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Symmetry-breaking motility of penetrable objects in active fluids
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We investigate how a symmetric penetrable object immersed in an active fluid becomes motile due to a
negative drag acting in the direction of its velocity. While similar phenomena have been reported only for
active fluids that possess polar or nematic order, we demonstrate that such motility can occur even in active
fluids without any preexisting order. The emergence of object motility is characterized by both continuous and
discontinuous transitions associated with the symmetry-breaking bifurcation of the object’s steady-state velocity.
Furthermore, we also discuss the relevance of the transitions to the nonmonotonic particle-size dependence of
the object’s diffusion coefficient.
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I. INTRODUCTION

An active fluid is a fluid consisting of active particles,
which utilize stored energy to propel themselves [1–6].
Through current rectification, an asymmetric object immersed
in an active fluid generally induces long-range density gradi-
ents [7–10] or persistent motion [11–14]. These phenomena
have been applied to the design of targeted delivery systems
[15] and self-starting micromotors [16–18].

However, an asymmetric shape is not always necessary for
such phenomena; there are various examples of symmetric
objects that exhibit motility via symmetry breaking. Many of
them feature preexisting order in the system. For instance, an
active droplet with polar order in a passive fluid is known
to develop splay instability, which in turn induces unidirec-
tional motion [19]. Conversely, a passive droplet inside a polar
active gel can become motile by spontaneous creation of a
topological defect [20]. Another possible scenario is when
the object is highly flexible. Polymer chains in active fluids
can spontaneously develop curvatures and turn into traveling
structures [21–23].

In this paper we show that neither an ordered medium
nor a highly flexible object is needed for such motility to
arise. Using a simple model of a symmetric penetrable object
immersed in an active fluid lacking any order, we analytically
describe the steady-state dynamics of the object. It turns out
that the object motion by itself induces rectification, which
creates a negative drag that acts in the direction of motion.
While negative drag has been reported for transport by molec-
ular motors [24] and contractile active nematics [25], it is also
possible even in an ideal active gas, as recently discussed
in [26]. While the study focused on the regime where the
negative drag is so small that it affects only the diffusive
properties of the object, here we investigate the case where
the negative drag is strong enough, giving rise to persistent
motion of the object via symmetry-breaking phase transitions.

Our results also have interesting implications for the non-
monotonic object-size dependence of effective diffusivity.

*y.baek@snu.ac.kr

While the phenomenon has been attributed to the interplay of
diffusion and advection [27–31], we discover that symmetry-
breaking motility contributes an alternative mechanism.

The rest of this paper is organized as follows. In Sec. II we
introduce a simplified model of a symmetric penetrable object
immersed in a one-dimensional (1D) active fluid. The drag
force acting on this object is calculated in Sec. III, revealing
the existence of the negative drag regime. In Sec. IV we use
the mean-field theory to show that the negative drag gives
rise to symmetry-breaking motility of the object via contin-
uous and discontinuous phase transitions. The consequences
of these transitions on the effective diffusivity of the object
is discussed in Sec. V. Generalizations of the negative-drag
mechanism to a broader range of systems, including the cases
where the object-particle interactions are nonconservative and
the system is two-dimensional (2D), are discussed in Sec. VI.
We summarize our findings and contemplate possible future
works in Sec. VII.

II. MODEL

We consider a symmetric, overdamped, penetrable object
of size � immersed in an active ideal gas on a 1D ring of
length L [see Fig. 1(a)]. The gas consists of N run-and-tumble
particles (RTPs) describing bacterial motion [32,33]. Each
RTP travels to the left or to the right at constant velocity u,
flipping the direction at rate α/2. The RTPs do not interact
with each other but interact only with the object via the poten-
tial

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

F
(
x + �

2

)
for − �

2 � x < 0

−F
(
x − �

2

)
for 0 � x < �

2

0 otherwise.

(1)

Thus the RTP and the object repel each other at constant force
F whenever they overlap. We also assume that the thermal
noise is negligible compared to the other forces. With these
assumptions, each RTP obeys

ẋi = −μV ′(xi − X ) + usi(t ) for i ∈ {1, . . . , N}, (2)
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FIG. 1. (a) Schematic illustration of the model. (b) Density profile of the RTPs around a symmetric object moving to the right at a constant
velocity. The numerics refer to the results of a particle-based simulation using 50 000 RTPs. The portions accounted for by the left-moving
(ρ−) and the right-moving (ρ+) RTPs are distinguished using different shades. (c) Diagram showing the stable fixed points of the mean-field
approximation in the large-L limit. Negative drag is observed below the dotted line, and continuous transitions occur on the thick solid line.
The star indicates the parameters used in (b).

where xi is the position of the ith RTP, μ its mobility, and
si(t ) = ±1 its polarity that flips sign at rate α/2. In addition,
X denotes the position of the object that evolves according to

Ẋ = μobj

N∑
i=1

V ′(xi − X ), (3)

where μobj is the object’s mobility.
We note that our model assumes conservative interactions

between active particles and the penetrable object, but the
interactions may also be dominated by friction. Even in that
case, we still find that the object exhibits symmetry-breaking
motility, as detailed in Sec. VI B.

III. NEGATIVE DRAG

We first calculate the force applied by the RTPs on the
object dragged at constant velocity v. For convenience, we
adopt the frame of reference fixed to the object (xi → xi + X ).
Then Eq. (2) changes to

ẋi = −μV ′(xi ) − v + usi(t ) for i ∈ {1, . . . , N}. (4)

It is straightforward to convert this to the equations for the
densities ρ± of the right- and left-moving RTPs

∂tρ+ = −∂x{[Feff (x) + u]ρ+} + α

2
(ρ− − ρ+),

∂tρ− = −∂x{[Feff (x) − u]ρ−} + α

2
(ρ+ − ρ−), (5)

where Feff ≡ −μ∂xV − v is the effective force experienced
by each RTP in the object frame. Using the total density
ρ ≡ ρ+ + ρ− and the polarization � ≡ ρ+ − ρ−, Eq. (5) can
be rewritten as

∂tρ = −∂xJ, J ≡ Feffρ + u�,

∂t� = −∂xJ� − α�, J� ≡ Feff� + uρ, (6)

where J and J� are the density and the polarization currents,
respectively. Then, solving Eq. (6) for the steady state (∂tρ =
∂t� = 0), the drag force can be calculated as

Fobj(v) =
∫ L

0
dx ρs(x; v)V ′(x), (7)

where ρs(x; v) denotes the steady-state density profile.
Remarkably, as illustrated in Fig. 1(b), the RTPs can pile

up behind the object, in contrast to the case of a passive fluid
where the particles always accumulate in front of the object.
This implies that the force applied by the RTPs on the object
is in the direction of motion: The RTPs exert a negative drag.

Let us denote by ρ̄ ≡ N/L the mean density of the RTPs
and by lp ≡ 2u/α their persistence length. When v is small,
the drag force can be linearized as Fobj � −(ρ̄lp/μ)a1v, where
a1 is the dimensionless drag coefficient. In the limit L → ∞,
the coefficient can be expressed as a function of the dimen-
sionless parameters λ ≡ �/lp (rescaled object size) and f ≡
μF/u (rescaled object-RTP repulsion):

a1( f , λ) = 2

f
sinh

(
f λ

1 − f 2

)
− λ(2 − f 2 + f 4)

(1 − f 2)2
. (8)

The boundary of the negative drag regime (a1 < 0) is indi-
cated by the dotted line in Fig. 1(c). This shows that a1 < 0
requires both λ and f to be small enough.

These properties can be understood intuitively as follows.
The RTPs tend to move in the same direction even after pene-
trating into the object. Since they slow down inside the object,
their density has to increase to keep the current uniform in the
steady state. Thus, in contrast to the passive particles, whose
density is always lower inside an object, the RTPs accumulate
and form a high-density region at the object’s surface, as
illustrated in Fig. 1(b). When the object is static, the same
number of particles accumulate on both sides. However, if the
object moves, the magnitude |Feff | of the effective repulsion is
stronger behind the object than in front. This means that the
RTP finds it easier to cross the object from the front to the rear
than the other way around. Thus, the RTPs tend to accumulate
more on the rear side of the object, inducing the negative drag.
We note that this mechanism would work only when the object
size is smaller than or comparable to the persistence length,
so that the RTP keeps its direction of motion as it crosses the
object. Moreover, the RTP-object repulsion should be weak
enough to allow a sufficiently large flux between the two sides
of the object. These are the reasons why the negative drag
requires small λ and f .
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FIG. 2. (a) Self-consistent velocities of the object as the repulsion strength f is varied for a fixed object size λ. The intervals of f
corresponding to each dynamical regime at λ = 0.2 are indicated by shaded areas. (b) Behavior of the net force on the object as a function of
the object velocity v for each dynamical regime.

IV. PHASE TRANSITIONS

A. Mean-field predictions

Thus far, we have assumed that the object moves at
constant velocity. However, what would be the steady-state
velocity of the object if allowed to move freely? Let us revisit
Eq. (3) describing the object motion. Assuming that the RTPs
instantaneously relax to the steady state for a given object
velocity v = Ẋ , Eq. (3) can be rewritten as a self-consistency
equation

Ftot (v) ≡ Fobj(v) − 1

μobj
v = 0. (9)

Then the solutions of the above equation satisfying the sta-
bility condition F ′

obj(v) < 1/μobj approximate the steady-state
object velocity. In this scheme, v plays the role of the mean
field for every RTP. Thus we may call Eq. (9) the mean-field
theory.

Depending on the types of stable solutions, the steady-state
object motion can be classified into four regimes, as shown
in Fig. 1(c). (i) In the immotile (I) regime, v = 0 is the only
stable solution. Here the object diffuses without any persistent
traveling. (ii) In the motile (M) regime, v > 0 is the only
stable solution. Here the object always travels persistently in
a single direction. (iii) The motile-immotile (MI) coexistence
regime has stable solutions at both v = 0 and v > 0. The
object vacillates between the motile state and the immotile
(diffusing) state. (iv) The regime of multiple motile states
(M′) has two stable positive solutions. The object vacillates
between two different traveling velocities.1 By the symmetry
of the system, −v is a stable solution of Eq. (9) if v is.

For more details about how these regimes differ from
each other, see Fig. 2. All solutions of Eq. (9) for various

1For the range of parameters we checked (0� f � 1 and 0 � λ �
2), one of the nonzero solutions is very close to zero (v/u is of order
10−2).

f and λ are shown by contours in Fig. 2(a). The diagonal
line μF + v = u marks the boundary above which the RTPs
approaching the object from behind cannot overtake the ob-
ject. The line is important for determining which boundary
conditions should be used in the mean-field theory, as detailed
in Appendix A. Meanwhile, the behaviors of the left-hand side
of Eq. (9) as a function of v are schematically illustrated for
each dynamical regime in Fig. 2(b). The stable solutions are
marked with diamonds.

This system is invariant under reflection about the object
center, so it has the Z2 symmetry. Any dynamical regime
with a nonzero stable solution indicates that the symmetry
is spontaneously broken. This implies the existence of phase
transitions between the immotile and the motile regimes in the
thermodynamic limit defined as N → ∞ with L and Nμobj

fixed, which ensures that the right-hand side of Eq. (3) con-
verges to a finite value as N → ∞.

Figure 1(c) indicates that there are two types of transitions
between the immotile and the motile states. Along the thick
black curve between the two white circles, the motile regime
is in direct contact with the immotile regime. This curve marks
a continuous transition. Indeed, in the vicinity of the thick
black curve, the total force on the object can be expanded as

Ftot � ρ̄lpu

μ

[
−[a1( f , λ, L) + γ ]

v

u
+ a3( f , λ, L)

(v

u

)3
]
,

(10)

where the even-order terms in v do not appear because of the
Z2 symmetry, and γ ≡ μ/(ρ̄ lp μobj) is the rescaled friction
coefficient of the object, which stays finite in the limit N →
∞ because ρ̄ ∼ N and μobj ∼ 1/N . We have fixed γ = 0.1
throughout this study, including in Fig. 1(c). This amounts to
fixing the mobilities μ and μobj and the RTP properties u and
α while varying the object porosity F and size �. Explicit
calculations of a1 and a3 are given in Appendix B.

Along the thick black line shown in Fig. 1(c), the di-
mensionless coefficients of Eq. (10) are given by a1 = −γ
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FIG. 3. Analysis of the phase transitions of the object’s dynamical state. (a) The Binder cumulant U4 exhibits the hallmarks of a
discontinuous transition. (b) Simulation confirms the bifurcations of the steady-state velocity as f is varied. At N = 3 × 104, the results
are in good agreement with the mean-field prediction (solid lines). (c) The continuous transition at fc ≈ 0.81 exhibits characteristics of the
mean-field Ising universality class (β = 1/2 and ν̄ = 2). We use λ = 1 in all the results.

and a3 < 0. For a given value of λ, we denote the value of
f satisfying the condition a1 = −γ by fc(λ, L), at which a
continuous transition occurs with the critical behavior v ∼
| f − fc|β with β = 1/2.

Meanwhile, we expect there to be a discontinuous transi-
tion line in each of the two MI regimes shown in Fig. 1(c).
While both motile and immotile states are possible at finite N ,
we expect one of the two states to be exponentially more likely
as N grows. Also, there are two multicritical points located at
the junctions between the critical line and the discontinuous
transition lines, indicated by white circles in Fig. 1(c).

B. Numerical results

To verify the existence of discontinuous and continuous
transitions, we ran extensive simulations of Eqs. (1)–(3) and
examined the steady-state statistics of the system, with the
results shown in Fig. 3 for λ = 1. As shown in Fig. 1(c), the
mean-field theory predicts that varying f along the λ = 1 line
produces a discontinuous transition somewhere within the MI
regime and a continuous transition at the critical line.

In the heat map shown in Fig. 3(b), the colors indicate
the probability density of the rescaled object velocity v/u
for a given value of f . With the object mobility scaling as
μobj ∼ 1/N , one can expect the mean-field theory to become
more accurate as N grows because the dynamics of the object
becomes slower compared to the relaxation of the RTPs. At
N = 30 000 RTPs, the result already seems to be in good
agreement with the mean-field predictions (solid curves).

The red curves clearly indicate the existence of a discon-
tinuous transition. To verify this, in Fig. 3(a) we plot the
Binder cumulant [34] U4 ≡ 1 − 〈v4〉/(3〈v2〉2) as a function
of f for various values of N . As N increases, U4 develops a
dip which becomes narrower and deeper, a clear hallmark of
a discontinuous transition.

In Fig. 3(c) we present a finite-size scaling (FSS) analysis
of the continuous transition behavior observed at fc ≈ 0.81.
Using the FSS form

v = N−β/ν̄�(( f − fc)N1/ν̄ ) (11)

with the mean-field Ising critical exponents β = 1/2 and
ν̄ = 2, all the data obtained at different values of N collapse

onto a single curve. This implies that the critical phenomena
are of the mean-field Ising universality class. We note that this
is a natural consequence of the timescale separation underly-
ing the mean-field assumption.

Why do we observe such behavior, even though the system
is 1D? This is because, via Eqs. (1)–(3) with the scaling
μobj ∼ 1/N , each RTP is coupled to the mean field of all the
other RTPs. Via interactions with the object, all the RTPs are
effectively coupled to each other, which resembles the all-to-
all Ising model for which the mean-field theory is known to
be exact.

V. EFFECTIVE DIFFUSION

When the timescale separation is not complete, the mean-
field assumptions underlying our discussion so far are not
strictly valid. Due to microscopic fluctuations of active par-
ticle density, the object dynamics becomes diffusive in the
long-time limit. Then we can define the effective diffusion
coefficient Deff ≡ limt→∞〈[X (t ) − X (0)]2〉/(2t ). The depen-
dence of Deff on f and λ can be guessed from Fig. 1(c). Since
Deff is proportional to the product of the object velocity and its
persistence length, we expect it to be the largest in the motile
regime and the smallest in the immotile regime. Our numerics
indeed confirm this intuition. In Fig. 4 we show the behaviors
of Deff as functions of f and λ, respectively. These indicate

FIG. 4. Nonmonotonic behaviors of the effective diffusion coef-
ficient of the object as (a) the object-RTP repulsion f is varied and
(b) the object size λ is varied.
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that the diffusivity of a penetrable object immersed in an
active fluid exhibits a nonmonotonic behavior as the porosity
or the size of the object changes. The latter phenomenon is
similar to [28], but our mechanism is completely different.

VI. EXTENSION TO OTHER SYSTEMS

Our findings thus far are limited to conservative RTP-
object interaction in 1D active fluids. In this section we
demonstrate that our results can be extended to more general
systems.

A. Perturbative solution for general potentials

Here we show that, when the RTP-object interaction V (x)
is weak, the negative drag emerges not only for the triangular
potential but also for general symmetric potentials. Towards
this aim, we revisit Eq. (6), treating V (x) as an arbitrary even
function whose value is nonzero only for −�/2 � x � �/2.
Then, assuming V to be small, we solve the equation for the
steady state perturbatively up to the linear order in the object
velocity v.

From here on, we drop the function argument if the mean-
ing is clear. Let us begin with writing ρ ≈ ρ (0) + vρ (1) and
J ≈ vJ (1), noting that J = 0 when the object is at rest (v = 0).
In order v0, the steady-state conditions are given by

0 = −μV ′ρ (0) + u�(0), (12)

0 = −∂x(−μV ′�(0) + uρ (0) ) − α�(0). (13)

Eliminating �(0), we have

0 = (μ2V ′2 − u2)∂xρ
(0) + (2μ2V ′V ′′ − αμV ′)ρ (0). (14)

For small V , this equation is solved perturbatively as

ρ (0) ≈ ρb

(
1 − μα

u2
V + μ2

u2
V ′2 + μ2α2

2u4
V 2

)
, (15)

where ρb is the bulk density of RTPs outside the object. To
express ρb in terms of the mean density ρ̄, we use the normal-
ization condition ρ̄L = ∫ L

0 dx ρ (0), obtaining

ρ̄L ≈ ρbL + ρb

(
−μα

u2
V + μ2

u2
V ′2 + μ2α2

2u4
V 2

)
, (16)

where X ≡ ∫ �/2
−�/2 dx X . Since L � 1, this implies

ρb ≈ ρ̄ − ρ̄

L

(
−μα

u2
V + μ2

u2
V ′2 + μ2α2

2u4
V 2

)
. (17)

Using this in Eq. (15) completes the solution for ρ (0).
Let us proceed to order v, where the steady-state conditions

are given by

J (1) = −μV ′ρ (1) − ρ (0) + u�(1), (18)

0 = −∂x(−μV ′�(1) − �(0) + uρ (1) ) − α�(1). (19)

Eliminating �(0) using Eq. (12) and �(1) using Eq. (18),
Eq. (19) implies

(μ2V ′2 − u2)∂xρ
(1) + (2μ2V ′V ′′ − αμV ′)ρ (1)

+ ∂x[μV ′(J (1) + 2ρ (0) )] − α(J (1) + ρ (0) ) = 0. (20)

To solve this perturbatively, we write ρ (1) ≈ ρ
(1)
0 + ρ

(1)
1 and

J (1) ≈ J (1)
0 + J (1)

1 , where ρ (1)
n and J (1)

n denote the solution at
order V n. At order V 0, Eqs. (15), (17), and (20) imply

u2∂xρ
(1)
0 + α

(
J (1)

0 + ρ̄
) = 0, (21)

which is solved by

ρ
(1)
0 = − α

u2

(
J (1)

0 + ρ̄
)
x + ρ

(1)
0

(
−�

2

)
. (22)

Due to the periodic boundary condition, the coefficient of
x must vanish, yielding J (1)

0 = −ρ̄. Then the normalization
condition

∫ L
0 dx ρ (1) = 0 implies ρ

(1)
0 = 0.

At order V , Eqs. (15), (17), and (20) imply

u2∂xρ
(1)
1 = μV ′′ρ̄ − αJ (1)

1 − α

(
− ρ̄μα

u2
+ ρ̄μα

u2L
V

)
, (23)

whose solution is

ρ
(1)
1 = ρ

(1)
1

(
−�

2

)
+ μV ′

u2
ρ̄ − α

u
J (1)

1 x

+ ρ̄μα2

u4

(
V − V

L
x

)
, (24)

where V (x) ≡ ∫ x
−�/2 dx′V (x′). The periodic boundary con-

dition implies J (1)
1 = 0, and the density normalization∫ L

0 dx ρ (1) = 0 yields

ρ
(1)
1

(
−�

2

)
= ρ̄μα2

u4

(
1

2
V − 1

L

∫ L

0
dx V

)
. (25)

Thus, we obtain

ρ
(1)
1 = ρ̄μα2

u4

(
1

2
V − 1

L

∫ L

0
dx V

)
+ μV ′

u2
ρ̄

+ ρ̄μα2

u4

(
V − V

L
x

)
. (26)

Finally, using the above results, the drag exerted on the
object is obtained as

Fobj =
∫ L

0
dx ρV ′ ≈ v

∫ L

0
dx ρ (1)V ′ ≈ v

∫ L

0
dx ρ

(1)
1 V ′

≈ v

∫ L

0
dx

(
ρ̄μ

u2
V ′2 + ρ̄μα2

u4
V ′V − ρ̄μα2V

u4L
V ′x

)

≈ v

(
ρ̄μ

u2
V ′2 − ρ̄μα2

u4
V 2

)
, (27)

where the last expression is derived via integration by parts
and taking L → ∞. Noting that the effective diffusion co-
efficient of the free RTP is given by Deff = u2/α, the
Einstein relation yields the effective temperature of the RTPs
Teff = Deff/μ = u2/(μα). Using this quantity as well as the
persistence length lp ≡ 2u/α, the drag coefficient can be
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written as

γdrag ≡ − lim
v→0

Fobj

v
≈ ρ̄

μ

V 2

T 2
eff

(
1 − l2

p

4

V ′2

V 2

)
. (28)

This result is very instructive about how the negative drag
emerges in active fluids. In the equilibrium limit, which corre-
sponds to lp → 0 with finite Teff , γdrag is bound to be positive.
However, since the activity of the RTPs produces finite lp,
γdrag is reduced, becoming even negative when lp is suffi-

ciently larger than the object length scale given by
√

V 2/V ′2.
We have thus shown that the negative drag can emerge for
generic RTP-object interaction potentials.

B. Frictional RTP-object interactions

We focused on the case where the RTP and the object
interact via conservative forces. In this section we demonstrate
that negative drag can also emerge from nonconservative in-
teractions. Towards this goal, we examine the case where
an RTP crossing the object experiences a constant kinetic
friction in the direction opposite to its relative velocity. In the
overdamped limit, the equation of motion for such RTPs reads

ẋi = −μF (xi − X )si(t ) + usi(t ) for i ∈ {1, . . . , N}, (29)

where F (x) is the friction force inside the object defined as

F (x) =
{

F if x ∈ [ − �
2 , �

2

]
0 otherwise.

(30)

In the reference frame of the moving object (xi → xi + X ), the
equation becomes

ẋi = −v + [u − f (x)]si(t ) for i ∈ {1, . . . , N}, (31)

where f (x) ≡ μF (x). We also introduce the notation f ≡
μF .

Now it is straightforward to convert Eq. (31) to the master
equation

∂tρ+ = −∂x[(−v + u − f (x))ρ+] + α

2
(ρ− − ρ+),

∂tρ− = −∂x[(−v − u + f (x))ρ−] + α

2
(ρ+ − ρ−). (32)

In terms of the total density ρ ≡ ρ+ + ρ− and the polarization
� = ρ+ − ρ−, the equations can be rewritten as

∂tρ = −∂xJ, J ≡ −vρ + [u − f (x)]�,

∂t� = −∂xJ� − α�, J� ≡ [u − f (x)]ρ − v�. (33)

The force Fobj exerted on the object by the RTPs is then
calculated as

Fobj =
∫ �/2

−�/2
dx F (x)[ρ+(x) − ρ−(x)] =

∫ L

0
dx F (x)�(x).

(34)

As detailed in Appendix C, the resulting form of exerted force
in the limit L → ∞ is

Fobj = ρ̄ f 2

μα

[
1 − exp

(
− αv�

(u − f )2 − v2

)]
. (35)

FIG. 5. Density profile of the RTPs around a symmetric object
moving to the right at velocity v/u = 0.2 which interacts with RTPs
through the constant kinetic friction. The numerics refer to the results
of a particle-based simulation using 50 000 RTPs. The portions ac-
counted for by the left-moving (ρ−) and the right-moving (ρ+) RTPs
are distinguished using different shades. The theoretical predictions
(solid lines) are in good agreement with the numerical results (shaded
areas).

Therefore, for v < u − μF , the object always experiences
negative drag.

To validate our theory, we conducted extensive numerical
simulations of Eq. (31). Indeed, the observed density profiles
of the RTPs shown in Fig. 5 are in good agreement with our
theoretical predictions.

Remarkably, when the RTP-object interaction is purely
based on the constant kinetic friction, negative drag occurs
irrespective of the size of the object. This is in stark contrast
to the case of conservative RTP-object interaction, where the
object size had to be smaller or comparable to the persistence
length of the RTPs for negative drag to occur.

Why are the two cases so different? When the interaction
is conservative, Fobj > 0 is satisfied when there are more par-
ticles behind the object than in front of the object; in other
words, the position distribution of the RTPs should be biased
in the right way, which requires that most RTPs completely
cross the object in a short time so that they can see the dif-
ference between the two sides of the object. In contrast, when
the RTP and the object interact via kinetic friction, Fobj > 0
only requires that there are more right movers (ρ+) than left
movers (ρ−) inside the object [see Eq. (34)]. This mechanism
is completely indifferent to how the two sides of the object
differ from each other, so there is no need for the RTPs to
cross the object in a short time. Hence, negative drag occurs
regardless of the size of the object in this case.

C. Extension to two-dimensional systems

While we focused on the model limited to the 1D case,
here we demonstrate that the symmetry-breaking mechanism
is also possible in 2D systems. We consider an overdamped
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FIG. 6. (a) Mean-field predictions for the steady-state velocity of
the object and (b) effective diffusion coefficient of the object as the
repulsion strength f is varied. The dashed lines are to guide the eye.
(c) Mean square displacement of the object as the repulsion strength
f is varied, obtained by averaging over 200 samples.

penetrable disk of radius R immersed in an active ideal gas
on a 2D torus of size L × L. The gas consists of N active
Brownian particles (ABPs), which do not interact with each
other but only with the object via the conic potential

V (r) =
{

F (R − |r|) for 0 � |r| < R
0 otherwise. (36)

We again assume that thermal noise is negligible compared
to the other forces. With these assumptions, the equations of
motion for each ABP are given by

ṙi = −μ∇riV (ri − X) − un̂i(t ) for i ∈ {1, . . . , N}, (37)

θ̇i =
√

2Drηi(t ), (38)

where ri is the position of the ith ABP, u its speed, μ its
mobility, n̂ ≡ (cos θi, sin θi ) its orientation, Dr its rotational
diffusion coefficient, and ηi(t ) the Gaussian white noise satis-
fying 〈ηi(t )〉 = 0 and 〈ηi(t )η j (t ′)〉 = δi jδ(t − t ′). In addition,
X denotes the position of the object and evolves according to

Ẋ = −μobj

N∑
i=1

∇XV (ri − X), (39)

where μobj is the mobility of the object. For the simulation,
we used the following parameters: N = 50 000, u = 5, Dr =
π2/3, μ = 5, μobj = 0.01, R = 3, and L = 15.

We first calculate the force applied by ABPs on the object
when it is dragged at constant velocity vêx, where êx is the unit
vector in the x direction. We adopt the frame of reference fixed
to the object (ri → ri + X) for convenience. In the steady
state, the drag force on the object is obtained as

Fobj(v) =
∫ R

0

∫ 2π

0
r dr dθ ρs(r; v)∇rV (r), (40)

where ρs(r; v) denotes steady-state density profile of the
ABPs. Then we calculate the mean-field object velocity vMF

using the self-consistency equation

Ftot(vMF) · êx ≡ Fobj(vMF) · êx − 1

μobj
vMF = 0. (41)

As shown in Fig. 6(a), the mean-field assumption predicts that
the object becomes motile (vMF = 0) only for an intermediate

range of the repulsion strength f in a manner similar to the 1D
case.

To check that the mean-field assumption correctly predicts
the phenomenology, we let the object move freely and mea-
sure the effective diffusion coefficient defined as

Deff ≡ lim
t→∞

〈[X(t ) − X(0)]2〉
2t

, (42)

with the results shown in Fig. 6(b). We observe that Deff

exhibits a nonmonotonic dependence on f , which is consistent
with the mean-field predictions of vMF.

Finally, we also check the mean-square displacement
(MSD) of the object

MSD(t ) ≡ 〈[X(t + τ ) − X(τ )]2〉, (43)

where τ is some initialization time set to be longer than the
relaxation timescale. The results, shown in Fig. 6(c), confirm
that the enhanced diffusion coefficient in the intermediate
range of f is indeed due to the initial ballistic motion of the
object, which must be the consequence of the negative drag.

Our results clearly show that the symmetry-breaking motil-
ity of passive penetrable objects in an active fluid is not limited
to the 1D case but can generally occur in higher-dimensional
systems. However, we also observe a notable difference be-
tween how the motion of the object crosses over from the
ballistic regime to the diffusive regime in the 1D and 2D cases.
In the 1D case, the object can switch its direction only when
many of the RTPs accumulated behind it move to the other
side of the object. This is analogous to the magnetization of
a ferromagnetic Ising system crossing the energy barrier and
changing its sign. In the 2D case, the object can change its
direction of motion via angular diffusion without such barrier-
crossing events.

To demonstrate this difference, in Fig. 7 we show the MSD
of the object in the 1D and 2D cases, varying the number
N of the RTPs while rescaling the object mobility according
to μobj ∼ N−1. As N is increased, the variance of the force
exerted by the RTPs on the object scale as N−1. For the 1D
case, by analogy with the Arrhenius equation, the persistence
time of the object scales as τ∗ ∼ exp(cN ). On the other hand,
for the 2D case, the persistence time scales as τ∗ ∼ N . These
are indeed confirmed by the data collapses of the MSD in
Figs. 7(a) and 7(c) and the plots of the effective diffusion coef-
ficient Deff in Figs. 7(b) and 7(d), which scales as Deff ∼ v2t∗.
Note that changing N does not affect the average speed v of
the object, so the Deff and t∗ have the same scaling relationship
with N .

VII. SUMMARY AND OUTLOOK

We described theoretically the steady-state dynamics of
a 1D symmetric penetrable object immersed in an ideal gas
of RTPs. We found that the drag coefficient of the object
becomes negative when the object size and the object-RTP
repulsion are both sufficiently small. In that case, the object
moves persistently in a single direction by breaking the sym-
metry. Provided the complete timescale separation between
the object and the RTPs, the steady-state velocity of the object
exhibits discontinuous and continuous phase transitions, with
the former involving the coexistence of multiple dynamical
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FIG. 7. (a) Mean square displacement of the passive object in the
1D case. The data collapse is done with the persistence timescale t∗ ∼
exp(0.0004N ), which is also confirmed by (b) the scaling behavior
of Deff with respect to the number N of RTPs. The inset shows the
log-log version of the main semilogarithmic plot. The corresponding
results for the 2D case are shown in (c) and (d), with the inset being
the semilogarithmic version of the main log-log plot.

states and the latter exhibiting the mean-field Ising critical
phenomena. Even if the timescale separation is not complete,
these transitions increase the diffusion coefficient of the object
by several orders of magnitude, hinting at the interesting pos-
sibility that properties of an active fluid can be dramatically
altered by tuning the size of passive impurities.

Also we demonstrated that a 2D penetrable object also
exhibits symmetry-breaking motility. Still, it remains to be
checked whether the same mechanism is at work even for
higher-dimensional objects with a hard core.

Finally, it would be interesting to explore applications to
active engines [35–40] and collective phenomena involving
multiple symmetric objects arising from the long-range inter-
actions mediated by active particle currents [41,42].
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APPENDIX A: DERIVATION OF THE EXERTED FORCE
ON THE OBJECT

We derive the expression for Fobj using the steady-state
density of RTPs around the object moving at constant velocity
v. Towards this goal, as pointed out in [43], we need to
separately address three different cases described below and

FIG. 8. Three regimes classified according to the penetrability of
the object.

illustrated in Fig. 8 (assuming that the object moves to the
right with v > 0).

Case A. For μF + v < u, the RTPs can penetrate the object
from both sides.

Case B. For μF + v > u and μF − v < u, the right-
moving RTPs cannot pass through the object whereas the
left-moving RTPs can.

Case C. For μF > u + v, no RTPs can penetrate the object.
We neglect the case where the object is faster than the RTPs

since such situations would not arise naturally from the object-
RTP interactions. Moreover, we are not interested in case C
where the RTPs are bound to accumulate more in front of the
object than behind, making the immotile state the only stable
solution. Thus, we focus on cases A and B.

1. Force-current relationship

Utilizing Eqs. (6) and (7),

Fobj = − 1

μ

∫ L

0
dx(J + vρ − u�)

= − 1

μ

(
JL + vN − u

∫ L

0
dx �

)
. (A1)

In the steady state, Eq. (6) implies

Fobj = − 1

μ

(
JL + vN − u

α

∫ L

0
dx(∂xJ�)

)
. (A2)

Since the system is periodic, the last term on the right-hand
side is zero. Thus, we obtain

Fobj = − 1

μ
(JL + vN ), (A3)

which describes the force-current relationship in the object
frame. We note that a similar expression was derived in [21]
for the laboratory frame of reference.

2. Steady-state RTP density

In order to obtain J , we first derive expressions for the
steady-state density of the RTPs. In the steady state, the elim-
ination of � in Eq. (6) yields

∂x{[u2 − Feff (x)2]ρ(x)} − αFeff (x)ρ(x)

+ [α + F ′
eff (x)]J = 0. (A4)
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FIG. 9. RTP densities for respective regions.

Defining

g(x) ≡ [u2 − Feff (x)2]ρ(x), (A5)

a(x) ≡ αFeff (x)

u2 − Feff (x)2
, (A6)

b(x) ≡ [α + F ′
eff (x)]J, (A7)

the equation can be rewritten as

g′(x) − a(x)g(x) + b(x) = 0. (A8)

Since this is a first-order ordinary differential equation, its
general solution is straightforwardly obtained as

g(x) − g(c) exp

(∫ x

c
dx2a(x2)

)

= −
∫ x

c
dx1b(x1) exp

(
−

∫ x1

x
dx2a(x2)

)
, (A9)

where c is an arbitrary constant. Then using the definition of
g(x), we can write

ρ(x) = u2 − Feff (c)2

u2 − Feff (x)2
ρ(c) exp

(∫ x

c
dx2a(x2)

)

− 1

u2 − Feff (x)2

∫ x

c
dx1b(x1) exp

(∫ x

x1

dx2a(x2)

)
.

(A10)

From this expression, we learn the following.
(i) Since Feff (x) changes discontinuously at x = ±�/2 and

x = 0, b(x) has delta peaks at these locations. This implies
that ρ(x) has discontinuous jumps at the same locations. For
this reason, as shown in Fig. 9, we set

ρ(x) =
⎧⎨
⎩

ρ1(x) for − �
2 < x < 0

ρ2(x) for 0 < x < �
2

ρ3(x) otherwise
(A11)

and apply Eq. (A10) separately to ρ1, ρ2, and ρ3 to calculate
these functions.

(ii) The discontinuities of Feff (x) should be under-
stood as the limiting behaviors of some smoothly behaved
effective force profile. More specifically, while we have as-
sumed Feff (x) to take only one of the three values ±μF − v

and −v, the function actually takes all values in between,
rapidly changing in the infinitesimal neighborhoods of x =
±�/2 and x = 0. In case A, where u > |Feff |, such a contin-
uous change of Feff (x) never satisfies u2 − F 2

eff (x) = 0; thus,
ρ(x) as described by Eq. (A10) stays finite. In contrast, in case

B, u2 − F 2
eff (x) = 0 is achieved in the infinitesimal neighbor-

hoods of x = −�/2 and x = 0; thus, Eq. (A10) implies that
ρ(x) may diverge to infinity at these locations. Hence extra
care must be taken when dealing with the boundary conditions
there.

3. Solution for case A

Let x+
0 (x−

0 ) indicate a point infinitesimally close to x0 with
x−

0 < x0 < x+
0 . Then, using c = −�/2+, 0+, and �/2+ in

Eq. (A10), we obtain

ρ1(x) = ρ

(
− �

2+

)
exp

[
− α(μF + v)

u2 − (μF + v)2

(
x + �

2

)]

− J

μF + v

{
1− exp

[
− α(μF + v)

u2 − (μF + v)2

(
x+�

2

)]}
,

(A12)

ρ2(x) = ρ(0+) exp

(
α(μF − v)

u2 − (μF − v)2
x

)

+ J

μF − v

[
1 − exp

(
α(μF − v)

u2 − (μF − v)2
x

)]
, (A13)

ρ3(x) = ρ

(
+ �

2+

)
exp

[
− αv

u2 − v2

(
x − �

2

)]

− J

v

{
1 − exp

[
− αv

u2 − v2

(
x − �

2

)]}
(A14)

for each partition shown in Fig. 9, respectively. Note that
we used the relation Feff (c) = Feff (x) for each partition in
Eq. (A10).

In the steady state, Eq. (6) implies

∂xJ� = −α�. (A15)

As discussed above, in case A, ρ ≡ ρ+ + ρ− always stays
finite. Since ρ+ � 0 and ρ− � 0, this also means that � ≡
ρ+ − ρ− is finite as well. Then Eq. (A15) implies the continu-
ity of J� in space.

Using the definitions J ≡ Feffρ + u� and J� ≡ Feff� +
uρ, the elimination of � yields

J� = Feff

u
J + u2 − F 2

eff

u
ρ. (A16)

Then the continuity of J� at x = ±�/2 and x = 0 leads to

− v

u
J + u2 − v2

u
ρ3

(
L − �

2

)

= −μF + v

u
J + u2 − (μF + v)2

u
ρ1

(
−�

2

)
, (A17)

− μF + v

u
J + u2 − (μF + v)2

u
ρ1(0)

= μF − v

u
J + u2 − (μF − v)2

u
ρ2(0), (A18)

μF − v

u
J + u2 − (μF − v)2

u
ρ2

(
�

2

)

= −v

u
J + u2 − v2

u
ρ3

(
�

2

)
. (A19)
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Also, the solution must satisfy the normalization condition∫ 0

−�/2
dx ρ1(x)+

∫ �/2

0
dx ρ2(x)+

∫ L−�/2

�/2
dx ρ3(x)=N=ρ̄L.

(A20)

In case A, Eqs. (A17)–(A20) fix the boundary conditions
of the system. Since we have four unknown parameters J ,
ρ(±l/2+), and ρ(0+), these four equations completely deter-
mine the steady-state density profile and the current J . Then,
using Eq. (A3), we obtain Fobj.

4. Solution for case B

Next we address case B. As discussed in Appendix A 2,
u2 − Feff (x)2 = 0 is achieved in the infinitesimal neighbor-
hoods of x = −�/2 and x = 0. Let us denote by c0 and c′

0 the
points at which Feff (x) = −u near x = −�/2 and x = 0, re-
spectively. We need to check whether ρ(x) diverges to infinity
at these points. For this purpose, we express the steady-state
current J in terms of the densities of the right-moving and
the left-moving RTPs in the neighborhoods of x = −�/2 and
x = 0. When Feff (x) = −u, the total effective force on a right-
moving particle (including the self-propulsion) disappears.
Thus, we can write

J = −2uρ−(c0) = −2uρ−(c′
0), (A21)

which implies that ρ−(x) stays finite at x = c0 and x = c′
0.

According to Eq. (A10), these are the only points where ρ(x)
can possibly diverge. Thus, ρ−(x) must be finite throughout
the system.

Now it remains to examine the behaviors of ρ+(x).
Near x = −�/2, for positive and infinitesimal ε, applying∫ −�/2+ε

−�/2−ε
dx to the first identity of Eq. (5) in the steady state,

we obtain

(μF + v − u)ρ+

(
−�

2
+ ε

)
+ (u − v)ρ+

(
−�

2
− ε

)

� α

2

∫ −�/2+ε

−�/2−ε

dx ρ+(x). (A22)

Since the left-hand side is bound to be positive, ρ+(x) must
diverge to infinity in the infinitesimal neighborhood of x =
−�/2. Since the current

J = ρ+(x)[Feff (x) + u] + ρ−(x)[Feff (x) − u] (A23)

must be finite, the divergence of ρ+(x) occurs precisely at
x = c0, where Feff (x) + u = 0. This implies the existence of a
delta peak of the RTP density at x = c0. Meanwhile, applying∫ ε

−ε
dx to the first identity of Eq. (5) in the steady state, we

obtain

− (μF − v + u)ρ+(ε) − (μF + v − u)ρ+(−ε)

= α

2

∫ ε

−ε

dx ρ+(x) − α

2

∫ ε

−ε

dx ρ−(x). (A24)

Since the left-hand side cannot be greater than zero, the two
sides can be equal only if ρ+(±ε) ∼ ε. Thus, ρ+(x) converges
to zero at x = c′

0. As ρ−(c′
0) is finite, this implies that ρ(c′

0) is
also finite. To sum up, ρ(x) diverges to infinity only at x = c0

in the infinitesimal neighborhood of x = −�/2, and ρ(x) =
ρ−(x) at x = c′

0 in the infinitesimal neighborhood of x = 0.
Combining the latter observation with Eq. (A23), we can

show that J directly determines ρ(0±) as follows:

ρ(0±) = ρ−(0±) = J

Feff (0±) − u
. (A25)

Then, using Eq. (A10), we obtain

ρ1(x) = ρ(0−) exp

(
− α(μF + v)

u2 − (μF + v)2
x

)

− J

μF + v

[
1 − exp

(
− α(μF + v)

u2 − (μF + v)2
x

)]
(A26)

for −�/2 < x < 0, where J within ρ(0−) is the only un-
known coefficient. We can similarly express ρ2(x) and ρ3(x)
in terms of J by applying Eqs. (A13), (A14), and (A19). It
should be noted that ρ1(x), ρ2(x), and ρ3(x) are all smooth and
finite-valued functions. The delta peak at x = −�/2 must be
separately taken into account. Thus, the normalization condi-
tion of the RTP density profile can be written as

ρ̄L =
∫ 0

−�/2
dx ρ1(x) +

∫ �/2

0
dx ρ2(x)

+
∫ L−�/2

�/2
dx ρ3(x) + M, (A27)

where M is the magnitude of the delta peak at x = −�/2.
To fully determine the unknown coefficients J and M,

we revisit Eq. (A15): ∂xJ� = −α�. Since the delta peak is
entirely due to ρ+(x), the polarization �(x) also has a delta
peak with the same magnitude at x = −�/2. Thus, inte-
grating Eq. (A15) across the infinitesimal interval [−�/2 −
ε,−�/2 + ε], we obtain

M = − 1

α

[
J�

(
−�

2
+ ε

)
− J�

(
−�

2
− ε

)]
. (A28)

Using Eq. (A16), this can be rewritten as

M = − 1

α

[
− μF

u
J + u2 − (μF + v)2

u
ρ1

(
−�

2

)

− u2 − v2

u
ρ3

(
L − �

2

)]
, (A29)

which relates M to J . Together with the normalization condi-
tion in Eq. (A27), this equation fully determines the values of
J and M. Thus we have fully determined the steady-state RTP
density for case B, and Fobj can also be derived from J using
Eq. (A3).

APPENDIX B: SMALL-V EXPANSION OF THE FORCE
ON THE OBJECT

With Fobj determined by the procedure described in the
preceding Appendix, we can expand the expression in terms
of small v and single out the leading-order terms for large L,
getting the linear-order coefficient

a1( f , λ, L) = 2

f
sinh

(
f λ

1 − f 2

)
− λ( f 4 − f 2 + 2)

(1 − f 2)2
(B1)
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and the coefficient of v3,

a3( f , λ, L) � − L

�

[
− λ

3 f 2
+ λ3

6

(1 + f 2)2

(1 − f 2)4

+ λ

3 f 2
cosh

(
f λ

1 − f 2

)

− λ2

3

1 + f 2

f (1 − f 2)2
sinh

(
f λ

1 − f 2

)]
. (B2)

APPENDIX C: EXERTED FORCE IN THE CASE
OF THE FRICTIONAL RTP-OBJECT INTERACTION

In this Appendix we aim to provide detailed calculation in
obtaining Fobj shown in Eq. (35). In the steady state, using
Eqs. (33) and (34),

Fobj = 1

μ

∫ L

0
dx(u� − vρ − J )

= 1

μ

(
− u

α

∫ L

0
dx(∂xJ�) − vρ̄L − JL

)
. (C1)

Since the system is periodic, this reproduces the force-current
relationship

Fobj = − 1

μ
(JL + vρ̄L) (C2)

stated in Eq. (A3).
From Eq. (34) we see that no negative drag (Fobj > 0) can

occur when there are no right-moving RTPs inside the object
(ρ+ = 0). For the negative drag to be possible, there must
be right-moving RTPs penetrating the object. As indicated
by Eq. (31), the condition corresponds to −v + u − f > 0.
Therefore, for the remainder of this Appendix we will restrict
ourselves to the case u − f > v > 0, assuming the object to
be moving rightward.

In the steady state, Eq. (33) can be rewritten as

g′(x) − a(x)g(x) + b(x) = 0, (C3)

where

g(x) ≡ [u − f (x)]2 − v2

u − f (x)
ρ(x), (C4)

a(x) ≡ − αv

[u − f (x)]2 − v2
, (C5)

b(x) ≡ α − v f ′(x)

u − f (x)
J. (C6)

Since the form of the equation is the same as Eq. (A8), we
can use the same solution as Eq. (A9). Denoting by ρ1(x)

and ρ2(x) the RTP densities inside and outside the object,
respectively, we obtain

ρ1(x) = ρ

(
− �

2+

)
exp

[
− αv

(u − f )2 − v2

(
x + �

2

)]

− J

v

{
1 − exp

[
− αv

(u − f )2 − v2

(
x + �

2

)]}
,

(C7)

ρ2(x) = ρ

(
+ �

2+

)
exp

[
− αv

u2 − v2

(
x − �

2

)]

− J

v

{
1 − exp

[
− αv

u2 − v2

(
x − �

2

)]}
. (C8)

Using the definitions of J and J� in Eq. (33), the elimination
of � yields

J� = [u − f (x)]2 − v2

u − f (x)
ρ(x) − v

u − f (x)
J. (C9)

Within the regime of our interest (u − f > v > 0), none of
the terms in Eq. (C3) diverge. This implies that ρ ≡ ρ+ + ρ−
stays finite throughout the system, which in turn implies that
� ≡ ρ+ − ρ− is also finite. Thus J�, which satisfies ∂xJ� =
−α� in the steady state [see Eq. (33)], must be continuous
everywhere. The continuity of J� at x = ±�/2 leads to

u2 − v2

u
ρ2

(
L − �

2

)
− v

u
J

= (u − f )2 − v2

u − f
ρ1

(
−�

2

)
− v

u − f
J, (C10)

u2 − v2

u
ρ2

(
�

2

)
− v

u
J

= (u − f )2 − v2

u − f
ρ1

(
�

2

)
− v

u − f
J. (C11)

The normalization condition for the RTP density∫ �/2

−�/2
dx ρ1(x) +

∫ L−�/2

�/2
dx ρ2(x) = ρ̄L. (C12)

Combining Eqs. (C7), (C8), and (C10)–(C12) and taking the
limit L → ∞, J is obtained as

J � −ρ̄v

{
1 + f 2

αvL

[
1 − exp

(
− αv�

(u − f )2 − v2

)]}
.

(C13)

Applying this result to Eq. (C2), we finally obtain Eq. (35).
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