direction orthogonal to its
surface. In the purely hard disk case, pressure tends to be
high, and the interface is an accumulation point for particles.
Density, therefore, has a peak at the interface and decays
towards the bulk value with wide amplitude oscillations. For
particles interacting with the hc plus attractive tail, the value
of pxx tends to be moderate up to fairly high η, the interface is
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depleted of particles, and the density does not display short-
wavelength oscillations at contact (see Fig. S3 in Ref. [53]).
These differences in the liquid structure, although localized
at the interfaces, might affect the transmission and reflection
coefficients of the whole slab.

Simulations, in particular, have been carried out for the
system having δ = 0.5σ [see Eq. (1)] with ε = 1 being the
unit of energy. According to Ref. [45], the critical point of
this model is located at η∗ = 0.2751 and T ast/ε = 0.5546.
Since exploring the entire phase diagram is time consuming
and possibly not very informative, a series of simulations at
the same η values of the hc system have been carried out
following the critical isotherm T ast/ε = 0.5546. In this way
the system is always fluid and homogeneous, but in a narrow
range around the critical density, it explores in a continuous
way the change from a gas or vapor to a liquid state.

It turns out that heavily averaged properties of the slab such
as the transmission and reflection coefficients are not greatly
changed by the addition of the attractive tail, but characteris-
tic and systematic variations are apparent around the critical
density at η∗ (see the comparison in Fig. S4 of Ref. [53]).
However, properties more dependent on particle-particle cor-
relations are significantly affected. Already the average length
of the transmitted light rays shows important deviations from
the hard disk result (see Fig. 5). As expected, differences are
relatively minor at low η, where correlations are weak in both
cases. Moreover, the two sets of results converge again at high
η � 0.4, since the structure is dominated by packing effects,
common to the two models. Large differences, however, are
apparent at intermediate η′s where density fluctuations related
to the critical state dominate the picture in the hc plus at-
tractive tail case. Paths in the slab with attractive colloids, in
particular, are markedly shorter than those in the slab with
purely hc particles. The effect on the reflected paths is more
uncertain, since the estimates of the 〈l〉R path length and
of its variance fluctuate much more that the corresponding
quantities measured on transmitted paths. The onset of critical
opalescence is certainly not apparent in the simulation, but in
experiments it is also known to occur very close to criticality,
while the critical point might be much less well defined in
the small, inhomogeneous systems simulated in the present
study. Moreover, critical opalescence might crucially depend
on fluctuations whose wavelength is much longer that the side
of the simulated cell.

The difference in 〈l〉 for the two model potentials, of
course, reflects a correspondingly sizable difference in the
probability distribution of lengths PT (l ), whose comparison
is shown in Fig. S5 of Ref. [53]. In both cases PT (l ) shows
peculiar shapes at low η and is faithfully reproduced by the
inverse Gaussian distribution at medium and high η. Besides
the difference in 〈l〉, around the critical density, the PT (l ) for
the hc plus tail samples are systematically characterized by
significantly lower variance and by slightly reduced skewness
and kurtosis than the curve for purely hc systems.

Even more apparent is the difference between the two sys-
tems in the spatial probability distribution of scattering events.
While the results for the hard disk samples display marked
regularity and are easy to interpret, those for the sample of par-
ticles with the attractive tail display apparent irregularities at
densities relatively close to the critical point [see Fig. 11(a)].
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FIG. 11. Probability density of scattering events across the slab
whose particles interact via an hc plus attractive tail potential. Red
dashed line: ρT

s (x); green full line: ρR
s (x); blue dashed line: ρs(x) =

ρT
s (x) + ρR

s (x). The results for panel (a) have been obtained for a
sample close to the critical state of the corresponding homogeneous
system.

Detailed analysis of trajectories shows that the irregularities in
ρT

s , ρR
s , ρs arise from the heterogeneous spatial distribution of

scattering centers, and of the length of straight path segments
between scattering events, as shown in Fig. 12. It is likely that
these irregularities would disappear upon accumulating statis-
tics over exceedingly long production runs, but the present
simulations are already very long, and the irregularities are a
clear sign that, as expected, the time to achieve equilibrium
grows substantially in approaching the critical point, although
any divergence is prevented by the finite (and relatively small)
size of the sample. At significantly lower or higher packing,
the probability distribution of scattering events resembles that
of the slab with purely hc particles [see Fig. 11(b)].

It might be useful to remark that, as suggested by Fig. 12,
both the fluctuations at all length scales as well as the
lacunarity (using the terminology of Ref. [58]) of sam-
ples close to criticality are qualitatively reminiscent of those
of fluids in fractal dimension (see experimental studies in
Refs. [59,60] as well as Ref. [61] for an example of com-
putational fractal structure based on particles). Therefore, the
multiple-scale character of light trajectories in critical systems
might also qualitatively resemble those propagating in fractal
systems. A generalization of the present study to fractal di-
mensions, however, would be confronted to the extension of
the geometric (elastic) scattering rules to particles of the same
or different fractal dimension. Multiple-scale heterogeneities
in the structure of the scattering centers, reflected in equally
heterogeneous light trajectories, can be found in a broader
class of systems; see Refs. [13,62].

D. The 3D simulations

To gain insight into the interplay of light scattering with di-
mensionality and interparticle correlations, the computations
carried out in two dimensions have been repeated for 3D
systems. In both two and three dimensions the samples are
labeled by a η parameter whose definition is different but anal-
ogous in the two dimensionalities. However, using only η to
establish a correspondence between two and three dimensions
is somewhat incomplete, since the same sequence of η values
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(b)

(a)

(c)

FIG. 12. (a) Snapshot of the 2D sample of hard disks (red dots)
plus the attractive square well tail (see text) at conditions (η = 0.3,
T/ε = 0.5546) close to criticality. (b) Path of a ray of light (blue
line) in the sample of panel (a). (c) The scattering disks have been
removed to highlight the different properties of light propagation in
dense and dilute domains.

spans very different sample side L or number of particle N
ranges in the two cases, affecting the comparison of trans-
mission, reflectivity, average path length, interfacial effects,
etc. For instance, using in three dimensions the same number

FIG. 13. Transmission (T , red dots) and reflection (R blue
squares) coefficients for the 3D slabs of purely repulsive hc particles
as a function of packing fraction η. The full lines are the fit described
by Eq. (13). The number of particles is the same in all samples,
therefore, the linear size of the slab decreases with increasing η like
L ∝ η−1/3

of particles N = 1034 of the 2D systems at equal η gives 3D
samples whose side L is much shorter than in two dimensions.
Being impossible to balance all aspects, as a compromise,
in three dimensions we adopt a somewhat larger number of
particles N = 5039. Then the sides Lx = Ly = Lz(≡ L) of the
3D slabs have been determined in order to obtain the same
sequence η ∈ [0.01; 0.05 × j; j = 1, . . . , 10] considered in
two dimensions. In this way the range of 2D and 3D sides L
partially overlap, although the two sequences differ from each
other.

The transmission and reflection coefficient computed for
the 3D samples are shown in Fig. 13. For the reasons dis-
cussed above, these data cannot be quantitatively compared to
those of 2D systems. However, it is apparent that the simple
Padé form of Eq. (13) (with reoptimized coefficients) provides
an equally good fit of the 2D and 3D results.

The parameters characterizing the probability distribution
of transmitted path lengths PT (l ) in three dimensions are
summarized in Table III. At variance from the 2D case, the

TABLE III. Mean value (Mean), standard deviation (SDev), skewness (Skew), and excess kurtosis (ExKur) of the probability distribution
P(l ) for the length l of transmitted paths in 3D samples of hard spheres as a function of the packing fraction η. The corresponding values
obtained by the fit of the continuous part of P(l ) with an inverse Gaussian distribution are listed in parentheses.

Transmitted Path Length Distribution: Statistical Moments

η 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Mean 91 98 111 124 138 153 168 186 206 228 253

(—) (—) (—) (154) (159) (169) (182) (198) (217) (237) (263)
SDev 57 69 74 81 89 97 107 118 131 144 161

(—) (—) (—) (138) (128) (129) (132) (140) (151) (163) (178)
Skew 3.5 2.1 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

(—) (—) (—) (3.2) (2.8) (2.6) (2.5) (2.4) (2.3) (2.2) (2.2)
ExcKur 16.7 6.2 5.4 5.2 5.2 5.1 5.2 5.2 5.2 5.3 5.4

(—) (—) (—) (17.6) (13.4) (11.4) (10.1) (9.2) (8.7) (8.3) (7.9)
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TABLE IV. Mean value (Mean) and standard deviation (SDev)
of the probability distribution PR(l ) for the length l of reflected paths
in 3D samples of hard spheres as a function of the packing fraction η.
Statistical error bars are implicitly indicated by the number of digits
of the data.

Reflected Path Length Distribution: Statistical Moments

η 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Mean 103 64 50 45 40 35 33 31 29 28 27
SDev 83 70 62 60 60 60 63 64 66 68 71

minimum in the average path length 〈l〉 as a function of η is
not seen in the results of the 3D simulations, but the argument
underlying its existence is valid also in three dimensions,
and the trends in the computed data simply imply that the
minimum occurs around or below the minimum packing frac-
tion η = 0.01 simulated in the present study. Apart from this
aspect, all the other trends are qualitatively the same in three
as in two dimensions. On the 3D data, the effect of the δ-like
peak in PT (l ) at l = Lx due to path crossing without being
scattered is significant up to η = 0.15, apparently because of
the relatively limited thickness of the slab. Neglecting this
peak, at medium-high η (� 0.15) the inverse Gaussian dis-
tribution provides an excellent fit of the smooth part P̄T (l ) of
PT (l ), while the fit is poor at lower η (see Fig. S6 and Fig. S7
in Ref. [53]), presumably for the same reasons discussed for
the 2D case, i.e., at low η the propagation of light is not
diffusive. The length distribution for reflected rays in three
dimensions displays the same qualitative features of the 2D
case. The main quantitative parameters are given in Table IV.

The mean-free path of rays in the colloidal suspension is
the most local property of the light paths diffusing in the slab,
therefore it could be compared directly for the two dimen-
sionalities. The comparison between the mean-free path in 2D
and 3D simulations is displayed in Fig. 14 for 0.2 � η � 0.5.
Lower values of η have been excluded because the contribu-
tion from unscattered rays is sizable and it can obscure the
comparison of the diffusive contribution. One could expect

FIG. 14. Comparison of the mean-free path in two and three
dimensions.

that the mean-free path is shorter in two dimensions, since lo-
calization by disorder is enhanced by reducing dimensionality
[63]. Somewhat surprisingly, the mean-free path is slightly but
systematically higher in 2D samples than in the 3D ones.

The dependence of the average number of scattering
events experienced by transmitted rays and estimated as ns =
〈l〉/l f ree is similar to that already discussed for two dimen-
sions, i.e., the growth is slow at low η and becomes faster
with increasing η. This aspect, however, might be influenced
by the dependence of the scattering properties on the slab
thickness Lx.

The density distribution of scattering events along the x
coordinate in 3D systems is analogous to the one in two
dimensions in virtually every aspect, including the near-
symmetry of ρT

s (x) around Lx/2, the linearity of the total
ρs(x), and its anomalies at low η. These features are illustrated
in Fig. S8 of Ref. [53].

The effect of the interfaces and of the density pile up at
x = 0 and x = Lx/2, in particular, has been assessed again by
considering a homogeneous system in which pbc are applied
to all directions. It has been verified that at high η the effect
of interfaces is comparable in two and in three dimensions.

Dimensionality is a crucial parameter in the physics of crit-
ical states. For this reason the comparison of properties for 3D
hard spheres and hard spheres plus an attractive tail has been
carried out in full analogy with the 2D case, following again
the critical isotherm. The definition of the potential model is
the trivial extension of the 2D case (1), and the same δ = σ/2
has been used in the two cases. The critical properties of the
model are determined and discussed in Ref. [46]. According
to this reference, the critical point of the model occurs at
η∗ = 0.157 ± 0.01 and T ∗/ε = 1.219 ± 0.008. Our samples
differ from those used in Ref. [46] because they comprise a
larger number of particles, and because they are limited by
two parallel interfaces. Due to these differences, the sample
at exactly the critical parameters of Ref. [46] appears to be
divided in two slightly different phases. To make sure that the
sample is homogeneous, the temperature of the simulation has
been changed slightly to T/ε = 1.25. At this temperature, the
MC results still display large density fluctuations at η close to
η∗ that persist over long times apparently because of critical
slowing down.

The results for the average length 〈l〉 of paths transmitted
through the suspension of the square well particle is shown
in Fig. 15, compared with the results of the 3D hard sphere
model. The trend is the same as the 2D case, i.e., close to
criticality 〈l〉 is lower for the hard sphere plus attractive tail
model than for hard sphere samples, but the quantitative dif-
ference between the two sets of results is somewhat smaller
in three dimensions, consistent with the generally accepted
statement that the effects of criticality are stronger in two than
in three dimensions. Also in this 3D case, the average length
of reflected beams is longer for particles with the attractive tail
than for pure hard spheres.

E. Amplification and output power distribution

In random lasers based on suspensions of colloidal
particles, scattering and diffusion of light underlie the am-
plification of the input beam through stimulated emission
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FIG. 15. Average length 〈l〉 of transmitted paths as a function of
η. Blue filled squares: hs potential; red dots: hs plus attractive square
well tail.

in the solution. Since the model discussed in the previous
sections contains no details on the optical properties of the
medium, the discussion of lasing properties is limited to sta-
tistical considerations on the length of transmitted paths and
on the intensity of the emitted rays.

Each transmitted ray of initial intensity i0 ≡ Iinp (ideally,
entering the slab as a single photon) will leave the slab after
covering a distance l in its diffusive drift, emerging with an
output intensity Iout = i0 exp(βl ), where β is the gain per unit
length due to stimulated emission (see Sec. II). The overall
amplification factor kampl therefore will be

kampl =
〈

Iout

Iinp

〉
=

∑
i∈T exp(βli )

NT + NR
, (18)

where
∑

i∈T indicates the sum over the set of transmitted
rays, while NT and NR are the number of transmitted and
reflected rays, respectively. Provided β〈l〉 is small, kampl can
be approximated as

kampl = T exp (β〈l〉) (19)

[as anticipated in Eq. (11)] where T is the transmission co-
efficient and 〈l〉 is the average of the individual transmitted
path lengths {li}. More precisely, because of the inequality of
arithmetic and geometric means [64], the relation between the
two expressions for kampl is in fact an inequality

kampl = Iout

Iinp
=

∑
i∈T exp (βli )

NT + NR
> T exp (β〈l〉) (20)

that becomes an equality in the limit of vanishing β〈l〉: For
this reason, T exp (β〈l〉) > 1 is a sufficient condition for am-
plification. Using the simulation data for T , it is possible to
determine for each η the minimum β that provides amplifica-
tion. The results are shown in Fig. 16 for 2D and in Fig. S9
of Ref. [53] for 3D, and represent the computational analog
of the threshold dependence on dye molecules and scatterer
concentration highlighted in experiments [65]. It might be

FIG. 16. Blue filled squares: Minimum value of the gain per unit
length β required to achieve amplification kampl > 1. The line is a
guide for the eye.

useful to point out that the results strictly depend on the size of
the slab. It is precisely because of the ambiguous comparison
of size in two and three dimensions that the results for the two
different dimensionalities have not been reported on the same
plot. The results show that the optimal range is at low and
at high density, while the medium density range is somewhat
disfavored, since it requires larger values of β to achieve
amplification.

Besides the overall amplification, which is of interest for
lasing, an important issue concerns the statistics of the power
output from the slab made of colloidal particles in an opti-
cally active medium. The probability distribution Pout (I ) of
the ensemble of output intensities has peculiar properties in
the limit of large I that have been extensively investigated for
their conceptual and applied interest [59].

As already stated, in the simple picture underlying the
present study, a fraction T of the incoming rays will exit the
slab with an intensity Ii amplified by a factor that depends
on the length li of their trajectory within the slab. Then the
simulation data for the length of each transmitted ray allows
the direct computation of the intensity distribution of the emit-
ted rays. The result for the high-intensity range is reported
in Fig. 17 for the 2D case with η = 0.1 and η = 0.5. The
double logarithmic scale makes it apparent that the emitted
intensity follows an inverse power-law behavior, whose ex-
ponent depends on the parameter β selected for estimating
the amplification. The same behavior is observed in all sim-
ulated cases, in both 2D and 3D samples. In experiments,
inverse power-law decay of Pout usually is associated with a
Lévy distribution, but its observation is far less general than
in simulation [33]. It is likely that the difference between
simulation and experiment is due to the simplicity of the
model, which neglects every feature related to the microscopic
optical processes underlying stimulated emission. In any case
the computational results depend on the β value, which is
arbitrary.

Additional insight into this statistical mechanics aspect can
be gained from the observation that in both two and three
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FIG. 17. Probability distribution of the output intensity I in two
dimensions. Red curve (and dot): η = 0.15; blue curve (and filled
square): η = 0.5. The output has been computed assuming the arbi-
trary value β = 0.002 as the amplification per unit length.

dimensions the Wald distribution gives a good fit of the
smooth part P̄T (l ) of the distribution of transmitted path
lengths, provided η is not too small. In the present model, a
transmitted ray of initial intensity i0 is emitted with a final
intensity multiplied by exp (βl ); therefore, the probability dis-
tribution Pout (I ) of emitted intensities I is fully determined by
PT (l ), since rays of intensity I are emitted by all paths whose
length is

l (I ) = ln I

β
− ln (i0), (21)

which, at high I is approximated as l (I ) = ln I/β. However,
the probability of paths having length l � 〈l〉 is P̄T (l ). Hence,
using

Pout (I ) = P̄T (l (I ))
dl (I )

dI
(22)

one obtains

Pout (i) = 1

Iβ

√
λβ3

2π (ln I )3
exp

[
− λ

2β

(ln I − μβ )2

μ2 ln I

]

= 1

Iβ

(
1

I1/2

) λ

βμ2

√
λβ3

2π (ln I )3
× C × exp

[
− λβ

ln I

]
,

(23)

where C = exp (λ/μ) is a constant.
In the limit of high-power I , the last exponential tends to

1. Neglecting the dependence of Pout on the logarithmic factor
(ln I )−3/2 (whose derivative tends to zero in the limit of large
I), the leading dependence on I is

Pout (I ) ∝ 1

I

(
1

I1/2

) λ

βμ2

, (24)

which has apparent similarities with the asymptotic behavior
of the Lévy distribution. A precise equivalence requires ad
hoc assumptions that are not inherent aspects of the model.
Nevertheless, we observe that inserting into these expressions
the values of μ and σ obtained from the fit, the β estimated
for the lasing threshold (see Fig. 16), λ/βμ2 is close to one,
and the exponent of I is close to −3/2. Even without any
assumption, the inverse power behavior of Pout (I ) at large I
represents a fat tail [59,66] that seems to be a characteristic
feature of the power spectrum of random lasers. Previous
studies have also attributed Lévy statistics to near-threshold
conditions [67].

IV. DISCUSSION AND SUMMARY

The propagation of light in a random medium is a sub-
ject of great conceptual and practical interest, underlying, for
instance, the development of random lasers and applications
that range from speckle-free illumination and imaging [22],
nanotechnology [68], and medical diagnostics [23]. Previous
studies have investigated the statistical mechanics aspects of
light propagation and amplification in random media using a
variety of models of different sophistication. The most rep-
resentative models, however, consist of random walks among
scattering centers confined between two parallel surfaces lo-
cated at x = 0 and x = Lx, leaving unconstrained the diffusion
along the other directions [40]. In these models each step is
determined by parameters drawn from preassigned probability
distributions, deciding the length of the step (whose average
is the mean-free path) as well as the change of propagation
direction upon each scattering event. In virtually all cases
these models, although sophisticated and useful, are generic
(and thus also general), in the sense that they are not derived
from a specific model of the distribution of scattering centers,
and sometimes they do not quantitatively model a specific
scattering mechanism. The novelty of the present approach is
that it is tailored on a specific model of colloidal particles in
a fluid. Correlations among particles are explicitly accounted
for, and the effect of the interfaces or of different interparticle
potentials or different thermodynamic conditions arises from
the underlying model of particles and interfaces. Admittedly,
the scattering mechanism implemented in the present model is
simple, consisting of ideal reflection at the surface of the col-
loidal particles, and the wave character of light is neglected.
These aspects, however, could be refined at least to some
extent, especially in the direction of introducing different scat-
tering mechanisms.

In this broad framework, two basic many-particle mod-
els have been investigated, consisting of purely repulsive
hard-core particles and of similarly repulsive particles whose
interaction potential, however, includes a square well at-
tractive tail. Simulations have been carried out in two and
three dimensions, although, for computational convenience
and ease of visualization, more effort and emphasis have been
devoted to the 2D case. The 2D case is not only a theoretical
playground, since virtual 2D random lasers [69] have also
been made.

Analysis of trajectories provides exact data for the prop-
agation of light in the models that have been simulated.
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Transmission and reflection coefficients have been computed
as a function of packing fraction η in two and three di-
mensions, and approximated with a simple Padé form. The
average length 〈l〉 of transmitted paths has been computed
and found to display a massive increase at high η with respect
to the minimum length corresponding to the width Lx of the
slab. At η = 0.5, for instance, the average path exceeds the
minimum path Lx by a factor 38 and 15 in two and three
dimensions, respectively. More importantly, the probability
distribution PT (l ) of the length l of transmitted paths is broad,
having high variance and excess kurtosis, corresponding to
a sizable number of positive (l > 〈l〉) outliers. Given the
exponential character of the amplification by the optically
active medium, these outliers may have a disproportionate
effect on the output power. At medium-high η, the Wald (also
known as inverse Gaussian) distribution provides an accurate
representation of PT (l ) even in the long-l tail. Translating the
analytical form of the Wald distribution into the power domain
shows that the distribution of power intensity for the outcom-
ing light follows an inverse poser decay on the high-intensity
range. Therefore, even the simple model that has been sim-
ulated has a characteristic output distribution characterized
by the fat tail that has been extensively discussed for random
lasers [70].

The distribution of scattering events (see Fig. 8) shows that,
apart from interfacial effects that are sizable but localized,
the intensity of light decreases linearly with increasing x, as
a result of the diffusive propagation. Deviations are expected
and observed at low η when the propagation of light is partly
ballistic. This observation implies a Ohmic dependence of the
transmission coefficient on the width of the slab, which has
been verified by a single computation in two dimensions at
η = 0.300 by doubling N as well as the width of the simulated
slab.

Additional simulations have been performed on slightly
modified models to investigate the effect of interfaces and of

weak polydispersivity on the system properties. More impor-
tantly, comparison between the results for the purely repulsive
potential and for the case with a square well attractive tail
shows that the important fluctuations around the critical state
of the later model decrease the length of the transmitted paths
and decrease the width of the PT (l ) distribution, while the kur-
tosis is enhanced. This shows that the performance of random
lasers based on colloidal particles can be tuned by changing
the interaction among particles and the thermodynamic state
of the system.

An example of complex property that can be investigated
directly by a detailed and specific model is the loss of memory
in the direction of rays in the diffusive regime of light prop-
agation. Memory is rapidly lost, but on the short timescale
it is sizable and peculiar, showing a predominant effect of
backscattering. This property depends on the interplay of the
scattering matrix of each reflection event with the correlation
in the particles’ position, and it is difficult to model a priori.
In the present approach, it emerges automatically from the
explicit description of correlations, including the effect of
interfaces or of medium scale inhomogeneities.

In the future, the scattering matrix (here introduced only
implicitly through the rules of geometric reflection) of dif-
ferent scattering mechanisms could be implemented, and the
spatial correlation in the distribution of scattering centers
could be modeled for different types of disordered media, pro-
viding quantitative data for specific materials and geometries.
On the other hand, a simple modification of the experimental
setup of Ref. [10], probing the systems with a laser beam
narrower than the mm size of the particles, could closely
reproduce the conditions of the computational model. Then
comparison of the new results with those obtained using a
broad, plane-wave-like illumination could disentangle the ge-
ometric aspects of the light propagation from the complexities
of the scattering mechanism.
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